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This paper reviews the modern state of the Wiener–
Hopf factorization method and its generalizations.
The main constructive results for matrix Wiener–
Hopf problems are presented, approximate methods
are outlined and the main areas of applications are
mentioned. The aim of the paper is to offer an
overview of the development of this method, and
demonstrate the importance of bringing together
pure and applied analysis to effectively employ the
Wiener–Hopf technique.

1. Introduction
The Wiener–Hopf method has been motivated by
interdisciplinary interests ever since its inception. It
resulted from a collaboration between Norbert Wiener,
who worked on stochastic processes, and Eberhard Hopf,
who worked on partial differential equations (PDEs). The
method was first described in their joint article [1] where
they study a convolution-type integral equation for f (x)

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 

20
22

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0533&domain=pdf&date_stamp=2021-10-20
mailto:anastasia.kisil@manchester.ac.uk
http://orcid.org/0000-0001-7652-5880
http://orcid.org/0000-0003-2565-1961
http://orcid.org/0000-0002-7356-1656
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210533

..........................................................

on a semi-axis ∫∞

0
k(x − t)f (t)dt = g(x), x> 0, (1.1)

with k(x) and g(x) given.
The study of this equation was principally motivated by an interest of one of the authors, in a

differential equation governing the radiation equilibrium of stars [2]. The Wiener–Hopf equation
arises from extending the integral equation (1.1) into x< 0,

∫∞

0
k(x − t)f (t)dt =

{
g(x), for x> 0,

h(x), for x ≤ 0,
(1.2)

for some function h(x). Note that, although h(x) is unknown, it is not independent as it is uniquely
defined by the left hand side of (1.2) once f (x) is determined. Applying the Fourier transform to
(1.2) results in an equation of type (2.1) (the interaction of a Fourier transform with its convolution
has to be used, and analytic properties of half-range Fourier transforms employed1 ). This laid the
foundation for the study of scalar Wiener–Hopf equations.

Independently, the theory of the more general Riemann–Hilbert boundary value problem has
been developed. The Riemann–Hilbert boundary value problem for a particular case was first
formulated by Riemann as a part of the problem of construction of complex differential equation
of the Fuchs type with a given monodromy. In the latter form, the problem was presented by
Hilbert as his 21st mathematical problem for the twentieth century [4]. Plemelj [5] proposed a
method of solution to the Riemann–Hilbert boundary value problem based on the reduction to a
case of the homogeneous Riemann boundary value problem proving its solvability by means of
the Fredholm alternative.2 An intensive study of the Riemann–Hilbert boundary value problem
began in the 1930s. Properties of the factorization problem and its role in the study of the Wiener–
Hopf integral equation were outlined in the seminal paper [6]. Further development of the
factorization theory was described in the book by Litvinchuk & Spitkovskii [7]. Several known
facts on factorization were presented in a recent survey [8] (see also [9]), where one can find, in
particular, an extended list of references on the subject.

Simultaneously, the general theory of integral equations was developed intensively at the
beginning of twentieth century. Of note are the contributions by Hilbert [10], Fredholm [11],
Volterra [12] and Carleman [13]. The latter two authors also considered integral equations with
kernels depending on the difference of arguments, but containing integrals with variable limits
or along a finite interval, respectively. Nevertheless, the Wiener–Hopf integral equation (1.1)
became an important independent subject of research due to its wide range of applicability
and many connections. The Wiener–Hopf method has enabled researchers to solve analytically
numerous previously intractable integral and partial differential equations, as well as many
boundary value problems. To date, it still remains the standard method for solving a wide class of
canonical physical problems. The method is an important cornerstone (among other methods)
in areas of pure mathematics, for example in development of the abstract theory of singular
linear operators, pseudo-differential operators, etc. Additionally, the exact solutions form the
basis of approximate techniques applicable to more complicated problems. Moreover, even in
case when the constructive (analytical) construction is available, it is not always possible to realize
numerically with a confidence [14].

1In fact, in the original paper [1] the Laplace transform was applied and the corresponding functional equation is valid in a
vertical strip. Interestingly the original paper contained a mistake; it claimed that γ n(z) = (z2 − 1)n/2 → zn as z → ±∞ where
n was the number of zeros of the kernel in the strip of analyticity (this is only true for n even). This was pointed out in ([3],
ch. 16), and resulted from an incorrect choice of branch cut. However, it did not influence the actual results they obtained in
the second part of the paper, since they assumed that the kernel is even and hence n is even.
2For a long time, it was supposed that Plemelj’s work gave a complete answer on the Hilbert question. But in the late 1980s
Bolibrukh [4] showed that the proof of Plemelj is incomplete and that the negative answer is also possible. In fact, it was
shown that Plemelj’s positive answer for the question is valid for the so-called ‘regular’ [4, p. 7] variant of the Riemann–Hilbert
boundary value problem.
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Recently, the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, organized a
one-month research programme ‘Bringing pure and applied analysis together via the Wiener–
Hopf technique, its generalizations and applications’, where the most important results in the
area were presented and further developments of the method were considered [15]. This review
was inspired by that programme. The aim of this paper is to show the beauty, principal features
and perspectives of the Wiener–Hopf technique. The theory of scalar Wiener–Hopf equations is
now very rich and well developed. In contrast, much less is known about matrix Wiener–Hopf
equations. These are a natural extension of the scalar case, and enable us to model more advanced
problems derived from applications [16]. As it stands, solutions to matrix Wiener–Hopf problems
have to be constructed on a case-by-case basis, or in an approximate fashion; the main approaches
will be outlined in this review. The Wiener–Hopf technique is currently used in a wide range
of disciplines including acoustics, finance, Lévy processes, hydrodynamics, elasticity, potential
theory and electromagnetism. As such, there are several disjoint communities who rely on the
Wiener–Hopf method, and developments in one field sometimes go unnoticed in another. It is
intended that this review helps to remove this artificial intradisciplinary and interdisciplinary
boundary.

In summary, the Wiener–Hopf technique is captivating for many reasons:

— It enables us to solve numerous physical problems motivated by real world applications
modelled, for example, by partial differential equations and stochastic processes.

— Subtle and diverse analytical methods are required to obtain solutions.
— Solutions of the Wiener–Hopf problems are remarkably revealing, thus often allowing for

explicit evaluation of its asymptotic forms at all singular points and at infinity.
— Computing solutions to obtain practically useful results often requires involved and

innovative numerical analysis.

This review offers a short introduction to the application, theory and numerical
implementation of the Wiener–Hopf method; each element forms an important part of the whole.

The review has the following structure. The following section summarizes results related to the
Wiener–Hopf technique, related equations and applications. Section 3 lists the main constructive
methods for certain classes of matrix Wiener–Hopf equations allowing for explicit factorization.
Section 4 outlines several approximate methods available for the cases where exact constructive
methods do not apply. The last section draws conclusions and discusses further directions.

2. Preliminaries

(a) The Wiener–Hopf problem
We begin by formulating the basic Wiener–Hopf equation (resulting from applying the Fourier
transform to equation of type (1.2)) and discussing the standard method of its solution (for
details of its derivation, see [17]). This will be compared and contrasted with the Riemann–Hilbert
boundary value problem at the end of the next section. The Wiener–Hopf equation has a simpler
form and historically was the first to be discovered, so forms a natural starting point.

Define upper half-plane H+ = {Im z> a; a< 0}, lower half-plane H− = {Im z< b; b> 0} and the
Wiener–Hopf strip H=H+ ∩ H− = {a< Im z< b} (a and b are real numbers, typically small). Then
the classic Wiener–Hopf problem is, for given K(z) and C(z) analytic in H, and

K(z)Φ+(z) + Ψ−(z) + C(z) = 0, z ∈H, (2.1)

to find Φ+(z) an unknown function analytic in H+ and Ψ−(z) an unknown function analytic in
H−. The function K(z) is called the Wiener–Hopf kernel corresponding to (2.1).
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For the sake of completeness, we are going to outline the usual procedure used to solve the
Wiener–Hopf problem in the case of canonical scalar factorization. The key step in the Wiener–
Hopf procedure is to find K+ and K− (the Wiener–Hopf factors) such that

K(z) = K+(z)K−(z), z ∈H. (2.2)

with K± and their inverses analytic in H±. This product is referred to as a factorization of the kernel
and is the most important part of the procedure; it is straightforward to accomplish for scalar
kernels.

Multiplying through by K−1
− we obtain

K+Φ+(z) + K−1
− Ψ−(z) + K−1

− C(z) = 0, z ∈H. (2.3)

Now performing an additive splitting we have

K−1
− C(z) = C−(z) + C+(z), z ∈H, (2.4)

where C±(z) are analytic in their indicated half-planes H±, respectively. Finally, rearranging the
equation yields

K+Φ+(z) + C+(z) = −K−1
− Ψ−(z) − C−(z), z ∈H. (2.5)

The right-hand side of (2.5) is a function analytic in H+ and the left-hand side of equation (2.5)
is analytic in H−. Hence, together they offer analytic continuation from H into the whole of the
z-plane, and so each side is equal to an entire function J(z), say. We also require at most algebraic
growth of each side of equation (2.5) as |z| → ∞ in the respective half-planes of analyticity, i.e.

J(z) ≤O(|z|n), |z| → ∞, (2.6)

for some constant n. Applying the extended form of Liouville’s theorem implies that J(z) is a
polynomial of degree less than or equal to n. HenceΦ+(z) and Ψ−(z) are determined up to �n� + 1
unknown constants (typically n ≤ 0 or 1, and the constants can be fixed using extra information
about the behaviour of the solution). Then the application of the inverse Fourier transform to
Φ+(z) or Ψ−(z) would yield the solution to (1.1).

If Φ+(z), Ψ−(z) and C(z) in (2.1) are vectors of functions with a matrix of functions K(z),
then (2.1) is called matrix/vectorial Wiener–Hopf equations. All the above steps in the solution are
analogous. The difficulty lies in performing the multiplicative factorization (2.2), which becomes
the main challenge to overcome and is addressed in §§3 and 4.

(b) Riemann–Hilbert boundary value problem
The Wiener–Hopf equation is closely related to the Riemann–Hilbert boundary value problem3

[18,19]. The latter problem is to determine two functions or vectors of functions Φ±(z), which are
analytic in the complementary domains D± (i.e. D+ ∪ L ∪ D− = C, with a given simple closed
curve L= ∂D+ = ∂D−) and satisfy on L the following linear condition:

Φ+(t) = G(t)Φ−(t) + g(t), t ∈L, (2.7)

with the function/matrix G(t) and the function/vector g(t) given on L.
In the scalar case, the complete solution of the Riemann problem (2.7) was given by Gakhov

[18]. He has shown that solvability of the problem depends on the Cauchy index (winding number)

3It would be more historically accurate to call it the Riemann boundary value problem, as still used by Gakhov’s school;
however, we will use the title Riemann–Hilbert boundary value problem, introduced by Muskhelishvili, as it is more common
nowadays.
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of the coefficient G

κ = indLG = 1
2π

∫
L

d(arg G(t)). (2.8)

In the case of Hölder-continuous functions G and g, a simple smooth contour L and in the case of
non-negative index κ ≥ 0 the solution of (2.7) has the form4

Φ±(z) = X±(z)[Ψ±(z) + Pκ (z)], z ∈D±, (2.9)

where Pκ (z) is a polynomial of order κ , and

X+(z) = exp{Γ +(z)}, X−(z) = exp{z−κΓ −(z)}, (2.10)

Γ ±(z) = 1
2π i

∫
L

log[t−κG(t)]dt
t − z

, z ∈D±, (2.11)

Ψ±(z) = 1
2π i

∫
L

g(t)
X+(t)

dt
t − z

, z ∈D±. (2.12)

In the case of negative index κ , the unique solution has the form Φ±(z) = X±(z)Ψ±(z) provided
that a finite number of solvability conditions

∫
L

g(t)
X+(t)

tk−1dt = 0, k = 1, 2, . . . , −κ − 1,

are satisfied (otherwise there is no solution).
The scalar and matrix function factorization, related to the Riemann–Hilbert boundary value

problem, was introduced by Birkhoff [20] and also in a more straightforward form by Gakhov
[21]. Factorization means obtaining the following representation of an n × n matrix function G,
given on a bounded curve L (curve such that 0 ∈D+, ∞ ∈D−), as

G(t) = G+(t)Λ(t)G−(t), t ∈L, (2.13)

where G±(t) are boundary values of bounded analytic zero-free matrices G±(z), z ∈D±, and

Λ(t) = diag{tκ1 , tκ2 , . . . , tκn}, (2.14)

where κj ∈ Z, j = 1, 2, . . . , n, are integer numbers called partial indices. Representation (2.13) is
called a left-sided factorization. Interchanging G+ and G− we arrive at the right-sided factorization.
Respectively, the partial indices are called left (right) partial indices. In general, they are not
the same; however, their sum is always equal to the index of det G (this can sometimes fail
for functions with severe discontinuities worse than the piece-wise continuous case [9], theorem
3.21). In the case L= R the variable t in (2.14) is replaced by the ratio (t − i)/(t + i) (similar changes
are need in (2.10) and (2.11)). In this case one needs to assume the continuity of G at infinity.

Unfortunately, in the general case, there exists no method of determining the partial indices,
while such information is important to reconstruct the factors, G±, and is instrumental in proving
the stability of any respective algorithm. Those issues are discussed further in §4. Factorization,
i.e. determination of the partial indices κj ∈ Z, j = 1, 2, . . . , n, and factors G+, G− is an independent
problem playing a crucial role in many theoretical and applied problems.

We would like to make here a few comments on formal differences between the Wiener–
Hopf and Riemann–Hilbert problem. Note that (2.13) is different to (2.2) since equation (2.2)
does not contain Λ(t). It is because it is common in the Wiener–Hopf literature [17] to implicitly
assume that κ = 0 in formulae (2.10) and (2.11), which is often the case in applications. On the
other hand, (2.13) can be always presented in the form (2.2) by further factorizing the matrix
Λ(t) =Λ+(t)Λ−(t), and then redistributing the respective diagonal terms. However, this destroys
some of the assumptions on the behaviour of the factors G±: the behaviour at infinity, satisfaction
of the invertibility property (i.e. it introduces zeros into the half-planes of analyticity), etc. Thus,
this form of the factorization is tightly linked to the conditions imposed on the factors (which
space of analytic function is chosen) [7]. Note also that the factors K± themselves, (2.2), would in

4These formulae are valid for L= R and under weaker assumptions on G, g [18].
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general have non-zero partial indices. Another important difference between the approaches is
that (2.2) is valid on a strip (and thus, knowledge of the possible poles and zeros inside the strip
provides useful information for solving the problem under consideration), while the factorization
(2.13) is defined on a line (that can be analytically extended if possible). These differences are also
discussed in [22]. Finally, we would like to stress that there are authors associating the Wiener–
Hopf problem with the Riemann–Hilbert one and vice versa that only underlines the fact that the
division is rather artificial and depends on the research communities. To avoid any unintentional
misleading, we discuss particular factorization techniques below as they have appeared in the
original presentations, with minor comments where necessary.

(c) Canonical matrix
The factorization problem (2.13) is almost equivalent to the homogeneous (i.e. with g(t) ≡ 0)
Riemann–Hilbert boundary value problem (2.7):

Φ+(t) = G(t)Φ−(t), t ∈L. (2.15)

In [23], the conditions for the existence of a solution to (2.15) are described. If the solution to
(2.15) exists one can find5 a so-called fundamental system of solutions Φ1(z), . . . ,Φn(z) and the
corresponding fundamental matrixΦ(z) = (Φ1(z), . . . ,Φn(z)) with vectorsΦj(z) being their columns.
Fundamentality of the system/matrix means that the determinant of the fundamental matrix
cannot be identically zero.

The next step (which is more constructive [23, p. 520]) is to transform the fundamental system
of solutions to a normal form. By definition the normal system of solutions Ψ1(z), . . . ,Ψn(z) to (2.15)
is the fundamental system such that the determinant of the fundamental matrix does not vanish
anywhere on C (including the curve L). The matrix Ψ (z) = (Ψ1(z) . . . Ψn(z)) of the normal system
is called the normal matrix.

By elementary transformations, the normal system of solutions can be transformed to the so
called canonical system. The canonical system is usually denoted X1(z), . . . , Xn(z) and its matrix is
X(z) = (X1(z) . . .Xn(z)). The properties of the canonical system are

(i) The canonical system is the normal system of solutions to (2.15), i.e. the determinant of
the canonical matrix det X(z) is nowhere vanishing in C.

(ii) The sum of the orders κj at infinity of the columns of the matrix X(z) (i.e. solutions Xj(z))
is equal to the Cauchy index of the determinant det X(z).

They are called partial indices of the Riemann–Hilbert boundary value problem (2.15). The
integer numbers κj are the same as partial indices of the factorization (2.13) of the matrix function
G(t) (the coefficient in (2.15)).

Whenever the canonical matrix is constructed, the solution of factorization problem (2.13) is
presented in the form

G+ = X+, G− =Λ−1(X−)−1, (2.16)

where Λ(z) = diag{zκ1 , . . . , zκn } (this applies when 0 ∈D+).
Note that for a canonical matrix it is said that the matrix X−(z) has the normal form at infinity

for a factorization (2.13). An example of the use of this method is presented in §3(c).

5This is a crucial problem, highly dependent on the properties of the matrix coefficient G, and NOT always possible to be
performed in a constructive way.
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(d) Other convolution-type integral equations
Related to the integral equations of the convolution type (1.1) on the half-axis are paired equations

f (x) +
∫∞

−∞
k1(x − t)f (t)dt = g(x), x> 0

and f (x) +
∫∞

−∞
k2(x − t)f (t)dt = g(x), x< 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.17)

and the so-called transpose to the dual equations:

f (x) +
∫∞

0
k1(x − t)f (t)dt +

∫ 0

−∞
k2(x − t)f (t)dt = g(x), x ∈ R. (2.18)

They can be both solved in a very similar manner to (1.1) by extending the range, taking the
Fourier transform of each of the equations, and eliminating one unknown, to give rise to the
usual Wiener–Hopf equation

F+(s) = R(s)F−(s) + T(s), R(s) = 1 + K2(s)
1 + K1(s)

, (2.19)

where Kj(s) are Fourier transforms of the kernels kj(x), j = 1, 2, and F±, T(s) are different for each
equation (details can be found in [18,24]).

(e) Carleman-type boundary value problem
A closely related equation, but much less known is the so-called smooth-transition equation

f (x) +
∫∞

−∞
k1(x − t)f (t)dt − g(x) + e−x

{
f (x) +

∫∞

−∞
k2(x − t)f (t)dt − g(x)

}
= 0, (2.20)

for −∞ ≤ x ≤ ∞. The interesting feature of this equation is that for x large and positive it is close
to

f (x) +
∫∞

−∞
k1(x − t)f (t)dt − g(x) = 0, x � 1, (2.21)

And for x large and negative it is close to

f (x) +
∫∞

−∞
k2(x − t)f (t)dt − g(x) = 0, x 
 −1, (2.22)

which is similar to (2.17). Finally, for values of x = 0 close to zero, the equation takes the form:

2f (x) +
∫∞

−∞
k1(x − t)f (t)dt +

∫∞

−∞
k2(x − t)f (t)dt − g(x) = 0, |x| 
 1. (2.23)

This analysis explains the name of the equation; it behaves as the dual equation when |x| � 1 and
as the transpose to the dual when |x| 
 1.

In order to analyse this equation, define the following [3]

φ(x) = f (x) +
∫∞

−∞
k2(x − t)f (t)dt − g(x), −∞ ≤ x ≤ ∞. (2.24)

Then the original equation (2.20) can then be written as

f (x) +
∫∞

−∞
k1(x − t)f (t)dt − g(x) + e−xφ(x) = 0. (2.25)

After application of Fourier transform to (2.24) and (2.25) (again, with a capital letter indicating
the transform of a lower-case letter) we arrive at the following equations

Φ(z) = (1 + K2(z))F(z) − G(z), −∞ ≤ z ≤ ∞
and −Φ(z + i) = (1 + K1(z))F(z) − G(z), −∞ ≤ z ≤ ∞.

}
(2.26)
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Eliminating F(z) we arrive at

(1 + K1(z))Φ(z) = −(1 + K2(z))Φ(z + i) + (K2(z) − K1(z))G(z), −∞ ≤ z ≤ ∞. (2.27)

This is not a standard form for a Riemann–Hilbert boundary value problem but it can be
transformed to one by defining a new function

w(ψ) = 1√
ψ
Φ

(
ln(ψ)

2π

)
, (2.28)

then the jump in the Riemann–Hilbert boundary value problem is across the cut argψ = 0.
The smooth transition equation (2.20) is a special case of a more general Carleman-type

boundary value problem: to findΦ(z) analytical in a domain D and satisfy on part of the boundary
of D denoted S the following condition:

Φ(t) = E(t)Φ(m(t)) + g(t), t ∈ S, (2.29)

with the functions E(t), m(t) and g(t) given on S ([3], §15.1). Also it is required that m(t) is
continuous and maps to the rest of the boundary of D. Additionally we require that t and
m(t) transverse the boundary in different directions. Sometimes its solution can be reduced to a
Riemann–Hilbert boundary value problem, but in general no closed-form solution is known [25].
Many applied problems are reduced to certain types of functional-difference equation (related
to Wiener–Hopf and Riemann–Hilbert problems). We mention here the problems of applied
mechanics [26–30] and diffraction theory [31–33].

(f) Discrete Wiener–Hopf equation
In this section, we will look at an infinite system of equations of Wiener–Hopf type, a discrete
analogue of integral equation (1.1). For all infinite sequence an considered here we will assume
the following holds for some constant M

|an|< M
n1+λ , 0<λ< 1. (2.30)

We will also assume that the Fourier series A(θ ) =∑∞
n=−∞ aneinθ is Hölder continuous.

The discrete Wiener–Hopf equations for xn is

∞∑
k=0

an−kxk = cn, n = 0, 1, 2 . . . , (2.31)

where the infinite sequences an and cn are given. This is called an infinite system with a Toeplitz
operator due to a presence of n − k in the index of a. Similar to the integral equation case, we first
need to extend this equation for n negative

∞∑
k=0

an−kxk =
{

cn for n = 0, 1, 2, . . .

dn for n = −1, −2, . . .
(2.32)

for some dn, which are unknown for n = −1, −2 . . . . Note that the dn are uniquely defined by the
left-hand side of (2.32) once xk is determined. Next we apply the discrete analogue of Fourier
transform, the Z-transform. The Z-transform of a sequence an is defined as

A(t) =
∞∑

k=−∞
tkak, (2.33)

and as before is denoted by a capital letter. We multiply the nth equation in (2.32) by tn and sum
over all equations:

∞∑
n=−∞

tn
∞∑

k=0

an−kxk =
∞∑

n=0

tncn +
−∞∑

n=−1

tndn. (2.34)
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The main property is the interaction of the Z-transform with a Töplitz operator

∞∑
n=−∞

tn
∞∑

k=0

an−kxk =
∞∑

k=0

tkxk

∞∑
n=−∞

tn−kan−k =
∞∑

k=0

tkxk

∞∑
m=−∞

tmam, (2.35)

which corresponds to the Fourier transform changing a convolution into a product. Thus, via a
Z-transform, equation (2.32) becomes

A(t)X+(t) = C(t) + D−(t), (2.36)

which holds on the unit circle, and the superscript +/− indicates the function is analytic
inside/outside the unit circle. This Riemann–Hilbert boundary value equation can be solved as
before to find X+(t) and then the inverse of the Z-transform applied to recover xn.

A slightly more general infinite system which can be solved in an identical fashion is the
discrete version of equation (2.17)

∞∑
k=−∞

an−kxk = cn, for n = 0, 1, 2, . . .

and
∞∑

k=−∞
bn−kxk = dn, for n = −1, −2, . . .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.37)

where ak, bk, ck and dk are known. Another version of the discrete equation is the analogue to the
transpose to the dual equation (2.18):

∞∑
k=0

an−kxk +
−∞∑

k=−1

bn−kxk = cn, n = 0, ±1, ±2, . . . (2.38)

Another interesting discrete system which has an analytic solution via a Wiener–Hopf
technique is

∞∑
k=−∞

an−kxk − cn + rn

⎛
⎝ ∞∑

k=−∞
an−kxk − cn

⎞
⎠= 0, n = 0, ±1, ±2, . . . , (2.39)

where |r| �= 1. With the help of a Z-transform, this can be reduced to a boundary value problem
of Carleman type [3].

There are other methods for solving equation of type (2.31) without the use of Wiener–Hopf
method. The discrete systems of equations with a Toeplitz operators have effective numerical
methods of solutions, some which use Cauchy-like matrices, which have small numerical ranks
[34]. Also there are some results about perturbation of Toeplitz operators for example solution of
infinite systems like Au + Bu = f where A is Toeplitz operator and B is in some sense small [35].

Equations of type (2.31) naturally appear in applications when the boundary conditions
are discrete and periodic in semi-infinite configurations. For example, this happens in the
Sommerfeld half plane problem for discrete Helmholtz equation [36]. This is also the case when
an semi-infinite discrete array of point scatterers is considered [37–40]. Additionally, this type of
problems is common in crack propagation problems [41].

(g) Non-uniqueness of factorization
This section gives the details of the degree of freedom when constructing Wiener–Hopf
factorizations. In the scalar case, factors are unique up to a constant. In other words, if there are
two such factorizations K(z) = K+(z)λ(z)K−(z) and K(z) = P+(z)λ(z)P−(z), where λ(z) is the factor
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accounting for the index of the function K(z),

K+=cP+ and K−=c−1P−, (2.40)

where c is some non-zero complex constant. This can be seen by applying analytic continuation
to K+/P+ and P−/K− and then using the extended Liouville’s theorem [42]. Here we deal
with factorization of the matrix defined on a simple closed curve L in the complex plane. The
corresponding result in the 2 × 2 matrix case is rather more complicated:

Theorem 2.1 ([9]). Let the matrix G(t) admit the Wiener–Hopf factorization (2.13). Then:

G = G1
+ΛG1

−, (2.41)

where
G1

+ = G+H, G1
− = Λ−1H−1ΛG−, (2.42)

is also a factorization of G(t) where H is a constant invertible matrix function if κ1 = κ2 and otherwise is
of the form:

H(t) =
(

c1 P(z)
0 c2

)
, z = t − i

t + i
, (2.43)

where P(z) is a polynomial of degree κ1 − κ2 in z.

This means that there is more freedom to choose the Wiener–Hopf factors when κ1 �= κ2. In the
case of higher order matrix functions, similar results can be shown, while the matrix structure has
a bit more complicated form [43].

(h) General class of PDEs that can be reduced to a Wiener–Hopf
As an illustration of the concept, we consider a class of partial differential equations (PDEs) that
can be reduced to a Wiener–Hopf equations or a Riemann–Hilbert boundary value problem ([3],
§20.3). This method is suitable for linear PDEs of the form

A∑
p=0

B∑
q=0

hpq(y)
∂p+qu(y, x)
∂yp∂xq = g(y, x), (2.44)

where hpq and g are given and u is to be determined; note that hpq has no x dependence. In the
simplest case, the boundary conditions are given on the lines y =const. or half lines y = const.
for x> 0 or x< 0. Let these n lines be positioned at constants y1, . . . , yn. The boundary conditions
have the form

P∑
p=0

Q∑
q=0

(
apqrs(y)

∂p+qu(ys + 0, x)
∂yp∂xq + bpqrs(y)

∂p+qu(ys − 0, x)
∂yp∂xq

)

= grs(x), x> 0 (2.45)

P∑
p=0

Q∑
q=0

(
cpqrs(y)

∂p+qu(ys + 0, x)
∂yp∂xq + dpqrs(y)

∂p+qu(ys − 0, x)
∂yp∂xq

)

= grs(x), x< 0 (2.46)

and r = 1, . . .ms, s = 1, . . .n. (2.47)

There could also be some conditions for y → ∞ or y → −∞. In order to obtain a Riemann–Hilbert
boundary value problem a list of systematic steps is performed in detail in ([3], §20.3), and which
is translated into English in [44].

We also refer an interested reader to the classic monographs, for example, [17,19,45] for
applications of various integral transforms to reduce PDE boundary value problems to Wiener–
Hopf or Riemann–Hilbert form, among others.
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(i) Applications
The wide applicability of the Wiener–Hopf methods has ensured its continuous development
from its inception to modern day. Traditional applications areas are acoustics, aeroacoustics, water
waves, electromagnetism [46–49] as well as Lévy processes and signal processing [50–53]. Various
static and dynamic problems of fracture mechanics [54–58], lattices [59–65], metamaterials and
biomechanics are studied using this technique [41,66–69].

The Wiener–Hopf method is extensively used for canonical scattering problems both in
acoustics [17] and electromagnetism [49]. In both of these applications, the governing equation
is Helmholtz’s equation. There are fewer methods available to tackle Helmholtz’s equation
compared to Laplace’s equation. For the Laplace equation, other techniques from complex
analysis such as conformal mapping are applicable [70]. Although the Helmholtz equation is self-
adjoint addition of boundary conditions, including the Sommerfeld radiation condition, means
that the boundary value problem is no longer self-adjoint. This causes problems in demonstrating
completeness of series expansions [71]. The Wiener–Hopf method on the other hand very
naturally incorporates the radiation condition and complicated edge conditions. Simple models in
aeroacoustics can also be reduced to acoustic problems via Lighthill’s analogy and the reciprocal
theorem [72].

Water waves is an area where the Wiener–Hopf techniques is accepted as one of key analytic
tools [73]. The ice cover on water can be modelled as an elastic material for which flexural motions
are able to be described by thin-plate or Timoshenko–Mindlin theory [74–76]. Eigenfunction-
matching method is also a commonly used method and in some cases this has been shown to
be equivalent to the Wiener–Hopf method [77,78]. Recently, the problem of waves generated in a
fluid and an ice sheet by a pressure region moving on the free surface of the fluid, along the edge
of the semi-infinite ice sheet, has been solved using the Wiener–Hopf technique [79].

One of the new applications of the Wiener–Hopf technique has been nanophotonics. Graphene
and other two-dimensional (2D) materials may sustain evanescent, fine-scale electromagnetic
waves that are tightly confined to the boundary, called plasmonpolariton [66]. This is also closely
related to edge magnetoplasmons, the theory of which was also derived using the Wiener–Hopf
method [80] and the more realistic extension of which lead to more complicated Wiener–Hopf
systems [81]. Recently, composites and metamaterials have also been investigated using the
Wiener–Hopf method [37,67,82,83].

This is by no means an exhaustive list of applications; unfortunately space constrains us in this
short survey. We now list a number of approaches to particular constructive exact or approximate
factorization methods in the sections below.

3. A list of constructive procedures
By constructive factorization, we mean that there is an algorithmic way to obtain the factorization
(2.13) or (2.2). Recall, for scalar functions, factorization is always possible via integrals of Cauchy
type (2.11) and (2.12). Currently, there are no constructive factorization procedures for matrix
functions in general, and only very specific classes can be exactly solved. What complicates
the development of an algorithmic approach is that for a given matrix function it is difficult
to determine if any known constructive procedure apply. Pre- and post-multiplication can
sometimes transform the matrix to a known form, but this is undertaken mainly using ad hoc
techniques. A systematic treatment of some transformations is given in [84].

The main classes of matrix kernels which have a constructive factorization are reviewed
below. They are the rational matrix functions, commutative matrices, particular matrices with
exponential factors, as well as several miscellaneous classes. We also refer the reader to several
other important classes of piece-wise constant matrix functions not included in the review
[43,85,86], the Meister and Speck matrix as discussed in [87] and for applications [88,89]. We also
do not consider the case where there are singularities on the curve L [90]; for more information,
the reader is refereed to [91,92].
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(a) Rational matrix function
This is the simplest class of matrix functions for which an exact constructive factorization is
known. This is because there are only a finite number of isolated singularities which need to
be considered. A procedure to construct the Wiener–Hopf factorization is known in this case and
is briefly described immediately below, followed by the standard ‘pole removal’ technique.

(i) Factorization of rational matrix functions

This subsection describes an algorithm to factorize a rational matrix function ([9], §1.2). Given
a matrix function M it can be expressed as P/q, where P is a polynomial matrix function and
q is a scalar polynomial. It is enough to factor them separately. The scalar function q can be
factorized easily, see §2(b). We will assume that det P has no roots on the real axis. What prevents
a polynomial matrix P being a plus factor is the presence of zeros of det P in the upper half-
plane. (Recall that, for factorization, a plus (minus) factor requires the matrix and its inverse to be
analytic in the upper (lower) half plane.) A way of eliminating one zero at a time is outlined in
the following lemma.

Lemma 3.1. Let P be a polynomial matrix function such that det P has no roots on the real axis. If
det P has n roots in the upper half-plane, then we can construct a polynomial L = PR where det L has
n − 1 roots in the upper half-plane and the matrix R has the form (blanks stand for zeroes):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−c1

z − z0

1
...

. . . −ck−1

z − z0

1
z − z0

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.1)

where z = z0 is one of the aforementioned poles, while ck are computed constructively and uniquely.

We can repeat this procedure, eliminating all the roots of det P in the upper half-plane and
hence construct the plus factor. Note that the matrix R is invertible. The minus factor can be
found either by pre-multiplying P by the inverse of the plus factor, or by taking the inverse of the
product of all of the R matrices. This completes the factorization.

(ii) ‘Pole removal’ for rational matrix functions

In applications the above rational factorization algorithm is rarely used; instead ‘pole removal’ or
‘singularity matching’ is employed [49,93] and is recapped below.

Suppose that A(z) is rational (every entry of the matrix function is a rational function), then
we can solve (2.1) without multiplicative factorization. Perform an additive split A(z)Φ+(z) =
(A(z)Φ+(z))− + (A(z)Φ+(z))+ and C(z) = C−(z) + C+(z), where the first term is analytic in H− and
second in H+. Since A(z) is rational we can write (A(z)Φ+(z))− =∑n

i=0(Ai/(z − zi)), where zi are
the poles in the upper half-plane, and Ai are constants (residues at zi). Thus,

A(z)Φ+(z) −
n∑

i=0

Ai

z − zi
+ C+(z) = −Ψ−(z) −

n∑
i=0

Ai

z − zi
− C−(z) (3.2)

separates terms on the left- and right-hand sides into functions analytic in the upper and lower
half planes respectively. To find Ai we need to solve a linear system of equations (by setting z = zi).
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The pole removal method has an advantage over the rational factorization procedure. It
enables one to remove undesired poles without changing the rest of the equations. This is one of
the reason that it can not only be applied to rational Wiener–Hopf kernels but also to more general
kernels which have one or more rational parts. Pole removal is closely linked to the generalized
Liouville’s theorem (which allows the unknown function to have poles). It can also be naturally
extended to meromorphic functions by allowing an infinite sum, which would lead to an infinite
linear system that would need to be truncated in order to be solved. The additional advantage
of ‘pole removal’ is that the multiplicative factorization is reduced to an additive splitting. It is
also worth noting that many alternative formulations, such as Fredholm factorization [49,94,95],
approximate techniques (see §4) and numerical methods [96], are also based on this principle or
replacing a multiplicative factorization by additive splittings.

Remark 3.2. Note that the instability issue discussed in §4 still applies here. To recognize the
challenge it is enough to refer to the fact that, generally speaking, all poles or zeros are computed
approximately, while the system of linear equations mentioned above (which have to be solved to
compute the constants) can be ill-conditioned. In the case of a stable set of the partial indices the
system is not ill-conditioned, otherwise, at least for some of the poles, this would be expected [97].

(b) Analytic and meromorphic matrix functions
In [98] the factorization problem for the meromorphic matrix function was solved. The
corresponding algorithm is based on the reduction of the problem to a finite number of systems
of linear algebraic equations, whose coefficients’ matrices are block Toeplitz matrices:

Tk =

⎛
⎜⎜⎜⎝

Ck Ck−1 · · · C−2κ
Ck+1 Ck · · · C−2κ+1
· · · · · · · · · · · ·
C0 C−1 · · · C−2κ−k

⎞
⎟⎟⎟⎠ , (3.3)

with Cj being the power moments of the inverse G−1(t) to the given matrix with respect to the
contour L

Cj = 1
2π i

∫
L

t−j−1G−1(t)dt. (3.4)

The partial indices of the left and right factorization are represented in terms of ranks of the above
Toeplitz matrices. An analogous method is applied in [99] for the case of analytic matrix functions
which, being a special case of the latter, need less computation. A part of this algorithm related to
factorization of the scalar polynomial is implemented in the Maple computer system as module
PolynomialFactorization (see its description and illustrative examples in [100]).

(c) Triangular matrix functions
Upper or lower triangular matrix functions (with factorizable diagonal elements) can sometimes
be reduced to a set of scalar equations. If the equations can be solved in turn and the previous
solution used to make the next equation scalar, then the system decouples. However, even in the
case of triangular matrix functions there may be complications which mean that the system does
not decouple in this way. This happens when the partial indices are non-zero, for which case
we describe a general procedure below. It relies on the idea of a canonical matrix, introduced in
§2(c) and this was one of the first attempts to realize this construction explicitly (i.e. to determine
canonical matrix factorization for (2.15)). The classical results Chebotarev [101] applies to 2 × 2
triangular matrix functions with factorizable diagonal entries.
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Let

G(t) =
(
ζ1(t) 0
a(t) ζ2(t)

)
, t ∈ T (unit circle).

Denote κj = indΓ ζj(t) and let x±
j (z) be canonical functions for the scalar homogeneous Riemann–

Hilbert boundary value problems with coefficients ζj(t), respectively [18], j = 1, 2. Then the piece-
wise analytic matrix

X±(t) =
(

x±
1 (t) 0

x±
2 (t)φ±(t) x±

2 (t)

)

with

φ±(z) = 1
2π i

∫
T

a(τ )x−
1 (τ )dτ

x+
2 (τ )(τ − z)

, z ∈ D±,

satisfies the following boundary condition: X+(t) = G(t)X−(t). Let μ≥ 1 be the order of the
function φ−(t) at infinity. The orders of non-zero elements of the matrix X−(z) at infinity can be
characterized by the following table: (

κ1 −
κ2 + μ κ2

)
.

If κ1 ≤ κ2 + μ, then the matrix X−(z) has the normal form at infinity, i.e. it is the canonical
matrix. Thus, partial indices of the matrix G(t) are equal (κ1, κ2). In the case κ1 > κ2 + μ,
Chebotarev proposed to use an expansion of 1/φ−(z) as a continued fraction

1
φ−(z)

= qγ0 (z) + 1
qγ1 (z) + (1/(qγ2 (z) + . . .))

,

where qγi (z) are polynomials of orders γi, respectively (γ0 =μ). Using these polynomials in the
scheme of the elementary transformations it was shown in [101] that in a finite number of steps
the ‘minus’-matrix can be rebuilt to the normal form at infinity and thus the partial indices will
be found and factors in (2.13) will be determined. In [102], this approach was applied to obtain an
explicit solution of the factorization problem for a case of the Khrapkov–Daniele matrix functions.
In [103], this approach was applied to solve R-linear conjugation problem.

In [104] Chebotarev’s approach was realized for triangular matrix function of arbitrary order
with factorizable diagonal entries. The basis for the inductive steps is the following statement:
let L be a simple smooth closed contour 0 ∈L, and let B(t), for t ∈L, be a non-singular Hölder
continuous square matrix-function of order n having the following form:

B(t) =
(

A(t) 0
b1(t) . . . bn−1(t) c(t)

)
, 0 =

⎛
⎜⎜⎝

0
...
0

⎞
⎟⎟⎠ . (3.5)

Suppose that the non-singular square matrix-function A(t) of the order n − 1 admits the factorization

A(t) = A+(t) Λ(t) A−(t),

where Λ(t) = diag {tκ1 , . . . , tκn−1}. Then the matrix-function B(t) possesses a factorization if the following
matrix does: (

Λ(t) 0
(b(t)|Y−

1 (t)) . . . (b(t)|Y−
n−1(t)) c(t)

)
. (3.6)

Here b(t) = (b1(t), . . . , bn−1(t)) is the row of the first n − 1 entries of the lowest row of B(t), Y−
j (t) =

(y−
1j(t), . . . , y−

(n−1)j(t))
T is the jth column of the matrix-function Y−(t) = (X−(t))−1, and

(b(t)|Y−
j (t)) =

n−1∑
k=1

bk(t)y−
kj (t).

This process can be repeated n times.
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Note that for a matrix with a specific structure, the general stability criterion for the partial
indices can be extended (in other words, within a specific sub-algebra, there are cases when
the perturbation preserving the structure remains stable, while there exists a general (small)
perturbation of other structure that changes the set of the partial indices. For the 2 × 2 triangular
matrices such analysis has been conducted in [97].

(d) Functionally commutative matrix functions
There has been significant progress in the case of the matrices possessing commutative
factorizations [7]. One of the reasons is that one can apply some of the techniques that have
been developed in the scalar setting. We present the corresponding result in the case of Hölder
continuous coefficients G and g in (2.7).

In [105], the following question was considered: whether there exist a class of matrix
coefficients G(t) such that formula (2.9) still gives the bounded solution of the vector-matrix
problem (2.7) (i.e. for n> 1)? Such a question is related to the purely algebraic question of the
fulfilment of the identity

eA(t)eB(t) = eA(t)+B(t), (3.7)

for certain matrices A(t) and B(t) connected to the coefficient G(t). It was shown in [105] that
identity (3.7) holds (and thus Gakhov’s formula (2.9) can be used to solve problem (2.7) in the
matrix case), whenever the matrix function G(t) is functionally commutative. The latter condition
means

G(t)G(τ ) = G(τ )G(t), ∀ t, τ ∈L. (3.8)

The question of solvability of the vector-matrix problem (2.7) in the case of a functionally
commutative matrix G(t) is solved in [105]. In [106], the following necessary and sufficient
condition for a matrix to be functionally commutative is reported: the matrix G(t) is functionally
commutative if and only if it can be represented in the form

G(t) = ϕ1(t)G1 + ϕ2(t)G2 + · · · + ϕm(t)Gm, (3.9)

where ϕ1(t),ϕ2(t), . . . ,ϕm(t) are linear scalar independent functions, and G1, G2, . . . , Gm are constant
linear independent mutually commutative matrices. The structure of lower-dimensional (up to n = 4)
functionally commutative matrix functions was described in [106] too. In [107] a solution to the
Riemann–Hilbert boundary value problem (2.7) and the corresponding factorization problem is
illustrated by examples [108].

(e) Commutative factorization
Close to the above case is so called commutative factorization. Let us formulate it in the Wiener–
Hopf setting. Let the matrix K(z) be defined on a strip H= {z ∈ C : a< Im z< b} around the real
line. The commutative factorization of K(z) are factors K−(z) and K+(z) satisfying (2.2) and the factors
K+, K− commute in H. The idea of commutative factorization stems from the work of Heins [109].
For criteria when commutative factorization is possible, the reader is referred to [110]. Several
special cases of matrices admitting commutative factorizations are described below.

(i) Khrapkov–Daniele matrices

Matrices of this kind represent one of the simplest classes of matrices with commutative
factorization. In 2 × 2 case, these matrices were discovered from certain diffraction problems
[111–113]. They appear in the study of diffraction by geometries which had a right angle such
as wedges or gratings (a grating can be thought of as a perpendicular strip in a waveguide) [114]
as well as other configurations [46,115–118]. The Khrapkov–Daniele matrices have the following
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form

K(α) = k0(α)I + k1(α)J(α), (3.10)

where J(α) is a polynomial matrix-function with the property

J2(α) =�2(α)I, (3.11)

with k0, k1 being arbitrary functions analytic in H and having algebraic growth at infinity and �2

is a polynomial in α,

�2(α) = O(|α|p), α→ ∞,

with p ≤ 2.
Commutative factorization under the above conditions has the form [116]

K±(α) = r±(α) exp{θ±(α)J}, (3.12)

where scalar functions r±, θ± satisfy the relations

r+(α)r−(α) = r(α) :=
√

k2
0(α) −�2(α)k2

1(α) (3.13)

and

θ+(α) + θ−(α) = θ (α) := 1
�(α)

tanh−1
(

k1(α)
k0(α)

�(α)
)

. (3.14)

An interesting approximate technique, based on the Khrapkov–Daniele matrix form, which
allows it to be extended to certain non-commutative matrices, has also been developed [119].

(ii) Jones class

Jones [120] established the commutative factorization of the following n × n class of matrices

C(α) =
n∑

m=1

am(α)Em(α), (3.15)

where a1(α), a2(α), . . . , an(α) are functions analytic in the strip H, E(α) is an entire matrix-function,
En = qn(α)I. It is supposed also that det C(α) �= 0 and tr Er = 0, r = 1, 2, . . . , n − 1.

Under these conditions, it was shown that C(α) possesses the commutative factorization

C(α) = C+(α)C−(α) = C−(α)C+(α),

where

C±(α) = [(det C(α))±]1/n
n−1∑
p=0

γ±
p (α)Ep(α), (3.16)

γ±
p =

n−1∑
m=0

ωmp

nqp exp

(n−1∑
r=1

qn−rωrmδ±n−r

)
, (3.17)

and δ+s + δ−s = δs :=
n−1∑
p=0

ωsp

nqs ln

[ n∑
l=1

qn−lωlpan−l

]
. (3.18)

Here ω= e(2π i)/n and the functions δ+s , δ−s are analytic in the corresponding half-planes.
In [116], the Wiener–Hopf factorization is constructed for matrices of the Jones class under

assumption that E is an entire matrix-function with polynomial elements having distinct
eigenvalues λ1, λ2, . . . , λn such that the following condition holds

(En1 − μ1I)(En2 − μ2I) . . . (Enp − μpI) = 0, (3.19)

where μj are polynomials and n1 + n2 + . . . np = n.
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(iii) Moiseev class

Moiseev’s method [121,122] is applied to class of matrices similar to that of Jones type which
allow non-algebraic growth at infinity

G(α) =
n−1∑
m=0

am(α)Em(α), (3.20)

where am(α) are scalar functions and E(α) is a polynomial matrix. In the simplest case of matrix E
having distinct eigenvalues almost everywhere, E can be decomposed as

E = TΛT−1, (3.21)

where T is the matrix of the eigenvectors andΛ is a diagonal matrix composed of the eigenvalues.
Both T and Λ are algebraic matrices (matrices with entries being algebraic functions), and in
[121] the Riemann surface R was introduced on which T and Λ are single valued. Further, the
matrix factorization problem reduced to a scalar Riemann–Hilbert boundary value problem on
R. This problem can be solved in terms of Abelian integrals with the help of Jacobi’s inversion
problem as stated by Zverovich in [123]. So, the solution to the problem of factorization of (3.20)
is known at least formally, and it possibly can be used for practical purposes. In some special
cases, this scheme was realized in a series of articles by Antipov and Silvestrov, and the solution
to the factorization problem (as well as to the corresponding problems arising in application) was
constructed in an explicit form in terms of special functions (see [124,125] and references therein).
The idea of reducing a matrix factorization to a scalar one on a Riemann surface is also developed
in [126].

In [127], a simplified method for treating matrices of Moiseev’s type is proposed. An additional
restriction is that am(α) are algebraic functions. The factorization problem is transformed by
Hurd’s procedure [49,128,129] into a Riemann–Hilbert boundary value problem on a set of cuts.
The method relies on formulation of ordinary differential equation with an unknown coefficient. It
is shown that the proposed procedure in the Khrapkov case is equivalent to the standard solution
method.

(f) Factorization of matrices with exponential terms in the entries
(i) Integral equation on a finite interval

Consider the system of the convolution equations on a finite interval

ϕ(t) +
∫ a

0
k0(t − s)ϕ(s)ds = f (t), 0< t< a, (3.22)

note the similarity and differences with the basic integral Wiener–Hopf equation (1.1). The
application of the Fourier transform leads to the necessity to factorize the 2n × 2n matrix function
of type

A(z) =
(

−e−iazK(z) −I + K(z)
I + K(z) −eiazK(z)

)
, (3.23)

where the n × n matrix K(z) is the Fourier transform of any extension k onto the whole real line R

of the kernel k0.
The factorization of matrix (3.23) is studied in [130] under condition that the operator

(Bϕ)(t) := ϕ(t) +
∫ a

0
k0(t − s)ϕ(s)ds, (3.24)

is invertible in Ln×1(0, a) and it is a priori known that partial indices of the matrix A(λ) are equal
to zero. In this case, the corresponding factors are found explicitly.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 

20
22

 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210533

..........................................................

(ii) A system of integral equations with an exponential kernel

In [131], the following system of two convolution-type equations on the real semi-axes is
considered:

u(x) =
∫∞

0
k(x − t)u(t)dt + f (x), x ∈ R+, (3.25)

where the kernel k is the following matrix:

kb(x) =
(

e−|x| e−|x−b|
e−|x+b| e−|x|

)
. (3.26)

Fourier transformation of this system leads to a functional equation with matrix kernel

Kb(α) =
(

2λ− 1 − α2 2λeibα

2λe−ibα 2λ− 1 − α2

)
. (3.27)

Factorization of matrices of such type, as well as some other matrices involving exponential
elements, is given in [131].

(iii) AKM approach

The name of this approach is simply an abbreviation of the authors’ names in [132] which
considers factorization of 2 × 2 non-rational matrix functions of the form

G(t; k) =
(

T(t) −R(t)e2ikt

−L(t)e−2ikt T(t)

)
, t ∈ R, (3.28)

for an arbitrary real parameter k. Matrices of this type arise as (modified) scattering matrices for
the one-dimensional Schrödinger equation and some related Schrödinger-type equations. For the
above discussion, the so-called scattering matrix

S(t) =
(

T(t) R(t)
L(t) T(t)

)
, (3.29)

plays an important role. Here T is called the transmission coefficient, and R, L are reflection
coefficients from the right and from the left, respectively.

It is supposed that the following conditions are satisfied

(i) T(z) �= 0, z ∈Π+ \ {0} = {z ∈ C : Im z ≥ 0, z �= 0}, is meromorphic in Π+ with continuous
boundary values on the extended real line, either T(0) �= 0 or T(t) is vanishing linearly
at t = 0, and T(∞) = 1.

(ii) R(z) and L(z) are meromorphic onΠ+ with continuous boundary values on the extended
real line and vanishes as z → ∞ in Π+.

(iii) G(t; k)−1 = QG(−t; k)Q for all t ∈ R, where Q = ( 0 1
1 0
)
.

(iv) G(t; k), as the function of t ∈ R, belongs to a suitable Banach algebra of 2 × 2 matrix
functions within which factorization is possible. This may be the Wiener algebra W =
W2×2 or algebra of functions f (t) such that f ∗(ξ ) = f (i((1 + ξ )/(1 − ξ ))) ∈ Hα(T),α ∈ (0, 1)
(which we denote H2×2

α ).

First the following statement was proved: let us consider

W(t) =
(

1 q(t)
−q(t) 1

)
, t ∈ R, (3.30)

where q(∞) = 0, and either q ∈ W or q ∈ Hα(T),α ∈ (0, 1). Then W(t) has a unique (right) canonical
factorization

W(t) = W−(t)W+(t), t ∈ R,

where either W± ∈W2×2 or W± ∈H2×2
α , and W±(∞) = E2.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 N

ov
em

be
r 

20
22

 



19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210533

..........................................................

It leads to the following result: let matrix (3.28) be a unitary matrix for all t ∈ R satisfying the
following conditions:

(i) T(t) �= 0 for all t ∈ R,
(ii) T(t) can be continued to a meromorphic function on Π+ with continuous boundary

values on R, and T(∞) = 1.
(iii) T(t), R(t) and L(t) belong to either W or to Hα , 0<α < 1.

Then G(t; k) has a (right) factorization with equal partial indices κ1 = κ2 = κ , where κ is the
number of zeros minus the number of poles of T(z) in Π+.

The factorization has the form

G(t; k) = W−(t, k)T−(t)diag
{(

t − i
t + i

)κ
,
(

t − i
t + i

)κ}
T+(t)W+(t, k),

where W−, W+ are factors of the canonical decomposition of the matrix G(t; k)/T(t) and T−, T+ are
product factors of the scalar function T(t):

T(t) = T−(t)
(

t − i
t + i

)κ
T+(t).

Some approximate methods for matrices with exponential entries are considered in §4(c).

(g) Miscellaneous classes
(i) EF algorithm

An algorithm based on the successive solution of the scalar boundary value problems was
proposed by Feldman et al. [24]. They construct the solution of the factorization problem (2.13)
when the curve L is either the unit circle T or the real line R.

In the case L= T the 2 × 2 matrix investigated is a non-singular matrix of the following type

G(t) =
(

1 b(t)
c(t) d(t)

)
, t ∈ T, (3.31)

satisfying the following conditions:

(i) b, c, d belong to the Wiener algebra W(T) of absolutely converging Fourier series on T;
(ii) b(t) = p(t)/q(t), where p ∈W+(T) (i.e. is a Fourier series with vanishing coefficients of

negative indices), and q is a polynomial q(t) =∏k
j=1(t − aj)mj with distinct zeros aj lying in

the unit disc, |aj|< 1.

In the case L= R, the Wiener algebra W(R) (and its subalgebras W+(R), W−(R)) of the
functions φ(λ), −∞<λ<+∞, are defined in the standard way

W(R) � φ(λ) = c +
∫+∞

−∞
ϕ(τ )eiλτdτ ,

W+(R) � φ(λ) = c +
∫+∞

0
ϕ(τ )eiλτdτ

and W−(R) � φ(λ) = c +
∫ 0

−∞
ϕ(τ )eiλτdτ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.32)

where c is an arbitrary complex constant and ϕ ∈ L1 on its domain of integration.
The matrix under consideration is the following:

G(t) =
(

a(t) b(t)
c(t) 1

)
, t ∈ R, (3.33)
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with the corresponding conditions

(i) a, b, c belong to the Wiener algebra W(R);
(ii) b(t) = p(t)/q(t), where p ∈W+(R), and q is a rational function q(t) =∏k

j=1((t − aj)/(t + iγj))mj

with distinct zeros aj laying in the upper half-plane, i.e. Im aj > 0, and γj > 0.

In [133], this algorithm is applied to the solution of two problems: (a) the factorization of
matrix (3.31) with ratio f (t) = p(t)/q(t) being meromorphically extended either inside the unit disc
or outside of it; (b) the factorization of the matrix (3.30) with q ∈W(T) and q2 being a rational
function free of zeros and poles on T.

(ii) Linear-fractional problem approach

In [134], a constructive method of factorization was proposed, based on the relation of the
homogeneous Riemann–Hilbert boundary value problem (2.15) and the so-called linear-fractional
problem.

Consider a homogeneous Riemann–Hilbert boundary value problem

W+(t) = G(t)W−(t), t ∈L, 0 ∈ intL, ∞ ∈ extL, (3.34)

with a non-singular Hölder continuous 2 × 2 matrix coefficient

G(t) =
(

g11(t) g12(t)
g21(t) g22(t)

)
. (3.35)

Denote by W+(z) = (w+
1 (z), w+

2 (z))T, W−(z) = (w−
1 (z), w−

2 (z))T the components of the solution to
(3.34) and introduce the following functions:

Φ+(z) = w+
2 (z)

w+
1 (z)

and Φ−(z) = w−
2 (z)

w−
1 (z)

. (3.36)

These functions are the components of a piece-wise meromorphic solution to a so-called linear-
fractional boundary value problem

g11(t)Φ+(t) − g22(t)Φ−(t) + g12(t)Φ+(t)Φ−(t) = g21(t). (3.37)

The approach in [134] (see also [135]) is based on different possibilities arising from the study
of solvability and representation of the solution to (3.37). These situations are listed in [134,135].
The representation of the solution to the corresponding factorization problem is given for each
special case. In [136], this approach is applied to the study of the Riemann–Hilbert boundary
value problem with a 3 × 3 matrix coefficient G(t).

(h) Rawlins–Williams class of matrix Wiener–Hopf problems
In acoustics and electromagnetism, the matrix kernel A(α) sometimes is a function only of
γ (α) = (k2 − α2)1/2. This motivates the class considered by Rawlins & Williams in [137]

A(α) =
(

F(γ ) G(γ )F(γ )
H(γ ) −G(γ )H(γ )

)
, (3.38)

where F, G and H are analytic functions (except possibly when γ = 0).
The way that this class of matrices is solved is by first transforming them to a matrix Riemann–

Hilbert problem on a half line (along a cut emanating from one of the branch-points of γ (α)). It
then transpires that this system can be decoupled into two scalar Riemann–Hilbert problems by
Hurd’s method [128], which can be solved explicitly.
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Another class of matrices was considered by Jones in [138]:

C =
(

f ge1
ge2 f − 2ge3

)
, (3.39)

where f (s), g(s) are analytic in the strip and e1, e2 and e3 are analytic functions in the whole complex
plane. A commutative factorization is constructed. There are also extensions to non-commutative
factorization by pre-multiplying by analytic matrices. Although it is not obvious, the class of
matrices considered by Rawlins and Williams can, in fact, be reduced to Jones’ class [138].

For a review of other classes which originate from applications [49].

4. Approximate procedures
Owing to the lack of a general exact constructive factorization procedure, there has been
considerable interest in approximate methods for Wiener–Hopf matrix factorization. Numerous
approaches have been proposed in the literature [41,68,93,114,127,131,139–148]. We describe
some of the more widely applicable classes here. Most approximate constructive methods rely
on approximating a Wiener–Hopf problem by a class where exact constructive methods exist.
There are also methods which reduce the Wiener–Hopf problem to a different equation such as
Fredholm integral equation [94,95,140] but this is outside the scope of this survey.

Suppose there are two functions

K(α) = K−(α)K+(α) and K̄(α) = K̄−(α)K̄+(α). (4.1)

Question 4.1. Is it true that if K̄(α) approximates K(α) than K̄±(α) approximates K±(α)?
As stated the question is too vague to have a definitive answer, but nevertheless this kind

of question motivates the search for approximate solutions. For scalar functions and Lp norm
if |K(α) − K̄(α)|p ≤ εp there are bounds for |K±(α) − K̄±(α)|p in terms of the εp and computable
quantities of K(α) [141]. The general answer for a matrix valued function K(α) is negative. This
can be the case due to a choice of norm or it can be due to an instability.

The simplest example of instability is obtained by mapping an example [9] from the unit circle
to the real line. Consider a diagonal matrix function with partial indices [1, −1].⎛

⎜⎜⎝
t − i
t + i

0

0
t + i
t − i

⎞
⎟⎟⎠= I

⎛
⎜⎜⎝

t − i
t + i

0

0
t + i
t − i

⎞
⎟⎟⎠ I. (4.2)

Perturbing the matrix we have⎛
⎜⎜⎝

t − i
t + i

0

ε
t + i
t − i

⎞
⎟⎟⎠=

⎛
⎜⎝1

t − i
t + i

0 ε

⎞
⎟⎠ I

⎛
⎜⎝0 −1/ε

1
t + i
ε(t − i)

⎞
⎟⎠ . (4.3)

This example demonstrates that a small perturbation can change the factors by an arbitrary
amount and can also change the partial indices (from {1, −1} to {0, 0}). This is significant because
the partial indices are uniquely defined. Note that the sum of the partial indices remains the
same; this is true in general, by considering the determinant of both sides it is reduced to scalar
factorization. For scalar factorization of function f the index is the winding number of the curve
(Re f (t), Im f (t)) t ∈ R hence is stable under perturbations. The partial indices are linked to the
growth at infinity of the Wiener–Hopf factorization [149].

The following surprising theorem provides the necessary and sufficient conditions for the
partial indexes to remain the same under small enough perturbations.

Theorem 4.1 (Gohberg–Krein [7]). The system κ1 ≥ · · · ≥ κn of partial indices is stable if and only if:

κ1 − κn ≤ 1. (4.4)
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In fact, this condition is enough to ensure the stability of factors in the Wiener norm.

Theorem 4.2 (Shubin [7]). Assume the matrix function G to have a Wiener–Hopf factorization and the
tuple of its partial indices to be stable. Then, for every ε > 0 there exists a δ > 0 such that, for ||F − G||< δ,
the matrix function F admits a factorization in which ||F± − G±||< ε.

An obstacle in using this result in applications is that one cannot in general determine the
partial indices without constructing the factorization. Thus, in general it is impossible to prove
that some approximate factorization of a matrix function is a good approximation. There are
some specific results for Khrapkov–Daniele matrix functions [148] and for small perturbations
to the identity matrix [145]. This will be discussed in more detail in the sections below.
Interestingly, all three methods below reduce the matrix factorization problem to a series of scalar
additive Wiener–Hopf splittings. This, in some sense, avoids problems with instabilities of matrix
factorization with unstable indices.

(a) Rational approximation
It is attractive to consider a rational matrix K̄(α) in (4.1) since its factorization can be computed
exactly (§3(a)), without the need for a Cauchy-type integral (2.12) representation. Approximate
rational solutions were considered early on [150] but they were mainly constructed using ad
hoc observations ([17], ch. 4.5). In 2000, a systematic way of approximating the Wiener–Hopf
equations was developed using a two point Padé approximation (the two points being 0 and ∞
on the real axis) [151]. The power of the method came from the fact that not the whole matrix was
approximated but only specific parts and then pole removal method was applied (§3(a)). Since
then it proved popular and found applications in different branches of mathematics [93,152,153]
including finance [51].

From the last paragraph, it is clear that it is desirable to approximate a matrix function, the
whole or various parts, by rational functions K̄(α). A natural question to ask: which K(α) can
be approximated by rational matrix functions K̄(α)? For this question, we have to specify in
what sense are K(α) and K̄(α) close. It is not an easy task to decide what the correct norm is
to consider, but good candidates are Lp norms or Sobolev spaces [154]. We will review some
known facts about approximation by rational functions, mostly by Padé approximants. Functions
with branch cuts (multi-valued) cannot be ‘fully’ approximated by rational functions which are
single-valued. But for a function analytic at infinity the next best result is true, the maximal
domain of K(α) where the function has a single-valued branch is the domain of convergence
of the diagonal Padé approximants for K(α). In fact, most of the poles tend to the boundary of
the domain of convergence and lie on the system of cuts that makes the function single-valued
[155,156]. Numerical experimentation has confirmed this holds true for even small degree of
rational approximation and, what is more, often the interlacing of poles and zeros occurs on
the branch cut [141,157]. This simulates the behaviour of the branch cut; the values on either
side of the cut made by poles and zeros has a jump that tends to the exact value as the rational
approximation degree is increased [158].

The practical implementation of the rational approximations has now been well developed.
In particular there are numerous algorithms on Chebfun (Matlab). One of the latest additions in
Chebfun is the very fast AAA rational approximation [159]. It is also useful to construct a mapping
of the real line to the unit interval since most existing algorithms are for bounded intervals [141].
The main difficulty with rational approximations arise when a branch cut goes though infinity
as in γ (α) =

√
α2 − k2 (which is frequently encountered in diffraction problems). The problem

arises because the real line crosses the branch cut at infinity. Hence rational approximation
can no longer be accurate on the whole contour (the real line). It can still be very accurate on
a bounded domain and hence rational approximations of γ (α) are used in acoustics far-field
calculations [144].
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(b) Asymptotic Wiener–Hopf factorization
Let M be a matrix function analytic around the real axis R. Let I be the identity matrix and ε ∈ [0, 1].
We can write

M(x) = I + εG(x), (4.5)

and then the asymptotic algorithm produces a good approximate Wiener–Hopf factorization if
εG(x) is small compared to I [145,147].

Asymptotic Wiener–Hopf factorization looks for an approximate factorization of the form

I + εG ≈
(

I +
∑
i∈N∗

εiG−
i−1

)(
I +

∑
i∈N∗

εiG+
i−1

)
. (4.6)

We define the error �j at a step j as the term neglected in the approximation:

�j = I + εG − S−
j S+

j , where S−
j =I +

j∑
i=1

εi G−
i−1, and S+

j =I +
j∑

i=1

εi G+
i−1. (4.7)

For the first step, we are looking for G−
0 and G+

0 , respectively, analytic on the lower half-plane
and the upper half-plane, so that

I + εG ≈ (I + εG−
0 )(I + εG+

0 ),

= I + ε(G−
0 + G+

0 ) + ε2(G−
0 G+

0 ).

Hence, at the first order of ε, we have the Wiener–Hopf additive splitting:

G = G−
0 + G+

0 . (4.8)

The error is
�1 = (I + εG) − (I + εG−

0 )(I + εG+
0 ) = ε2G−

0 G+
0 . (4.9)

For the second order of ε:

I + εG ≈ (I + εG−
0 + ε2G−

1 )(I + εG+
0 + ε2G+

1 ),

= I + ε(G−
0 + G+

0 ) + ε2(G−
1 + G+

1 + G−
0 G+

0 ) + ε3(G−
1 G+

0 + G−
0 G+

1 ) + ε4G−
1 G+

1 ,

where the term in ε2 should be equal to zero. Therefore, we can deduce G−
1 , G+

1 and thus �2:

G1 = G−
1 + G+

1 = −G−
0 G+

0 , �2 = ε3(G−
1 G+

0 + G−
0 G+

1 ) + ε4 G−
1 G+

1 . (4.10)

In the same manner, arbitrary order approximations are constructed and, under some conditions,
its convergence can be established [145] and used in [62] for the factorization on the unit circle.
Furthermore, this technique can be extended for the case of a set of stable partial indices [41] or,
in some cases, even for unstable sets [160].

(c) Neglecting coupling and iteration
The main difficulty in solving matrix Wiener–Hopf equation arises from the fact that there are
coupled scalar equations. In some situations the coupling is small and a reasonable approximation
can be obtained by neglecting it. In other words the original matrix is close to being diagonal or
triangular. More often the coupling is too strong to give a desired approximation see Section
4.4 in [17] or [161], nevertheless the same ideas can still be used. One way is through the
use of iterative methods, which in the context of Wiener–Hopf equations were proposed early
on [162,163]. One of the reasons that they did not gain popularity in the past is that they
are computationally intensive. But recent advances in computing Cauchy-type transforms, and
significant computational resource, have now made it a practical approach [96,164,165]. In
particular, it has been applied to a class of triangular matrix functions containing exponential
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factors [166]. The aim is to find functionsΦ(0)
− (α),Φ(L)

− (α),Ψ (0)
+ (α) andΨ (L)

+ (α) analytic in respective
half-planes, satisfying the following relationship:(

Φ
(0)
− (α)

Φ
(L)
− (α)

)
=
(

A(α) B(α)eiαL

C(α)e−iαL 0

)(
Ψ

(0)
+ (α)

Ψ
(L)
+ (α)

)
+
(

f1(α)

f2(α)

)
, (4.11)

on the strip H. The functions A(α), B(α) and C(α) are known and L is a positive constant. The
method has found applications in aeroacoustics [167], crack propagation problems [168]. It has
been extended to n-dimensional matrix problems and applied to scattering from multiple co-
linear plates [169]. We would also like to note that there is a similarity of the above iteration
methods with a concept in diffraction called the Schwarzschild series [170–173]. This illustrates
a useful viewpoint: many problems which give rise to a matrix Wiener–Hopf equation can be
thought of as an interaction of a number of distinct problems, each of which would lead to a
scalar Wiener–Hopf equation [174].

5. Related methods and open problems
To solve Wiener–Hopf-type problems which arise in applications, the following are desirable

(i) A systematic way of determining if the posed problem is of Wiener–Hopf-type and has a
unique solution.

(ii) A justified and executable algorithm capable of verifying whether a given matrix
possesses a canonical factorization (all partial indices are equal to zero) or not.

(iii) A routine method of deriving and transforming the original problem into a Wiener–Hopf
equation with regularized matrix kernel (allowing canonical factorization).

(iv) Criteria for determining which class of matrix Wiener–Hopf equation the given equation
belongs to.

(v) A unified constructive method for an exact or an approximate factorization.

For problems of scalar Wiener–Hopf-type, the above points can be considered relatively
complete. In the case of a classical matrix Wiener–Hopf equations the first one is straightforward
while the remaining points continue to offer future avenues of research. It is possible to develop
alternative methods for solving equations of Wiener–Hopf-type, for example based on Fredholm
integral equation theory [140,175,176], and also more theoretical operator based approaches to
convolution integral equations [154,177].

There are equations of Wiener–Hopf type which have not been reviewed here. For example,
PDEs on wedge domains are not immediately in a standard class, but can be stated as generalized
Wiener–Hopf equations if appropriate transformations/mapping are considered [178,179]. The
difficulty with wedge domains is that the Fourier transform is not the natural operator to use,
hence a mapping is required. Alternatively, the Mellin transform [180] could be employed if the
respective differential operators are of the same homogeneity, and a combination of the Mellin
and Fourier transform could be used for multilayered-multiwedged domains [28,181,182]. There
is also a link to the unified transform method which provides a systematic way of deriving a
natural transform for some polygonal domains [71]. A natural but difficult generalization is to
consider (1.1) in more variables (a double integral) [183,184] leading to interesting Wiener–Hopf
related methods in multi-variate complex analysis [185,186]. A different direction is when the
kernel (1.1) has support on the half-line but is not of convolution type (the equation is referred to
as being of Hammerstein type) [187]. There is also a wealth of literature on spectral properties of
Toeplitz matrices/operators [188–191] which is a related topic but outside the scope of this review.

Interest in Wiener–Hopf techniques has been steady ever since the 1970s, judging by the
number of papers containing ‘Wiener–Hopf’ on mathscinet, with a total around 3000 to date (it
is likely to be a significant underestimate since many of the references for this review either do
not contain ‘Wiener–Hopf’ in the title, or are published in engineering and physics journals).
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The related Riemann–Hilbert boundary value method has also been popular with around 4,600
publications; with a small but steady increase in number of publication each year overall. The
Wiener–Hopf method could be viewed through many lenses, has many related problems, arises
in numerous applications and still has many interesting open problems. It can be expected that
further work in coming years will resolve some of the long-standing questions related to, and
limitations of, the Wiener–Hopf method, and hence extend its relevance and applicability still
further.
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