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Drug resistance in tuberculosis (TB) is a global public health problem, and resistance 
testing early in treatment can help prevent antibiotic misuse. The data used were from the 
NIAID TB Portals project (https://tbportals.niaid.nih.gov). Mtb whole genome sequences of 
3178 patients and resistance testing to 27 drugs were utilized after quality checks. To 
identify mutant loci associated with drug resistance, single and multiple marker tests were 
used. Important mutant loci associated with drug resistance in TB were identified. On the 
one hand, these mutant loci can provide important information for understanding drug 
resistance in TB, and on the other hand, they can be used as a rapid screening method for 
various forms of Mtb resistance. 
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Introduction 

Worldwide Globally, it is estimated that about 10 million (range 8.9-11 
million) people have the diseases with TB in 2020, and this number has been 
declining very slowly in recent years [1]. More cases of drug resistance have 
emerged, the appearance including Monoresistance (MonoDR), resistance to 
one first-line anti-TB drug only; multi-drug resistance (MDR-TB), resistance to 
isoniazid and rifampicin; and extensive drug resistance (XDR-TB), one 
fluoroquinolone, and one second- line injectable drug [2]. For the most 
effective first-line drug, rifampicin, the proportion of new cases of resistance is 
higher [1]. Therefore, TB drug resistance is a global public health issue. 
Various machine learning models have been applied to determine drug 
resistance, e.g., logistic regression (LR) [3], and random forest (RF) [4]. The 
Genome-wide association analysis (GWAS) method was applied for TB drug 
resistance analysis [5‒7]. 
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1. Methodology  

Dataset 
The data set contained 3178 samples and their resistance test results for 27 

drugs. There are 4418596 nucleotide loci in the whole genome of 
Mycobacterium tuberculosis. Due to the large amount of data, some unmutated 
loci need to be removed. The unmutated nucleotide loci in the sample subset 
are deleted. At this point, the total number of loci in this sample is 294153. The 
MAF (minor allele frequency) was set to 0.01 and remove loci with mutation 
rates smaller than the MAF were removed. After filtering out, the number of 
mutations (SNPs) left in the samples was 20,976. 

Single-marker test 
Single-marker tests are used to test associations between observed drug 

resistance and individual mutations. Fisher’s exact test and the linear regression 
model were used as single-marker tests. Fisher’s exact test needs constructing 
the drug sensitivity test and mutation 2D contingency table of cases. 
Contingency tables considered in single-marker tests for finding mutations 
associated with resistance 

Table 1 – Contingency table considered in single-marker tests for finding mutations 
associated with resistance 

Drug susceptibility Presence of mutation 
Present Absent Present Total 

Sensitive n00 n01 n0* 
Resistant n10 n11 n1* 

Total n*0 n*1 n** 

The contingency table used for testing correlation of mutation in position 
2155175 of Mtb genome and resistance to the isoniazid drug for our data is the 
following: 

Table 2 – Isoniazid susceptibility and SNP(2155175) contingency table 

Present Absent Present 
Sensitive 435 15 
Resistant 151 844 

Application of the Fisher’s exact test to this table results in the probability 
p=1.31e-212 which characterize a statistical significance of the mutation for the 
resistance to isoniazid. In this case null hypothesis assumes that there is no 
correlation between the mutation in the considered position and resistance to 
isoniazid. The probability achieved strongly rejects the null hypothesis that this 
mutation and isoniazid drug resistance are independent. 
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Linear regression model 
 Y X= +β ε  (1) 

Here Y - phenotype vector, β  - parameters to be estimated, X ‒ genotype 
vector, ε  ‒ residual vector. 

If resistance to the corresponding drug or drug combination is observed, 
iY =1; otherwise, it is equal to 0. If the genotype of this site is '0/0', means no 

mutation, then iX  = 0, otherwise if its genotype is '1/1', then iX  = 2. For 
example, consider testing mutations at position 2155175 of the Mtb genome 
and isoniazid resistance. The regression function is ˆ 0.25641 0.363074Y X= + . 
The chi-square test probability for the parameter β  is p = 1.456125e-283. In 
this case null hypothesis assumes that there is no correlation between the 
mutation in the considered position and resistance to isoniazid. The probability 
achieved strongly rejects the null hypothesis that this mutation and isoniazid 
drug resistance are independent. By calculating the estimate and its negative 
logarithm of p-values of all SNPs, and sorting them, we can finally get the 
relevant mutation sites for drugs.  

Multi-marker test 
Multi-marker test is used to select SNP combinations with forward 

selection method (greedy algorithm). The ratio of training set to test set is 7 
versus 3. The classification model is SVM. The evaluation indicator is accuracy. 

First, the p-value of a single SNP can be obtained according to the linear 
regression model. In order to reduce the amount of calculation, SNPs with p-
values smaller than 0.05 are used for classification. The number of useful SNPs 
depends on the type of drug. Then, in the second step, based on the selection of 
the first SNP, each SNP is re-evaluated to participate in the classification 
together with the first SNP, and the combination with the greatest improvement 
in accuracy is selected. Finally, keep iterating to add new SNPs until the 
accuracy no longer improves.  

2. Results and discussion 

Characterization of the dataset 
Each isolate was tested for resistance to at least one of 27 anti-TB drugs: 

four first-line drugs, isoniazid, rifampicin, ethambutol, and pyrazinamide, some 
second-line drugs, and other drugs. 

A phylogenetic tree of the samples was constructed using all genome-wide 
SNPs (Picture1). Phenotypic analysis of anti-TB drug susceptibility revealed 
that 71.1% of the isolates were resistant to at least one drug, of which 13.8% 
were classified as MDR-TB and 1.9% as XDR-TB  
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A phylogenetic tree was constructed using all genome-wide SNPs (Picture 
1). Phenotypic analysis of anti-TB drug susceptibility revealed that 71.1% of 
the isolates were resistant to at least one drug, of which 13.8% were classified 
as MDR-TB and 1.9% as XDR-TB Because of the small sample size or severe 
data imbalance for bedaquiline, clarithromycin, aminoglycosides injectible 
agents, and fluoroquinolone, these four drugs are not involved in training the 
model 

 
Picture 1 – Whole-genome phylogeny of the 3178 Mycobacterium tuberculosis isolates 

used for association study 

Single-marker test results.  
We calculated p-values for the corresponding mutations for all SNPs. To 

visualize the test results, a Manhattan plot (Picture 2) was used. To allow a 
more visual representation of the results, the p-values were converted to -log10 
(p-value). The height of the SNP locus on the Y-axis corresponds to the degree 
of association with a certain drug resistance, the stronger the association (i.e., 
the lower the p-value) the higher it is. These SNPs with strong associations 
with drug resistance were also of most interest throughout the research. 

Then, the corresponding genes were found based on the five most 
significant mutant loci for each drug. A correlation analysis was then 
performed. From Picture 3, it was found that there was a correlation between 
drug resistance genes of different drugs 
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Picture 2 – Single-marker test result 

.  
Picture 3 – Correlation between drugs with mutated loci 

Multi-marker test results. 

We used the SVM function in the ‘e1071’ package to complete the 
calculations, and the parameters kernel, c, with default values are 
respectively. Due to the huge amount of computation, the maximum number of 
combinations of mutation sites was set to 6. For each drug, some combination 
of mutation sites that can help improve classification accuracy were obtained. 

It can be seen from Picture 4, that the classification accuracy of the model 
increases as the number of SNPs as classification features increases.   
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Picture 4 – Multi-marker test result 

Conclusions 

In this paper, we used single-marker and multi-marker tests to identify 
mutations associated with TB drug resistance. The results of the single marker 
test reflect the association of a single mutation site with resistance to each drug. 
We found that the mutation sites highly associated with first-line drug 
resistance were different from those of second-line drugs. We have found that 
mutations at some loci were highly associated with resistance to several drugs, 
reflecting the presence of cross-resistance between drugs. In addition, for some 
second-line drugs, the accuracy improvement of the classifier is larger with 
combination of mutations.  
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