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Abstract The kinematical difference between the de-

scription of radiative effects for fixed Q2 vs a fixed scat-

tering angle in the elastic lepton-proton (lp)-scattering

is discussed. The technique of calculation as well as ex-

plicit expressions for radiative corrections to the lep-

ton current in unpolarized elastic lp-scattering for these

two cases are presented without using an ultrarelativis-

tic approximation. A comparative numerical analysis

within kinematic conditions of Jefferson Lab measure-

ments and MUSE experiment in PSI is performed.

1 Introduction

The elastic lepton-proton scattering is a recognized tool

for investigation of the internal proton structure. The

observation of the disagreement in Q2-behavior of the
proton elastic form factor ratio for unpolarized [1,2] and

polarized [3,4] electron scattering, along with the pro-

ton radius puzzle coming from the different outcomes of

the measurements in electron-proton systems [5,6] and

in the muonic hydrogen [7] – all of these require under-

standing of underlying QED processes that may lead

to systematic uncertainties at a per cent level. More-

over, the results of the recent experiment PRAD [8] was

in agreement with muonium spectroscopy experiment

that contradicted the previous electron-proton scatter-

ing data. This unexpected result motivates new efforts

for the theoretical and experimental investigations.

One of the important and essential tools for the in-

vestigation of the electromagnetic properties of the pro-

ton is an experimental program with high duty-cycle

positron beams at JLab [9]. This program with the elec-

tron beams allows to estimate the electromagnetic form

ae-mail: afanas@gwu.edu
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factors of the proton separately as well as to measure

a change asymmetry that appears at the lowest order

as an interference of the matrix elements with one- and

two-photon exchanges.

Together with widely discussed two-photon ex-

change [10], the important source of uncertainties for

both lepton and anti-lepton scattering is from the real

photon emission accompanying any process with the

charge particle scattering, as well as the additional vir-

tual particle contributions. Due to smallness of muon

beam momentum at MUSE experiment in PSI [11], as

well as scattering by extremely small angles in PRAD-II

experiment at Jefferson Lab [12], all calculations have

to be performed beyond the ultrarelativistic approxima-

tion, i.e. retaining lepton’s mass during the entire cal-

culation. While for purely elastic scattering at a given

beam energy the four-momentum transfer Q2 is in one-

to-one correspondence with a lepton scattering angle,

this is not the case for radiative events. It is therefore

of critical importance to understand the role of QED

radiative corrections (RC) in different kinematic sce-

narios: fixed momentum transfer Q2 vs fixed scattering

angle of the detected lepton (as done in MUSE [11] or

in high-resolution spectrometers with small angular ac-

ceptance used in some of Jefferson Lab experiments).

It should be noted that rather often for estimation

of the similar corrections to the exclusive process the

additional particle contributions are calculated exactly

or within ultrarelativistic approximation (with respect

to lepton’s mass) while the real photon emission is con-

sidered within the soft photon approximation. Particu-

larly in the papers [13] and [14] for Möller and virtual

Compton scattering processes, respectively, the virtual

QED corrections have been calculated beyond the ul-

trarelativistic limit but only the soft part of the real

photon emission was taken into account.
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Mo and Tsai first developed a systemic approach

to calculate RC with hard photon emission in elastic

and inelastic electron-proton scattering [15]. One limi-

tation in their calculations was the approximate way to

consider the soft-photon contribution, as a result, their

final expressions depend on an artificial parameter ∆

that was introduced to separate the photon momentum

phase space into soft and hard parts.

Here we present the explicit expressions as well as

the numerical comparison of RC to the lepton cur-

rent both for fixed scattering angle and transferred

momentum squared. Such RC include hard real pho-

ton emission from the initial and final leptons, vac-

uum polarization and vertex correction. The presented

RC are charge-even, therefore they directly apply to a

sum of positron- and electron scattering cross sections

that could be measured by combined experiments with

added positron capabilities at JLab.

For extraction and cancellation of the infrared di-

vergence we use the covariant approach of Bardin-

Shumeiko [16]. One of the important advantages of this

approach over [15] consists in the independence of the

final results from the parameter ∆. A similar calcula-

tion but for fixed transferred momentum squared was

performed in Ref. [17].

Among the other recent results on RC calculations

to the lepton current with the hard photon emission

and keeping the lepton mass, we specifically mention

two papers. The first one is by Bucoveanu and Spies-

berger [18] and includes the second-order RC. The sec-

ond publication describes FORTRAN code developed

by Banerjee, Engel, Signer, and Ulrich [19] with a cal-

culation of the first order RC to several processes in

elastic lepton-lepton and lepton-proton scattering.

The rest of the article is organized as follows. The

kinematics of elastic process and radiative process are

discussed in detail in Sec. 2. In particular, we show that

for the description of hard photon emission at fixed

scattering angle the ultrarelativistic approximation is

not applicable even for relativistic electron-proton scat-

tering. The hadronic tensor and Born cross section are

presented in Sec. 3. The additional virtual particle con-

tributions are given in Sec. 4. For the parameterization

of the infrared and ultraviolet divergences the dimen-

sional regularization is used. In the next two sections

the real photon emission contribution for both fixed Q2

and fixed scattering angle is presented. For both cases

the infrared divergence is extracted and cancelled using

the Bardin-Shumeiko approach [16]. The comparative

numerical analysis for MUSE [11] and [20,21] exper-

iments can be found in Sec. 7. A brief discussion and

conclusions are presented in the last section. The details

of the approach for the infrared divergence extraction

are given in Appendix A. The derivation of the compact

expression for the Bardin-Shumeiko function Sφ can be

found in Appendix B.

2 Elastic and inelastic processes

The unpolarized elastic lp-scattering

l(k1) + p(p1)→ l′(k2) + p′(p2), (1)

is considered first. Here k1 and p1 (k2 and p2) are the

four-momenta of the initial (final) lepton and proton

respectively (k2
1 = k2

2 = m2, p2
1 = p2

2 = M2). Although

we consider this process in the target rest frame (p1 =

0), after definition of the virtual photon momentum as

q = k1−k2, it will be useful to introduce the kinematic

invariants:

S = 2p1k1, Q
2 = −q2, X = S −Q2,

λS = S2 − 4m2M2, λX = X2 − 4m2M2,

λm = Q2(Q2 + 4m2), (2)

in such a way, that the energies of the initial (k10) and

final (k20) leptons as well as the absolute value of their

three-momenta (|k1| and |k2|, respectively) read:

k10 =
S

2M
, |k1| =

√
λS

2M
, k20 =

X

2M
, |k2| =

√
λX

2M
. (3)

In the present paper we will consider two types of

the cross sections: dσ/dQ2 and dσ/d cos θ where the co-

sine of the scattering angle θ can be expressed through

the invariants:

cos θ =
k1 · k2

|k1||k2|
=
SX − 2M2(Q2 + 2m2)√

λSλX
. (4)

Taking into account X = S − Q2, the quadratic

equation over Q2 has two solutions

Q2
± = λS

S sin2 θ + 2M2 ± 2M cos θ
√
M2 −m2 sin2 θ

(S + 2M2)2 − λS cos2 θ
,

(5)

where the direct substitution into (4) shows that Q2
−

is the correct expression while Q2
+ corresponds to the

scattering on 180o − θ angle:

S(S −Q2
±)− 2M2(Q2

± + 2m2)√
λS((S −Q2

±)2 − 4m2M2)
= ∓ cos θ. (6)

The restrictions on the scattering angle −1 < cos θ < 1

translate into the kinematical limits for Q2:

0 < Q2 <
λS

S +m2 +M2
. (7)

For the description of the inelastic process caused

by real photon emission

l(k1) + p(p1)→ l′(k2) + p′(p2) + γ(k) (8)
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(k2 = 0) three additional variables have to be intro-

duced. We choose the standard set [22] of them: inelas-

ticity v = (p1 + k1 − k2)2 −M2, τ = kq/kp1 and the

azimuthal angle φk between (k1,k2) and (k,q) planes

in the rest frame (p1 = 0).

Using this set of variables, it is straightforward to

show that for real photon emission the expressions for

the energy and the three-momentum of the scattering

lepton have to be modified:

k20 =
X − v
2M

, |k2| =
√

(X − v)2 − 4m2M2

2M
. (9)

As a result, cos θ can be expressed through the in-

elasticity value and Q2 in a following way:

cos θR =
S(X − v)− 2M2(Q2 + 2m2)√

λS((X − v)2 − 4M2m2)
, (10)

where we introduce the index R to emphasize that at a

fixed Q2 the value of cos θ depends on the inelasticity of

the radiative process. The restrictions on the scattering

angle −1 < cos θR < 1 set the upper limit for v at fixed

Q2:

vq =

√
λS
√
λm −Q2(S + 2m2)

2m2
. (11)

Similar to the non-radiative process, there are two

possible ways to express Q2 from Eq. (10). After substi-

tution of the obtained expressions for Q2 into the r.h.s.

of Eq. (10), the correct solution here is:

Q2
R(v) =

1

(S + 2M2)2 − λS cos2 θ

×
[
(S + 2M2)(λS − vS)− λS(S − v) cos2 θ

−2M
√
λS
√
D cos θ

]
, (12)

where the index R poses the same meaning as in

Eq. (10), namely, at a fixed cos θ the value of Q2 de-

pends on the inelasticity of the radiative process. The

quantity

D = M2(λS + v(v − 2S))−m2(λS sin2 θ + 4vM2)

(13)

must be positive. It turns out that the upper limit of v

for a given scattering angle follows from that restriction:

vθ = S + 2m2 − m

M

√
(S + 2M2)2 − λS cos2 θ. (14)

Notice that minimizing D maximizes Q2
R if cos θ > 0

and minimizes Q2
R if cos θ < 0. The energy and momen-

tum of the scattering lepton for fixed angle read:

k20 =
S −Q2

R(v)− v
2M

,

|k2| =
λS − vS −Q2

R(v)(S + 2M2)

2M cos θ
√
λS

. (15)
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Fig. 1 The dependence of the upper inelasticity limits vq and
vθ on the observable variables for the muon beam momen-
tum |k1| = 200 MeV. Lowest: a full kinematic range. Upper:
a close-up of the region near the kinematic boundary. The
quantities vmaxθ = vmaxq , vminθ and Q2

R(vmaxq ) are defined by
Eqs. (16), (18) and (17) respectively.

From Fig. 1 one can see that when the observable

quantity Q2 is close to its kinematical boundaries, the

allowed range of the inelasticity reduces to zero that

makes it impossible to emit any real photon. The max-

imum value of the inelasticity

vmaxq = S − 2m(
√
S +m2 +M2 −m) (16)

comes at the point that can be obtained after substitu-

tion (16) into (12),

Q2
R(vmaxq ) =

m(S + 2m2)√
S +m2 +M2

− 2m2. (17)

From the upper plot of Fig. 1 we can see that for

fixed angle the upper inelasticity limit reaches its maxi-

mum value vmaxθ = vmaxq at the kinematical boundaries

cos θ = ±1 and has a minimum

vminθ = (S − 2mM)
(

1− m

M

)
(18)

at cos θ = 0.

The dependence of Q2
R on the inelasticity at differ-

ent fixed angles is presented in Fig. 2. From this plot

one can see that even for θ = 0o real photon emission

is not prohibited by any kinematical restrictions. Op-

posite to the elastic process, the scattering under zero

angle induces non-zero transferred momentum.

After substitution of (14) into (12) we find the line

with boundary common points for θ and 180o−θ curves

Q2
R(vθ) =

m(S(S + 2M2)− λS cos2 θ)

M
√

(S + 2M2)2 − λS cos2 θ
− 2m2 (19)
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Fig. 2 The dependence of Q2
R on v, as given by Eq. (12) for

the different fixed scattering angles and the muon beam mo-
mentum |k1| = 200 MeV. Left: a full kinematic range. Right: a
close-up of the region near the kinematic boundary. The join-
ing curves θ and 180o − θ line describes by Eq. (19). The two
indicated points are (vminθ , Q2

R(vminθ )) according to Eqs. (18)
and (20), and (vmaxθ , Q2

R(vmaxθ )) according to Eqs. (16) and
(17).

as it is presented in the right plot of Fig. 2. The quantity

Q2
R(vmaxθ ) is defined by Eq. (17) while

Q2
R(vminθ ) = m

(
S

M
− 2m

)
. (20)

From Eq. (19) it can be seen that for the description

of hard photon emission at fixed scattering angle even

for high-energy electron-proton scattering the ultrarel-

ativistic approximation is not applicable.

In practice, however, the contribution of the hard

real photon emission to the cross section can be essen-

tially reduced by applying a cut vcut on the inelastic-

ity which is also a measured quantity in the single-arm

measurement of the elastically scattered lepton only.

Therefore, keeping in mind the inelasticity maximum

values, for an upper limit of this quantity both for the

fixed Q2 and scattering angle we will use vcut as an

experimentally observable variable.

The other invariant quantity τ can be calculated in

the rest frame as

τ =
1

M
(q0 − |q| cos θk), (21)

where q0 (q) is the energy (three-momentum) of the

transfer momentum q and θk is the polar angle between

the three-momenta q and k. The range of this variable

is defined through −1 < cos θk < 1 and for fixed Q2

and fixed angle θ it reads:

τ qmax/min =
Q2 + v ±

√
λq

2M2
,

τθmax/min =
Q2
R(v) + v ±

√
λv

2M2
(22)

with λq = (Q2 +v)2 +4M2Q2 and λv = (Q2
R(v)+v)2 +

4M2Q2
R(v).

At the end of this Section it is necessary to say about

the orientation of the azimuthal photon angle φk. It can

be defined by choosing a sing in the expression of sinφk
through the pseudoscalar quantity as

sinφk = ± εαβγδp
α
1 q
βkγ1k

δ

M |q||k⊥l |k0 sin θk
, (23)

where k⊥l is the transverse three-momenta of the in-

coming or scattering lepton with respect to q, k0 is a

photon energy. However, during the estimation of the

real photon contribution to elastic or inclusive lepton-

proton scattering even for polarized particles in con-

trast to the exclusive or semi-inclusive hadron lepto-

production the sine of φk does not appear for any stage

of calculations. Therefore, we are not concerned about

this problem and integrate over φk without taking into

account its orientation.

3 Hadronic tensor and Born contribution

Born contribution to the process depicted by the Feyn-

man graph in Fig. 3(a) reads:

dσB =
1

2
√
λS
M2

BdΓ2, (24)

where the phase space has the form

dΓ2 =
1

(2π)2
δ4(p1 + k1 − p2 − k2)

d3k2

2k20

d3p2

2p20

=
dQ2

8π
√
λS

=

√
λXd cos θ

8π(S + 2M2 − cos θX
√
λS/λX)

..(25)

The matrix element squared is expressed through the

convolution of the leptonic and hadronic tensors

M2
B =

e4

Q4
Wµν(q)Lµν . (26)

The leptonic tensor is well known:

LµνB =
1

2
Tr[γµ(k̂1 +m)γν(k̂2 +m)], (27)

while the hadronic tensor can be defined through the

on-shell proton vertex

Γµ(q) = γµFd(−q2) +
iσµνq

ν

2M
Fp(−q2), (28)

where Fd(Fp) is Dirac (Pauli) form factor, in the fol-

lowing way

Wµν(q) =
1

2
Tr[Γµ(q)(p̂1 +M)Γν(−q)(p̂1 + q̂ +M)]

(29)
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Fig. 3 Feynman graphs corresponding to the Born contribu-
tion (a), leptonic vertex correction (b), vacuum polarization
(c), and real photon emission from initial (d) and final (e)
leptons.

and then rearranged into covariant form

Wµν(q) = −

(
gµν −

qµqν
q2

)
F1(−q2)

+

(
p1µ +

qµ
2

)(
p1ν +

qν
2

)
F2(−q2)

2M2

=

2∑
i=1

wiµν(q)Fi(−q2). (30)

Here

F1(−q2) = −q2(Fd(−q2) + Fp(−q2))2,

F2(−q2) = 4M2Fd(−q2)2 − q2Fp(−q2)2. (31)

As a result, after convolution we have

dσB
dQ2

=
2πα2

λSQ4

2∑
i=1

θiBFi(Q2),

dσB
d cos θ

= jθ
dσB
dQ2

, (32)

where

jθ =

√
λSλ

3/2
X

2M2(SX − 2m2(Q2 + 2M2))
, (33)

and

θ1
B = Q2 − 2m2, θ2

B =
SX −M2Q2

2M2
. (34)

4 Additional virtual particle contribution

The additional virtual particle contribution can be ex-

pressed through Eqs. (24,26) with replacement of the

leptonic tensor (27) by

LµνV =
1

2
Tr[(k̂2 +m)ΓµV (k̂1 +m)γν ]

+
1

2
Tr[(k̂2 +m)γµ(k̂1 +m)Γ̄ νV ], (35)

where the leptonic vertex ΓV contains the sum of both

the lepton vertex correction Λµ and vacuum polariza-

tion by lepton Π lµ
α represented by the Feynman graphs

in Fig. 3(b) and Fig. 3(c), respectively

ΓµV = Λµ +Π lµ
α γ

α,

Γ̄ νV = γ0Γ
ν †
V γ0. (36)

Similar to [17] we do not consider the vacuum polariza-

tion by the hadron.

Since Λµ and Π lµ
α contain the ultraviolet divergence

while Λµ also includes the infrared divergent terms,

both of these contributions have to be calculated an-

alytically, and we choose dimensional regularization for

this calculation.

After the analytical calculation – detail of which can

be found in Appendix D of [23] – Λµ and Πi
αµ read:

Λµ =
α

2π

(
δUVvert(Q

2)γµ −
1

2
mLm[q̂, γµ]

)
,

Π l
αµ =

α

2π

(
gαµ +

qαqµ
Q2

) ∑
i=e,µ,τ

δi UVvac (Q2). (37)

The term in Λµ proportional to

Lm =
1√
λm

log

√
λm +Q2

√
λm −Q2

(38)

is the anomalous magnetic moment whose contribution

reads

dσAMM

dQ2
=

α3m2Lm
2M2Q2λS

×

[
12M2F1(Q2)− (Q2 + 4M2)F2(Q2)

]
,

dσAMM

d cos θ
= jθ

dσAMM

dQ2
. (39)
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The ultraviolet divergence contained in the remain-

ing terms of Eqs (37) can be removed by applying

the mass-shell renormalization procedure that requires

their vanishing at Q2 → 0:

δvert = δUVvert(Q
2)− δUVvert(0),

δivac = δi UVvac (Q2)− δi UVvac (0). (40)

As a result, we obtain

δvert = −J0

(
PIR + log

m

µ

)
− 2 +

(
3

2
Q2 + 4m2

)
Lm

−Q
2 + 2m2

√
λm

(
1

2
λmL

2
m + 2Li2

[
2
√
λm

Q2 +
√
λm

]
−π

2

2

)
,

δlvac =
∑

i=e,µ,τ

δivac =
∑

i=e,µ,τ

[2

3
(Q2 + 2m2

i )L
i
m

−10

9
+

8m2
i

3Q2

(
1− 2m2

iL
i
m

)]
. (41)

Here

J0 = 2((Q2 + 2m2)Lm − 1), (42)

µ is an arbitrary parameter of the dimension of a mass,

PIR =
1

n− 4
+

1

2
γE + log

1

2
√
π

(43)

is the infrared divergent term,

Li2(x) = −
x∫

0

log |1− y|
y

dy (44)

is Spence’s dilogarithm, and

Lim =
1√
λim

log

√
λim +Q2√
λim −Q2

, λim = Q2(Q2 + 4m2
i ).(45)

Finally, the virtual particle contribution reads

dσV
dζ

=
dσAMM

dζ
+
α

π
(δvert + δlvac)

dσB
dζ

, (46)

where ζ = Q2 or cos θ.

It should be noted that the above obtained expres-

sions for the virtual particle contributions agree with

the results given in Section 3 of [13] and in Appendix A

of [14]. Particularly, while the comparison with [14] is

straightforward, to verify agreement of our results with

[13] we present Eq. (46) in the electron-muon scattering

limit: Fd → 1, Fp → 0, M → mµ and m→ me.

5 Real photon emission for fixed Q2

The contribution of real photon emission from the lep-

ton leg presented in Fig. 3(d, e) has a form:

dσR =
1

2
√
λS
M2

RdΓ3, (47)

where the phase space can be expressed through the

photonic variables introduced after (8)

dΓ3 =
1

(2π)5
δ4(p1 + k1 − p2 − k2 − k)

d3k

2k0

d3k2

2k20

d3p2

2p20

=
dQ2vdvdτdφk

28π4(1 + τ)2
√
λSλq

. (48)

The matrix element squared reads

M2
R =

e6

t2
Wµν(q − k)LµνR , (49)

where t = −(q − k)2 = Q2 + τR and R = 2p1k =

v/(1 + τ). The leptonic tensor reads:

LµνR = −1

2
Tr[ΓµαR (k̂1 +m)Γ̄ νRα(k̂2 +m)], (50)

with

ΓµαR =

(
kα1
kk1
− kα2
kk2

)
γµ − γµk̂γα

2kk1
− γαk̂γµ

2kk2
,

Γ νRα =

(
k1α

kk1
− k2α

kk2

)
γν − γν k̂γα

2kk2
− γαk̂γ

ν

2kk1
. (51)

It is convenient to introduce the following convolutions

integrated over φk:

2π∫
0

dφkL
µν
R wiµν(q − k) = −4π

√
λq

ki∑
j=1

Rj−3

×θij(v, τ,Q2). (52)

Here ki = {3, 4}, θi1(v, τ,Q2) = 4θiBFIR and the other

components of θij(v, τ,Q
2) tensor read:

θ12 = 4τFIR,

θ13 = −4F − 2τ2Fd,

θ22 =
1

2M2

[
2(Q2 − 2τM2 − 2(1 + τ)S)FIR

+Sp(Q
2F1+ + 2F2− − τSpFd)

]
,

θ23 =
1

2M2

[
(τ(2τM2 −Q2) + 4m2)Fd − SpF1+

+2(1 + τ)(τSpFd +XF1+ + FIR − F2−)

]
+ 2F,

θ24 = − 1

2M2
τ(1 + τ)(F1+ + (τ + 2)Fd), (53)

where Sp = S +X = 2S −Q2, and

Fd =
1

τ

(
1√
C2

− 1√
C1

)
,

F1+ =
1√
C1

+
1√
C2

,
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F2± = m2

(
B2

C
3/2
2

± B1

C
3/2
1

)
,

FIR = F2+ − (Q2 + 2m2)Fd,

F =
1√
λq
. (54)

Here:

C1 = 4m2(Q2 + τ(Q2 + v)− τ2M2)

+(Q2 + τS)2,

C2 = 4m2(Q2 + τ(Q2 + v)− τ2M2)

+(Q2 + τ(v −X))2,

B1 = τ(S(Q2 + v) + 2M2Q2)

+Q2(Sp − v),

B2 = τ((X − v)(Q2 + v)− 2M2Q2)

+Q2(Sp − v). (55)

As a result, we obtain

dσR = − α3dQ2dτdv

2λS(1 + τ)t2

2∑
i=1

ki∑
j=1

Fi(t)Rj−2θij(v, τ,Q
2).

(56)

A straightforward integration over the photon phase

space is not possible because of infrared divergence

coming from the term with j = 1 in (52) at the point

v = 0 (or R = 0). For the consistent extraction and can-

cellation of the infrared divergence we use the Bardin-

Shumeiko approach [16]. Following this method, the

identical transformation,

dσR = dσR − dσIRR + dσIRR = dσFR + dσIRR , (57)

allows us to split dσR into the infrared-free dσFR and

infrared-dependent dσIRR parts. The last one can be ob-
tained before integration over φk as a term factorized

in front of the Born cross section:

dσIRR =
1

R
lim
R→0

RdσR = − α

π2
dσB

vdvdτdφk

2(1 + τ)2
√
λq
FIR,

(58)

where

FIR =
1

4

(
k1

kk1
− k2

kk2

)2

. (59)

Note that

FIR =
R2

2π
√
λq

2π∫
0

dφkFIR. (60)

The treatment of the infrared divergence by the Bardin-

Shumeiko approach requires to separate dσIRR into the

soft δS and hard δH parts

dσIRR
dQ2

=
α

π
δIR

dσB
dQ2

=
α

π
(δS + δH)

dσB
dQ2

(61)

by introducing of the infinitesimal inelasticity v̄

δS = − 1

π

v̄∫
0

dv

∫
d3k

k0
δ((p1 + q − k)2 −M2)FIR,

δH = − 1

π

vcut∫
v̄

dv

∫
d3k

k0
δ((p1 + q − k)2 −M2)FIR.(62)

This separation allows us to calculate δS in the dimen-

sional regularization by choosing the individual refer-

ence systems for each leptonic propagator 1/kk1 and

1/kk2, as well as their combination to make them inde-

pendent of the azimuthal angle φk while the hard part

can be calculated in straightforward way without any

regularization.

It can be seen from the explicit expressions for δS
and δH – details of their calculation can be found in

Appendix A – that for Q2 → 0 both of the m tend to

zero and their sum

δIR = J0

[
PIR + log

vcut
µM

]
+

1

2
SLS +

1

2
XLX

+Sφ(k1, k2, p2) (63)

does not depend on the separated inelasticity v̄ and

contains the infrared term PIR as well as a parameter

µ that have to be cancelled against corresponding terms

in δvert.

Therefore RC for fixed Q2 read:

dσRC
dQ2

=
α

π
(δV R + δlvac)

dσB
dQ2

+
dσAMM

dQ2
+
dσF
dQ2

. (64)

Here the expression for δlvac is defined in Eq. (41), δV R
is an infrared-free sum δvert and δIR:

δV R = δIR + δvert = J0 log
vcut
mM

+
1

2
SLS +

1

2
XLX

+Sφ(k1, k2, p2)− 2 +

(
3

2
Q2 + 4m2

)
Lm

−Q
2 + 2m2

√
λm

(
1

2
λmL

2
m + 2Li2

[
2
√
λm

Q2 +
√
λm

]
−π

2

2

)
. (65)

The general expression for Sφ(k1, k2, p2) is reproduced

in Appendix B and for our case

Sφ(k1, k2, p2) =
Q2 + 2m2

√
λm

(
1

4
λXL

2
X −

1

4
λSL

2
S

+ Li2

[
1− (X +

√
λX)ρ

8m2M2

]
+ Li2

[
1− ρ

2(X +
√
λX)

]
− Li2

[
1− Q2(S +

√
λS)ρ

2M2(Q2 +
√
λm)2

]
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− Li2

[
1− 2m2Q2ρ

(Q2 +
√
λm)2(S +

√
λS)

])
,

(66)

where ρ = (Q2 +
√
λm)(Sp −

√
λm)/

√
λm.

The anomalous magnetic moment contribution is

represented by Eqs. (39). At last, the finite part of the

cross section reads:

dσF
dQ2

= − α3

2λS

vcut∫
0

dv

2∑
i=1

[
4
J0θ

i
BFi(Q2)

vQ4

+

τqmax∫
τq
min

dτ

(1 + τ)t2

ki∑
j=1

Fi(t)Rj−2θij(v, τ,Q
2)

]
, (67)

where the integration limits over τ are defined by

Eqs. (22).

6 Real photon emission for fixed scattering

angle

The phase space for this case reads:

dΓ3 = Jθ(v)
vdvd cos θdτdφk

28π4(1 + τ)2
√
λSλv

, (68)

where

Jθ(v) =
λS − vS −Q2

R(v)(S + 2M2)

(S + 2M2)2 − λS cos2 θ

×

(
S + 2M2

cos θ
+M

√
λS
D

(S − v + 2m2)

)
, (69)

and Jθ(0) = jθ.

After some algebra similar to the previous section,

we have:
dσRC
d cos θ

=
α

π
(δV R + δlvac)

dσB
d cos θ

+
dσAMM

d cos θ
+

dσF
d cos θ

,

(70)

while the finite part has the following structure:

dσF
d cos θ

= − α3

2λS

vcut∫
0

dv

2∑
i=1

[
4jθ

J0θ
i
BFi(Q2)

vQ4
+ Jθ(v)

×
τθmax∫
τθ
min

dτ

(1 + τ)t2

ki∑
j=1

Fi(t)Rj−2θij(v, τ,Q
2
R(v))

]
.

(71)

7 Numerical results

Here we present the relative RC which is defined as a

ratio of RC to the Born cross section

δRC =
dσRC/dζ

dσB/dζ
(72)

both for fixed Q2 (ζ = Q2) and the scattering angle

(ζ = cos θ) presented in Eqs. (64) and (70), respec-

tively. Corresponding Born contributions are defined by

Eqs. (32).

As mentioned above, a cut applied on the upper

integration limit over inelasticity allows to reduce the

contribution of hard photon emission. On the other

hand, for the radiative process the energy of the scatter-

ing lepton depends on the inelasticity as it is presented

in Eqs. (9) for the fixed Q2 and (15) for the fixed scat-

tering angle. Therefore instead of the upper limit over

inelasticity, we can set a cut on the lower limit of the

scattered-lepton energy.

The result of these cuts under MUSE kinematic con-

ditions [11] is presented in Fig. 4. As we can see, the

situation for the scattering electron for fixed Q2 and

scattering angle for soft photon emission is almost iden-

tical while for hard photon emission it is dramatically

different: for the fixed scattering angle RC increase to

80% while for the fixed Q2 RC do not exceed 5% . This

is a key observation for both electron and positron scat-

tering in the experimental analysis.

Another interesting issue consists in the ε-behavior

at JLab kinematic conditions [20,21]. Following our pre-

vious work [24] we can define

εq =

[
1 + 2

(
1 +

Q2

4M2

)
M2(Q2 − 2m2)

S(X − vcut)−M2Q2

]−1

(73)

for fixed Q2 and in a similar way

εθ = εq
∣∣
Q2→Q2

R
(vcut)

(74)

for fixed scattering angle.

The numerical result presented in Fig. 5 shows al-

most identical values of RC for the soft photon emission

and different behavior of RC with the hard real photons

for the fixed Q2 vs. a fixed scattering angle. In the first

case with growing vcut the value of the variable ε de-

creases and RC for the hard photon (when vcut = vq)

does not exceed 1.6 times the Born contribution, while

for the fixed scattering angle ε goes a little bit up but

the absolute value of the relative RC rapidly increases

reaching the values up to 45 times (when vcut = vθ).

Such a rapid change of RC near the kinematic limit of

fixed-angle measurements sets more stringent require-

ments on energy resolution for lepton detection in the

fixed-angle kinematic setting, as opposed to fixed Q2

analysis.

8 Conclusion

We discussed essential differences between the kine-

matic description of radiative effects for fixed Q2 vs.
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Fig. 4 Relative RC vs the value of the scattering lepton kinetic energy for elastic ep and µp scattering, beam momenta is equal
to 115 MeV, 153 MeV and 210 MeV for θ = 20o (1), 60o (2), 100o (3). Solid (dashed) line corresponds to fixed Q2 (cos θ).

fixed scattering angle in the elastic lepton-proton scat-

tering. In particular, it was shown that for the descrip-

tion of hard-photon emission at fixed scattering an-

gle, even for the high-energy electron-proton scattering

the ultrarelativistic approximation is not applicable in

the considered kinematics as we approach the limits of

phase space. The technique of Bardin-Shumeiko for the

covariant extraction and cancellation of the infrared di-

vergence as well as the explicit expressions for RC to

the lepton current in unpolarized elastic lp-scattering

within these two cases were presented. The numerical

analysis within kinematic conditions of Jefferson Lab
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Fig. 5 Relative RC vs value of the scattering particle kinetic
energy as a function of ε at Q2 = 0.85 GeV2 and Q2 = 1.45
GeV2. The solid (dashed) correspond fixed Q2 (cos θ).

measurements and MUSE experiment in PSI has shown

the almost identical values of RC for the soft photon

emission and significantly different behavior of RC with

the hard real photon for the fixed Q2 compared with fix-

ing a lepton scattering angle. The presented formalism

may be of use also for the high-energy muon scattering

case of the AMBER proposal [25].

Based on our recent work [24], in the nearest fu-

ture we intend to generalize the numerical comparison

of RC calculation for the fixed Q2 and scattering angle

with an electron/positron and muon/antimuon charge

asymmetry. We also intend to include simulations of ra-

diative events for the fixed scattering angle into Monte

Carlo generator ELRADGEN [26,27], that is used for

the hard photon generation in the elastic lp-scattering.
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Appendix A: Calculation of δS and δH

For calculation of δS in the dimensional regularization

d3k′

k′0
→

dn−1k′

(2πµ)n−4k0

=
2πn/2−1k′n−3

0 dk0(1− x2)n/2−2dx

(2πµ)n−4Γ (n/2− 1)
, (A.1)

where x = cos θ (θ is defined as the spatial angle between the
photon three-momentum and k′i (i = 1 − 3) that are intro-
duced below) and µ is an arbitrary parameter of the dimen-
sion of a mass the reference system p1+q = 0 is used.

The Feynman parameterization of (59) gives

FIR =
1

4k′20

1∫
0

dy

[
m2

k′210(1− xβ1)2
+

m2

k′220(1− xβ2)2

−
Q2 + 2m2

k′230(1− xβ3)2

]
=

1

4k′20

1∫
0

dyF(x, y). (A.2)

Here βi = |k′i|/k′i0 for i = 1, 2, 3 and k3 = yk1 + (1− y)k2.
After the substitution of Eqs. (A.1) and (A.2) into the

definition of δS by Eq. (62) and, using δ-function, integrated
over the photon energy k0 one can find that

δS = −
1

2(4µ
√
π)n−4Γ (n/2− 2)

1∫
−1

dx(1− x2)n/2−2

×

1∫
0

dyF(x, y)

v̄∫
0

dv

v

(
v

M

)n−4

. (A.3)

The integration over v and the expansion of the obtained
expression into the Laurent series around n = 4 result in

δS = δIRS + δ1S , (A.4)

where

δIRS = −
1

2

[
PIR + log

v̄

µM

] 1∫
0

dy

1∫
−1

dxF(x, y) (A.5)

and

δ1S = −
1

4

1∫
0

dy

1∫
−1

dx log

[
1

4
(1− x2)

]
F(x, y). (A.6)

Here PIR is the infrared divergent term defined by Eq. (43).
Taking into account that k2

3 = y(1−y)Q2+m2 the integration
over x and y variables in δIRS is simple:

δIRS = J0

[
PIR + log

v̄

µM

]
, (A.7)
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where J0 is defined by Eq. (42).
For the calculation of δ1S we note that in the system

p1+q = 0 the energies of the initial and scattering lepton
through the invariants:

k′10 =
X

2M2
, k′20 =

S

2M2
. (A.8)

As a result,

δ1S =
1

2
SLS +

1

2
XLX + Sφ(k1, k2, p2), (A.9)

where

LS =
1
√
λS

log
S +
√
λS

S −
√
λS

,

LX =
1
√
λX

log
X +

√
λX

X −
√
λX

, (A.10)

and

Sφ(k1, k2, p2) =
Q2 + 2m2

4

1∫
−1

dx

1∫
0

dy
log[(1− x2)/4]

k′230(1− xβ3)2
.

(A.11)

Notice that the standard expressions for Sφ are rather cum-
bersome, see for example Eqs. (35) and (A.14) of work [17]. In
Appendix B we present a more compact analytical expression
for this quantity.

For the calculation of δH the straightforward integration
is used. Taking into account (60), one can find that

δH = −

vcut∫
v̄

dv

v

τmax∫
τmin

dτFIR = J0 log
vcut

v̄
. (A.12)

Appendix B: Calculation of Sφ

Here we present a general approach suggested by ’t Hooft
and Veltman in their work [28] for a compact representa-
tion of the Sφ-function introduced by Bardin and Shumeiko
in [16]. Let us consider a real photon with a momentum k
and three other time-like four-momenta ai (i = 1, 2, 3) with
masses m2

i = a2
i . The basic idea consists in Feynman param-

eterization. Instead of usual approach used in the standard
Bardin-Shumeiko technique with two fermionic propagator
presented in previous appendix, taken in the system a3 = 0:

1

a1k

1

a2k
= γ

1

a1k

1

γa2k
=

γ

k2
0

1∫
0

dy

a2
40(1− xβ)2

. (B.13)

Here, as in the previous appendix x = cos θ, a new four-vector
a4 = ya1 + (1 − y)γa2, and β = |a4|/a40. The quantity γ is
choosing in such a way, that (a1 − γa2)2 = 0, i.e. a1 − γa2 is
lightlike vector.

Now introduce the following invariants:

s1 = 2a1a3, λ1 = s21 − 4m2
1m

2
3,

s2 = 2a2a3, λ2 = s22 − 4m2
2m

2
3,

s3 = 2a1a2, λ3 = s23 − 4m2
1m

2
2. (B.14)

Then equation (a1−γa2)2 = 0 has the following two solutions:

γ1 =
2m2

1

s3 +
√
λ3

, γ2 =
s3 +

√
λ3

2m2
2

, (B.15)

and the generalized form of Sφ looks as (A.11):

Sφ =
1

4
γs3

1∫
0

dy

a2
40

1∫
−1

dx
log[(1− x2)/4]

(1− xβ)2
. (B.16)

The first integration over x is straightforward

Sφ =
1

2
γs3

1∫
0

dy

m2
4β

log
1− β
1 + β

, (B.17)

where m2
4 = a2

4 = ym2
1 + (1− y)γ2m2

2. The second integration
has to be performed after the standard substitutions, while
taking into account that for the first two momenta ai0 =
si/(2m3).

Finally, we can find that for the general case Sφ depends
on six variables and for γ = γ1 it has the following structure:

Sφ(a1, a2, a3) =
s3√
λ3

(
log2 s1 +

√
λ1

2m1m3
− log2 s2 +

√
λ2

2m2m3

+Li2

[
1−

(s1 +
√
λ1)ρ

8m2
1m

2
3

]
+Li2

[
1−

ρ

2(s1 +
√
λ1)

]
−Li2

[
1−

(s2 +
√
λ2)ρ

4m2
3(s3 +

√
λ3)

]
−Li2

[
1−

m2
2ρ

(s2 +
√
λ2)(s3 +

√
λ3)

]
,

(B.18)

where ρ = (2s1(s3 +
√
λ3)− 4m2

1s2)/
√
λ3.

It should be noted that

Sφ(a1, a2, a3) = Sφ(a2, a1, a3) (B.19)

The r.h.s. of this equation corresponds γ = γ2.
In our case a1 = k1, a2 = k2, a3 = p2, and s1 = X,

s2 = S, s3 = Q2 + 2m2, m1 = m2 = m, m3 = M .
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