
225

УДК 004.451.37

DISC SCHEDULER ALGORITHMS PERFORMANCE ANALYSIS
USING OBJECT-ORIENTED PROGRAMMING

M.J. Tufegdžić

Academy of professional studies Šumadija, R. Krstića 19, 37240 Trstenik, Serbia
Corresponding author: mtufegdzic@asss.edu.rs

Disc scheduling, as one of the basic tasks of an operating system, requires applying
various conventional techniques and policies, such as First Come First Serve (FCFS),
Shortest Seek Time First (SSTF), SCAN, Circular SCAN (C-SCAN), LOOK, and Circular
LOOK (C-LOOK). These algorithms will be presented and evaluated in terms of seek time
calculated with results obtained for Total Head Movements (THMs) for all algorithms. Input
data are randomly generated in the form of sequence of requests in executable files, obtained
from scripts written in Python programming language. In order to facilitate running the
executable files with a simple button click, a proper Graphical User Interface (GUI) in
Python is also developed. The results of the study are compared for all proposed algorithms
with the aim to estimate the algorithms' performances.

Keywords: FCFS; SSTF; SCAN; C-SCAN; LOOK; C-LOOK; seek time.

Introduction

 Managing computer resources such as Central Processing Unit (CPU),
memory space, storage space, and Input/Output (I/O) devices is one of the main
responsibilities of an operating system. Due to the fact that the most modern
computers use Hard Disk Drives (HDDs) and NonVolatile Memory (NVM)
devices as an extension of main memory, the efficient and proper management
of these devices is very important [1 p30].
 HDDs have multiple spinning platters with the magnetic medium, which
allows recording data on them. Platters are divided into concentric circles
called tracks, further separated into sectors. The set of tracks at one arm
position represents a cylinder. The read/write heads, located above the platters,
provide reading and writing functions by accessing the proper sectors across
the platters. These heads are attached to a disc arm [2 p12, 3 p053].
 The time that is necessary to access data stored in HDDs affects computer
system performances to a large degree. If this access time is too large, the
performances greatly decrease [3 p053]. This is the reason why reducing the
number of read/write head movements provides shorter access time and
increases efficiency of disk drivers [4 p1]. In order to do this various disk
scheduling techniques and policies are applied. The policies are categorized in
two groups. The first group uses track's information while the other uses

226

additional information about requests' deadline or their priority [2 p13]. The
policies from the first group use conventional disk scheduling algorithms to
allocate the services to the requests, such as FCFS, SSTF, SCAN, C-SCAN,
LOOK, and C-LOOK [2 p12].
 Some studies include comparisons of basic disc scheduling algorithms
according to the average head movement, with implementation of algorithms in
Turbo C [5 p24], or in disc scheduling algorithm simulator developed in C# [6
p3]. Simulator in JAVA programming language with six basic modules for
conventional disk scheduling algorithms has been developed [7 p111].
 In order to evaluate various disc scheduling algorithms a set of criteria had
to be established. Seek time, rotational latency, disk bandwidth, transfer time [3
p053, 5 p17] are some examples of these criteria. Some studies include access
time as the combination of seek time, latency time and transfer time [3 p053, 5
p17].
 For the purpose of this study, seek time as a main parameter of disc
scheduling algorithm is used. It represents the time required to move the head
from current position to the right desired track [2 p12, 3 p053, 5 p17] and
directly depends from the values of THMs [3 p054]. Values for THMs are
taken from the executable files, which are running from proper GUI developed
in Python programming language. These executable files are converted from
scripts, also written in Python programming language for each algorithm.
Proper plots are printed and the results are compared.

1. Methodology

 The simplest algorithm from the group of conventional disk scheduling
algorithms is FCFS algorithm. I/O requests are processed or served according
to their order of arrival [2 p13, 3 p054, 4 p3, 5 p17, 6 p2]. Although it is simple
to implement and the overhead is the smallest, it does not provide the fastest
service [2 p13]. In SSTF algorithm, the selection of the next request is based on
the criteria of the shortest distance from current head position, enabling
minimum seek time [2 p14, 3 p054, 4 p4, 5 p18, 6 p2]. The performance is
better than in the case of FCFS, but may cause starvation problems for some
requests [2 p14, 3 p054]. SCAN algorithm acts as an "elevator" that alternately
moves the heads from the beginning to the end of the disk and back again,
serving the demands across the entire range of cylinders [2 p14, 3 p055, 4 p4, 5
p19, 6 p2]. This algorithm gives better performance than FCFS and SSTF, with
less starvation then SSTF [2 p14]. C-SCAN algorithm, as a variant of SCAN
algorithm, serve the requests only in one direction. When the head reaches the
last cylinder, it moves to the beginning, without serving the requests along the
way. After that, the service continues from the first to the last cylinder [2 p14, 3

227

p057, 4 p5, 5 p 21, 6 p3]. It provides more uniform waiting time than CSAN
algorithm [3 p057]. LOOK and C-LOOK represents modifications of SCAN
and C-SCAN algorithms. The heads move only to the last queued request in
each direction. LOOK serves requests in both directions, while C-LOOK serves
requests in ascending direction until it serves the last request in the queue. After
that, it returns to the request that is closest to the beginning of the disk [2 p14, 3
p056-057, 5 p20-22, 6 p3]. LOOK algorithm eliminates unnecessary seek
operations avoiding the problem of starvation [5 p20], while C-LOOK provides
higher throughput, decreasing the variance of response time [2 p14].
 Taking into account different ways to schedule disc requests, scripts for
presented algorithms are written in Python programming language, according
to their description presented above. These scripts are converted to executable
files using PyInstaller. GUI with labels in Python programming language is
designed (Picture 1) with the aid of tkinter module and its' methods.

Picture 1 ‒ GUI for algorithms' selection

 Simple click on the button named as appropriate algorithm (see Picture 1)
allows for input data entry: number of discs, initial header position and
sequence. The tested data are as it follows: number of discs 200, initial head
position 50, and the sequence, randomly generated, is 82, 170, 43, 140, 24, 16,
and 190, for each of the presented algorithms. THMs values are obtained as the
results of programs' execution. The proper plots that graphically display the
disk head movements are generated with the aid of sub-module pyplot from
module matplotlib.
 The values of seek time for six basic algorithms (FCFS, SSTF, SCAN, C-
SCAN, LOOK, and C-LOOK) are calculated according to expression (1) given
in [3 p054]:
 Seek Time = THMs * Seek rate. (1)
 In equation (1) Seek rate is equal to 9 millisecond (ms) for modern hard
drives [8].

228

2. Results and discussion

 The scripts are written and tested in open source editor Visual Studio
Code (Version 1.70.2), as well as the script written for GUI and plots printing.
Results of code execution for the input data in case of FCFS algorithm, after
clicking on proper button is presented in Picture 2, as an example.

Picture 2 ‒ Results of code execution for the input data for FCFS algorithm

 The seek sequence in which requested tracks are serviced using FCFS
algorithm is also presented in the form of an ordered array. The results of
code executions in the form of THMs as well as the sequences in order of
serviced requests are presented on Table 1. The Seek Times are also
calculated.

Table 1 ‒ Order of services requests, THMs and Seek Times

Algorithm Order of serviced requests THMs Seek Time
(ms)

FCFS 50, 82, 170, 43, 140, 24, 16, 19 642 5778
SSTF 50, 43, 24, 16, 82, 140, 170, 19 208 1872
SCAN 50, 82, 140, 170, 190, 199, 43 305 2745
C-SCAN 50, 82, 140, 170, 190, 199, 0, 16, 24, 43 391 3519
LOOK 50, 82, 140, 170, 190, 43, 24, 16 314 2826
C-LOOK 50, 82, 140, 170, 190, 16, 24, 43 341 3069

 Plots in the form of graphs, that visualize the head movements are
presented in Picture 3.

229

Picture 3 ‒ Graphical visualization of disc scheduling algorithms

 According to the the results of the study, based on seek time as the only
easily measured performance, SSTF algorithm shows the best result, followed
by SCAN algorithm. The worst performance is in the case of FCFS algorithm.

Conclusions

 Proper management of HDDs implies a reduction in a number of
read/write head movements and the time that is necessary to access data stored
on them. Different issues of FCFS, SSTF, SCAN, C-SCAN, LOOK, and C-
LOOK algorithms, as examples of conventional disc scheduling algorithms, are
evaluated and compared in terms of seek time, as one of the main performance
parameters. According to the results of the study, SSTF proved to be the
algorithm that provides the best performance. The application of proposed
methodology is facilitated to a large degree, due to GUI that allows easy and
quick testing for different data sets in the form of disc requests. Further analysis
should include some other policies for disc scheduling, as well as additional
criteria for evaluation, such as access time.

References

1. Silberschatz A, Gagne G, Galvin PB. Operating System Concepts. N.-Y.: Tenth
Edition Wiley, 2018. Chapter 1, Introduction. Р. 4-39.

230

2. Ökdem S, Karaboğa D. Optimal disk scheduling based on ant colony optimization
algorithm. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2006. № 22(1-2). Р.
11-19, URL: https://dergipark.org.tr/tr/download/article-file/236632.

3. Jogamohan M, Partha PG. A comprehensive analysis of disk scheduling algorithms.
International Journal of Latest Trends in Engineering and Technology [Internet].
2018;11(1):053-058, URL:
https://www.ijltet.org/journal/153334449210.%202610.pdf. DOI
//dx.doi.org/10.21172/1.111.10.

4. Yashvir S, Prakash O. Selection of scheduling Algorithm. International Journal of
Latest Trends in Engineering & Technology. 2012. № 1(2). Р. 1‒9. URL:
https://arxiv.org/ftp/arxiv/papers/1210/1210.6447.pdf.

5. Shastri S, Sharma A, Mansotra V. A comparative analysis of disk scheduling
algorithms. International Journal of Advanced Studies in Computer Science and
Engineering. 2016. № 2(IV). Р. 16‒25. URL:
https://arxiv.org/ftp/arxiv/papers/1210/1210.6447.pdf.

6. Suranauwarat S. A disk scheduling algorithm simulator. Computers in education
journal. 2017. № 8(3). Р. 1-9. URL: https://coed.asee.org/wp-
content/uploads/2020/08/8-A-Disk-Scheduling-Algorithm-Simulator.pdf.

7. Bhade AW, Wankhade SR. File allocation methods performance over disk scheduling
algorithms // International Journal of Application or Innovation in Engineering &
Management. 2012. № 1(4). Р. 109‒120. URL:
https://www.ijaiem.org/volume1Issue4/IJAIEM-2012-12-27-034.pdf.

8. Fisher T. What Does a Hard Drive's Seek Time Mean?. 2022. URL:
https://www.lifewire.com/what-does-seek-time-mean-2626007.

https://arxiv.org/ftp/arxiv/papers/1210/�

