
Wave optics of quantum gravity for massive

particles
July 20, 2020

S.L. Cherkas† and V.L. Kalashnikov‡
† Institute for Nuclear Problems, Bobruiskaya 11, Minsk 220006, Belarus
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Abstract. Effects of the quantum gravity under Minkowski space-time background

are considered. It is shown that despite the absence of the complete theory of

quantum gravity, some concrete predictions could be made for the influence of the

quantum gravitational fluctuations on the propagation of the massive particles. We

demonstrate that although the gravitational potential fluctuations do not produce

particle scattering, they cause decoherence of the matter waves due to off-shell effects.

For point-like massive particles of the Planck mass order, the effect is considerable.

However, this type of decoherence is beyond the measurable possibility for the real

particles of the finite size.

1. Introduction

It is widely stated that the complete theory of quantum gravity (QG) is not built

yet. Indeed, it is true. At the same time, it is usually implied that the quantum

gravitational fluctuations of space-time should be small. However, within the theory

of general relativity (GR), one could hardly state that the quantum gravitational

fluctuations are small because the coordinates’ transformation to the reference frame

where an observer has a highly oscillating position would result in substantial quantum

gravitational fluctuations. Moreover, a number of real particles will be created from a

vacuum in such a reference frame [1].

The situation changes cardinally when some preferred system of reference exists.

For instance, the cosmic microwave background (CMB) defines the reference frame where

CMB dipole anisotropy is absent [2]. That suggests considering all the phenomena in

this particular frame. However, the CMB alone is not sufficient for determining the

reference frame uniquely.

Another landmark is the vacuum energy problem insisting and specifying a class of

permitted metrics [3–5]. As shown, a conformally-unimodular gauge [3] allows extending

the GR to some theory admitting a Hamiltonian constraint satisfied up to some constant

[3]. That explains why the main part of vacuum energy ρvac ∼M4
p does not contribute

to gravity [5], i.e., does not lead to the very fast universe expansion.
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Observation of the QG effects in table-top, the accelerator experiments or

astrophysics is a dream of the several physicist generations [6–13]. Here we will consider

the simplest vacuum model as a medium with the stochastic gravitational potential [14]

and consider propagating the massive particles through it.

2. From GR to the gauge violating theory of gravity

In GR, any spatially uniform energy density (including that of zero-point fluctuations of

the quantum fields) causes the expansion of the universe. Using the Planck level of the

ultra-violet (UV) cutoff of momentum results in the Planckian vacuum energy density

ρvac ∼M4
p [15], which must lead to the universe expansion with the Planckian rate [16].

In this sense, because such a fast expansion is not experimentally visible, the vacuum

energy problem is an observational fact [5]. One of the obvious solutions is to build

a theory of gravity, allowing an arbitrarily reference level of energy density. One such

theory has long been known. That is the unimodular gravity [17–21], which admits an

arbitrary cosmological constant. However, under using the UV comoving momentums

cutoff, the vacuum energy density scales with time as radiation [5, 22], but not as the

cosmological constant.

Another theory [3] could also lead to Friedmann’s equation defined up to some

arbitrary constant, but this constant corresponds to the invisible radiation and can

compensate the vacuum energy. This five-vector theory of gravity (FVT) [3] assumes

the gauge invariance violation of GR by constraining the class of all possible metrics

in varying the standard Einstein-Hilbert action. One has to vary not over all possible

space-time metrics gµν , but over some class of conformally-unimodular metrics

ds2 ≡ gµνdx
µdxν = a2 (1− ∂mPm)2 dη2 − γij(dxi +N idη)(dxj +N jdη), (1)

where xµ = {η,x}, η is a conformal time, γij is a spatial metric, a = γ1/6 is a locally

defined scale factor, and γ = det γij. The spatial part of the interval (1) reads as

dl2 ≡ γijdx
idxj = a2(η,x)γ̃ijdx

idxj, (2)

where γ̃ij = γij/a
2 is a matrix with the unit determinant.

The interval (1) is similar formally to the ADM one [23], but with the lapse function

defined as N = a(1 − ∂mP
m), where Pm is a three-dimensional vector, and ∂m is a

conventional partial derivative. Finally, restrictions ∂n(∂mN
m) = 0 and ∂n(∂mP

m) = 0

arise on the Lagrange multipliers N and P in FVT. The HamiltonianH and momentum

Pi constraints in the particular gauge P i = 0, N i = 0 obey the constraint evolution

equation [3]:

∂ηH = ∂i
(
γ̃ijPj

)
, (3)

∂ηPi =
1

3
∂iH, (4)

which admits adding of some constant to H. Thus, the constraint H is not necessarily

to be zero, but H = const is also allowed.
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3. Perturbations under Minkowski background

Here we will consider an empty space-time filled only by vacuum and taking into account

its quantum properties. The well-known solution for an empty universe was found by

Milne [24]. Although Milne himself does not use GR, from the point of GR his universe

represents closed empty universe expanding linearly in cosmic time. Consideration of

the mean vacuum energy density and pressure in the framework of FVT gives a a flat

universe, which has a Milne’s-like expansion stage [4, 25, 26] changed by the accelerated

expansion.

Below, the scalar perturbations of the metric will be considered, which look in the

conformally-unimodular frame as [28]

ds2 = a(η,x)2

(
dη2 −

((
1 +

1

3

3∑
m=1

∂2
mF (η,x)

)
δij − ∂i∂jF (η,x)

)
dxidxj

)
, (5)

where the perturbations of the locally defined scale factor

a(η,x) = eα(η)(1 + Φ(η,x)), (6)

are expressed through a gravitational potential Φ. A stress-energy tensor could be

written in the hydrodynamic approximation [2]

Tµν = (p+ ρ)uµuν − p gµν . (7)

The perturbations of the energy density ρ(η,x) = ρv + δρ(η,x) and pressure p(η,x) =

pv + δp(η,x) will be considered around the vacuum mean values, where the index v will

denote an uniform component of the vacuum energy density and pressure.

The zero-order equations for a flat universe take the form [4, 25, 26]

M−2
p e4αρv −

1

2
e2αα′2 = const, (8)

α′′ + α′2 = M−2
p e2α(ρv − 3pv), (9)

where α(η) = log a(η). Here and everywhere further, the system of units ~ = c = 1 is

used as well as the reduced Planck mass Mp =
√

3
4πG

is implied. According to FVT [3],

the first Friedmann equation (8) is satisfied up to some constant, and the main parts of

the vacuum energy density and pressure

ρv ≈ (Nboson −Nferm)
k4
max

16π2a4
, (10)

pv =
1

3
ρv (11)

do not contribute to the universe expansion. In the formula (10), the UV cut-off and

the number of bosonic and fermionic degrees of freedom of the quantum fields appear

because the zero-point stress-energy tensor is an additive quantity [22]. Here, we do

not consider the supersymmetry hypotheses [27] due to the absence of evidence of the

supersymmetric particles to date.

Other contributors to the vacuum energy density are the terms depending on

the derivatives of the universe expansion rate [4, 26]. They have the right order of
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ρv ∼ M2
pH

2, where H is the Hubble constant, and allow explaining the accelerated

expansion of the universe. Then, the energy density and pressure are [4, 26]:

ρv =
a′2

2a6
M2

p (2 +Nsc)S0, pv =
M2

p (2 +Nsc)S0

a6

(
1

2
a′2 − 1

3
a′′a

)
, (12)

where, S0 = k2
max

8π2M2
p
. Eqs. (12) include the number of minimally coupled scalar fields Nsc

plus two, because the gravitational waves give two additional degrees of freedom [26],

whereas massless fermions and photons do not contribute to (12) [26].

The residual vacuum energy density and pressure (12) lead to the accelerated

universe expansion, which allows finding a momentum UV cut off

kmax ≈
12Mp√
2 +Nsc

. (13)

from the experimental value of the universe decceleration parameter [4, 5, 26].

In this paper, we are interested in the local properties of a vacuum. Without

including a real matter, if the constant in Eq. (8) compensates vacuum energy (10)

exactly, one comes to the static Minkowski space-time. Further, we will consider the

perturbations [28] under this background and set α(η) = 0 in (6).

Generally, a vacuum can be considered as some fluid, i.e., “ether” [4], but with

some stochastic properties among the elastic ones. Let us return to the stress-energy

tensor (7) and introduce other variables

℘(η,x) = a4(η,x)ρ(η,x), (14)

Π(η,x) = a4(η,x)p(η,x) (15)

for the reasons which will be explained below. The perturbations around the uniform

values can be written now as ℘(η,x) = ρv + δ℘(η,x), Π(η,x) = pv + δΠ(η,x). The

vacuum-ether 4-velocity u is represented in the form of

uµ = {(1− Φ(η,x)),∇ v(η,x)

℘(η,x) + Π(η,x)
} ≈ {(1− Φ(η,x)),∇ v(η,x)

ρv + pv
}, (16)

where v(η,x) is a scalar function. Expanding all perturbations into the Fourier series

δ℘(η,x) =
∑

k δ℘k(η)eikx... etc. results in the equations for the perturbations:

−6Φ̂′k + k2F̂ ′k +
18

M2
p

v̂k = 0, (17)

−6k2Φ̂k + k4F̂k +
18

M2
p

δ℘̂k = 0, (18)

−12Φ̂k − 3F̂ ′′k + k2F̂k = 0, (19)

−9Φ̂′′k − 9k2Φ̂k + k4F̂k −
9

M2
p

(
3δΠ̂k − δ℘̂k

)
= 0, (20)

−δ℘̂′k + k2v̂k = 0, (21)

δΠ̂k + v̂′k = 0. (22)
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It is remarkable that the choice of the variables (14), (15), (16) means that the values ρv
and pv do not appear in the system (17)-(22). The second point is that the continuity

and the Newton second law equations (21), (22) do not contain metric perturbation.

From now we will begin to consider the perturbation in Eqs. (17)-(22) as operators by

writing a “hat” under every quantity. Here, we do not suppose the strong nonlinearity

[29] and assume a smallness of the quantum fluctuations of space-time in this particular

conformally unimodular metric. Let us emphasize that the system (17)-(22) for a

perturbation evolution is exact in the first order on perturbations. However, it is

not closed. To obtain a closed system, one needs, for instance, to specify the sound

speed for a perturbation of pressure. Still, alternatively, as an approximation, we

could strictly calculate pressure and energy density by using the field theory under

unperturbed Minkowski space-time. Expressing Fk from Eq. (18) and substituting it

into Eq. (20) leads to

Φ̂′′k +
1

3
k2Φ̂k +

1

M2
p

(
3δΠ̂k + δ℘̂k

)
= 0. (23)

Although, generally, a gravity causing an arbitrary curved space-time background does

not allow a well-defined and covariant vacuum state [1], we will approximately consider

an operator 3δΠ̂k + δ℘̂k by using the creation and annihilation operators under the

Minkowski space-time background. Such an approximation allows closing the system

(17)-(22). Nevertheless, let us point out the difference between the quantum field theory

(QFT) and QG. As is shown in Fig.1, a test particle moves straightforwardly in QFT.

In a framework of the QG [30], the particle has to undergo interaction with ether.

3.1. Quantum fields as a source for energy density and pressure perturbations

Let us consider a single scalar field as an example of a quantum field. Energy density

and pressure of the scalar field in the pure Minkowski space-time (without metric

perturbation) have the form [22]

p̂(η,x) =
ϕ̂′2

2
− (∇ϕ̂)2

6
, (24)

ρ̂(η,x) =
ϕ̂′2

2
+

(∇ϕ̂)2

2
. (25)

All the quantities may be expanded into the Fourier series ϕ̂(η,x) =
∑

k φ̂k(η)eikx,

p̂(η,x) =
∑

k p̂k(η)eikx, where p̂k(η) =
∫
p̂(η,x)e−ikxdx, etc. For k 6= 0, the

approximate identifying δΠ̂k = p̂k and δ℘̂k = ρ̂k results in

δΠ̂k =
∑
q

1

2
φ̂+′
q φ̂
′
q+k −

1

6
(q + k)q φ̂+

q φ̂q+k, (26)

δ℘̂k =
∑
q

1

2
φ̂+′
q φ̂
′
q+k +

1

2
(q + k)q φ̂+

q φ̂q+k, (27)

so that the quantity 3δΠ̂k + δ℘̂k from Eq. (23) is reduced to

3δΠ̂k + δ℘̂k = 2
∑
q

φ̂+′
q φ̂
′
q+k. (28)
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Figure 1. Illustration of vacuum influence to the particle propagation a) in the QFT,

where the vacuum loops renormalize mass and charge of a particle, but do not prevent

its free motion b) and in the QG, where the space is filled by ether due to the absence

of a vacuum state.

Writing quantized field explicitly with creation and annihilation operators [1]

φ̂k(η) =
1√
2ωk

(
â+
−ke

iωkη + âke
−iωkη

)
, (29)

allows obtaining from the Eqs. (28) and (29)

3 δΠ̂k + δ℘̂k =
∑
q

√
ωqω|q+k|

(
â−qâ+

−q−ke
i(ω|q+k|−ωq)η + â+

q âq+ke
i(ωq−ω|q+k|)η

− â−qâq+ke
−i(ω|q+k|+ωq)η − â+

q â+
−q−ke

i(ω|q+k|+ωq)η
)
, (30)

where for a massless scalar field ωk = |k|. As is seen from Eq. (30), the perturbations

have the general form:

3 δΠ̂k + δ℘̂k =
∑
m

P̂mke
iΩmkη, (31)

where the frequencies Ωmk take the values of ωq − ω|q+k|, −ωq + ω|q+k|, ωq + ω|q+k| and

−ωq − ω|q+k|. That allows finding the solution of Eq. (23) as

Φ̂k(η) = − 1

M2
p

∑
m

P̂mke
iΩmkη

Ω2
mk − k2/3

. (32)

Using Eqs. (30) and (32), the final expression for the metric perturbation Φ̂k(η)

acquires the form

Φ̂k(η) =
1

M2
p

∑
q

√
ωqω|q+k|

(
1

(ω|q+k| + ωq)2 − k2/3

(
â−qâq+ke

−i(ω|q+k|+ωq)η +
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â+
q â+
−q−ke

i(ω|q+k|+ωq)η
)
− 1

(ω|q+k| − ωq)2 − k2/3

(
â−qâ+

−q−ke
i(ω|q+k|−ωq)η +

â+
q âq+ke

i(ωq−ω|q+k|)η
))

. (33)

The most interesting parameter is a correlator:

< 0|Φ̂(η,x)Φ̂(τ,x′)|0 >= χ(τ − η, |x− x′|), χ(τ − η, x) =
∑
k

S(τ − η, k)eikx, (34)

which determines fluctuations of the gravitational potential Φ̂(η, r) in a vacuum state

defined for the creation and annihilation operators. An explicit formula for S(η − τ, k)

looks as

S(τ − η, k) =< 0|Φ̂+
k (η)Φ̂k(τ)|0 >=

18

(2π)3M4
p

∫
ei(τ−η)(ωq+ωq+k)ωqωk+qd

3q

(k2 − 3(ωq + ωk+q)2)2 , (35)

where the summation over q has been changed by the integration as
∑

q →
1

(2π)3

∫
d3q.

To calculate this integral, the spherical coordinates can be applied, in which ωk+q =√
k2 + 2kq cos θ + q2, q(q + k) = q2 + kq cos θ, d3q = 2πq2dq sin θdθ. It is more

convenient to calculate a spectral function S̃(ω, q) of the correlator (35)

S̃(ω, k) =
1

2π

∫
S(η, k)e−iωηdη =

18

(2π)3M4
p

∫
q<kmax

δ(ωq + ωq+k − ω)ωqωk+qd
3q

(k2 − 3(ωq + ωk+q)2)2 ={
1

160π2Mp
4

(
5 + 4k4

(k2−3ω2)2

)
, q < ω < 2kmax

0, otherwise
≈

{
1

32π2Mp
4 , q < ω < 2kmax

0, otherwise.
(36)

Taking into account that the main contribution originates from large q, one could

also calculate simultaneous correlator

< 0|Φ̂(η,x)Φ̂(η,x′)|0 >≈ kmax
4(2π)2M4

p

δ(x− x′), (37)

which corresponds to the contact interaction and was used in [31]. However, more careful

analysis based on Appendix B shows that using of (37) is insufficient and the spectral

function (36) of the non-simultaneous correlator (34) plays a role.

4. Massive particle in a random medium

4.1. Point particles

Let us first consider nonrelativistic point massive particles propagating among the

fluctuations of the gravitational potential [32]. The evolution of a system could be

described by the Fokker-Plank type equation given in Appendix B

∂ηfk(p)+i(Ep+k/2−Ep−k/2)fk(p) = −iK1 k
∂fk
∂p

+2iK2 kp∆pfk(p)+2iK3 pikj
∂2fk
∂pj∂pi

, (38)

where ∆p is a Laplacian over p, the constants K1 = m2Nall

32π2M4
p
K̃1, K2 = m2Nall

32π2M4
p
K̃2, ...,

and K̃1, K̃2, K̃3 are given in Appendix B. In the difference from (10), the quantities

Ki contain sum Nall = Nboson +Nferm of the bosonic and fermionic degrees of freedom,
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because correlator (35) is the second order on gravitational potential Φ, whereas Φ is

proportional to the energy density and pressure according to Eq. (23).

It is suggested that the Fokker-Planck equation is applicable for particles of

large mass when the momentum of a particle is larger than the maximal momentum

transferred, which is considered to be of the order of Mp for point-like particle. Since

the Migdal equation (B.11) is too complicated for solution, the Fokker-Planck equation

could be used to obtain an estimation of decoherence for particles of a smaller mass.

Due to the smallness of the right-hand side of (38), one needs to find a solution only

in the first order on the constants K1, K2, K3. For this aim, it is sufficient to substitute

approximate solution (A.4) into the right-hand side of (38) and then solve it. This gives

fk(p, η) ≈ f̃k(p, η)

(
1 +K1

(
−k

2η2

2m
+

2iηk(p− p0)

Γ2

)
+

K2

(2ηkp (−iΓ4k2η2 − 6Γ2m(k(p− p0)η + 3im) + 12im2(p− p0)2)

3Γ4m2

)
+

K3

(
−

2η
(
η
(
−(kp0)(kp) + (kp)2 + k2(p2 − pp0)

)
+ 2imkp

)
Γ2m

+

8iη(kp− kp0)(p2 − p0p)

Γ4
− 2i(kp)k2η3

3m2

))
, (39)

where f̃k(p, η) is given in Appendix A by (A.4). Substituting the solution (39) into

(A.5) gives in the first order on the constants K1, K2, K3∫
fk(p, η)f−k(p, η)d3pd3k ≈ 1− (3K1 + 3K2 + 6K3)

Γ2η2

m
. (40)

As one could see, the interaction with vacuum produces decoherence expressed in the

decreasing of a ”purity” (A.5) of a particle state according to (40). From Eq. (40), the

decoherence time is estimated as

tdec ≈
1

Γ

√
m

3K1 + 3K2 + 6K3

. (41)

It is convenient to measure the decoherence length Ldec = tdecV in terms of the

localization length 1/Γ of the wave packet (see Appendix A). Particle velocity is defined

as V = p0/m. Dependence of the constant
√

m
3K1+3K2+6K3

is shown in Fig. 2, where also

an approximate expression is shown. Using this approximate expression, one comes to

Ldec ≈ 4Mp

3
√

3Nallπm
V
Γ
. That is, a point-like particle of mass m ∼ 4MpV

3
√

3Nallπ
loses coherence

at a distance equal to the length of the wave packet 1/Γ. It should be noted that

interaction with the ether does not produce particle scattering because the momentum

distribution f0(p) does not change, nevertheless the decoherence arises.

4.2. Particles of a finite size

A real particle of a large mass has a finite size, which restricts momentums transferred

by the form factor. Approximately, momentum transferred q in the Eqs. (B.12), (B.13)

should be restricted by q < 1/d, where d is size of a particle. In this case, the calculation
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Figure 2. A dimensionless quantity determining decoherence time and length by Eq.

(41) (solid line), an approximation
√

m
3K1+3K2+6K3

∼ 4Mp

3
√
3Nallπm

(dashed line).

It is taken Nsc = 4 and Nall = 126 in Eq. (13) for kmax.

of the integrals gives K1 = mNall

192π2(Mpd)4 , K2 = Nall

1200π2M4
pd

5 , K3 = Nall

2400π2M4
pd

5 . The main

contribution to the decoherence length for large mass particles originates from the

constant K1 and gives

Ldec ≈
V
Γ

√
m

3K1

≈ 8π(Mpd)2

√
Nall

V
Γ
. (42)

This quantity seems very large and unobservable in a matter-wave interferometry [33–

38], because increasing of the particle mass does not decrease decoherence length. On

the other hand, the large mass particles usually have internal degrees of freedom and

another decoherence mechanisms [39–46] related with these internal degrees of freedom

works. Also, a particle spin could be considered as an internal degree of freedom and,

thereby, produce decoherence [47, 48].

It should also be noted that another branch of combining gravity and quantum

mechanics exists, namely, reduction of the wave function due to gravitational interaction

[49]. That is beyond an “usual” QG and the content of this paper.

5. Discussion and conclusion

The QG must produce a considerable decoherence effect for a pure problem formulated

for the point-like massive particles. Interestingly, this effect originates not due to the

on-shell multiple scattering [50, 51], forbidden by the energy conservation, but from the

off-shell effects.

For the real particles of finite size, the form factor restricts the momentum

transferred. That reduces the effect of QG decoherence to an unobservable level. This
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QG decoherence could not compete with the decoherence arising from the interaction

of the internal degrees of freedom of a composite particle with the gravitational field.

A general remark about the decoherence should also be made. From the point

of quantum gravity, the universe as a whole exists in a single quantum state [52] and

has zero entropy. Consequently, one could not consider a massive particle as completely

isolated because it is always embedded into the general quantum state. Thus, any object

does not lose its quantum properties but becomes more entangled with the universe’s

general quantum state.

It is of interest to analyze QG vacuum effects on the propagation of high energy

gamma quanta [53, 54] in the universe. We plan to perform this investigation in the

nearest future because the preliminary analysis [31] based on a simultaneous correlator

of the gravitational potential is insufficient.
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Appendix A. Quantum mechanical evolution of the wave packet

A momentum wave packet of a freely moving particle can be written as

ψ(p, t) = ψ0(p)e−i
p2

2m
t, (A.1)

because it obeys the Schrödinger equation

i
∂ψ

∂t
=

p2

2m
ψ. (A.2)

The function fk(p) corresponding to this pure quantum state is

fk(p) = ψ(p + k/2)ψ∗(p− k/2). (A.3)

For the Gaussian wave packet ψ(p, t) = π−3/4Γ−3/2 e−
(p−p0)2

2Γ2 −i p2

2m
t, the function fk(p)

takes the form of

fk(p) = π−3/2Γ−3 e−
(p−p0)2

Γ2 − k2

4Γ2−i
kp
m
t. (A.4)

For pure states, the density matrix ρpp′ = 1
(2π)3fp−p′

(
p′+p

2

)
satisfies [55]

∑
p′ ρpp′ρp′p′′ =

ρpp′ or
∑

p,p′ ρpp′ρp′p = 1. The last equality expressed in terms of the function fk(p) as∫
fk(p)f−k(p)d3pd3k = 1 (A.5)

could serve as a criterion of ”purity” of a system state.
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Appendix B. Wigner function evolution in a random medium

Let us consider an equation for the density matrix ℘

i∂η℘̂ = [Ĥ1 +H2 + V̂ , ℘̂], (B.1)

where operators Ĥ1, Ĥ2 describe the test particle and ether-medium, respectively

[51, 56, 57]. The operator V̂ (x) is an operator acting in a test particle Hilbert space

described by x, and, besides, acting to the vacuum-ether variables. We will omit hats

everywhere further in this Appendix. Let us introduce the density matrix of a particle

by the averaging ρ = Tr2℘, then it satisfies the equation

i∂ηρ = [H1, ρ] + Tr2[V, ℘]. (B.2)

The formal solution of Eq. (B.1) could be written as

℘(η) = −i
∫ η

−∞
ei(H1+H2)(τ−η)[V, ℘(τ)]e−i(H1+H2)(τ−η)dτ. (B.3)

This expression can be substituted into the Eq. (B.2) and one comes to

i∂ηρ = [H1, ρ]− iT r2

∫ η

−∞
[V, ei(H1+H2)(τ−η)[V, ℘(τ)]e−i(H1+H2)(τ−η)]dτ. (B.4)

For further approximation, the density matrix is factorized as ℘(τ) = ρ(τ)ρ2(τ). Then,

one has to take into account that the calculations of the correlator of the interaction in

the Sec. 3 have been performed in the Heisenberg picture over medium-ether variables.

Thus, we have to put interaction into the Heisenberg form using V = e−iH2τV (τ)eiH2τ ,

and, respectively bring the density matrix of a vacuum-medium into to the static form

by writing ρ2(τ) = e−iH2τρ2e
iH2τ . This leads to the equation

i∂ηρ = [H1, ρ]− iT r2

∫ η

−∞
[V (η), eiH1(τ−η)[V (τ), ρ(τ)ρ2]e−iH1(τ−η)]dτ. (B.5)

Else, in terms of the matrix elements corresponding to the plane waves [56, 57]:

i∂ηρpp′ = (Ep − Ep′)ρpp′ − i
∑
q,q′

∫ η

−∞

(
< Vp−q(η)Vq−q′(τ) > ρq′p′(τ)ei(Eq−Ep′ )(τ−η) −

< Vp−q(η)Vq′−p′(τ) > ρqq′(τ)ei(Eq−Ep′ )(τ−η)− < Vp−q(τ)Vq′−p′(η) > ρqq′(τ)ei(Ep−Eq′ )(τ−η) +

ρpq(τ) < Vq−q′(τ)Vq′−p′(η) > ei(Ep−Eq′ )(τ−η)
)
dτ, (B.6)

where an averaging <> implies

< Vq(η)Vp(τ) >= Tr2

(
Vq(η)Vp(τ)ρ2

)
≡< 0|Vq(η)Vp(τ)|0 > .

According to (35), (36), one has:

< 0|Vq′(η)Vq(τ)|0 >= m2δ−q′,qS(q, τ − η) = m2δ−q′,q

∫
S̃(q, ω)eiω(τ−η)dω. (B.7)

After changing the integration variable τ ′ = τ − η in the integral (B.6) and using

approximately

ρpq(η + τ ′) ≈ e−i(Ep+Eq)τ ′ρpq(η) (B.8)
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in the second-order on the interaction expression in the right-hand side of (B.6), we

come to the following equation:

i∂ηρpp′ = (Ep − Ep′)ρpp′ − im2
∑
q

∫ (
S̃(q, ω)

(
(∆(Ep+q − Ep + ω) +

∆(Ep′ − Ep′+q − ω))ρpp′(η)− (∆(ω − Ep′ + Ep′+q) +

∆(−ω + Ep − Ep+q))ρp+q,p′+q

)
dω, (B.9)

where

∆(ω) =

∫ 0

−∞
eiωτdτ = πδ(ω)− iP 1

ω
(B.10)

contains the Dirac δ-function and the main value generalized function P 1
ω

[58].

In terms of the Fourier transform of the Winger function [56] ρpp′ = fp−p′
(

p′+p
2

)
or fk(p) = ρp+k/2,p−k/2 Eq. (B.9) is written as

∂ηfk(p) + i(Ep+k/2 − Ep−k/2)fk(p) = m2
∑
q

∫
S̃(q, ω)

(
(∆(ω − Ep−k/2 + Ep−k/2+q) +

∆(−ω + Ep+k/2 − Ep+k/2+q))fk(p + q)− (∆(ω + Ep+k/2+q − Ep+k/2) +

∆(−ω + Ep−k/2 − Ep−k/2+q))fk(p)
)
d3q dω. (B.11)

Summation over q could be changed by the integration. Hence, the Dirac delta-functions

in (B.10) produce zero contribution to the integral. Actually, since the minimal value

of ω is restricted by q according to (36), the value ω + (p+q)2

2m
− p2

2m
> q + pq

m
+ q2 > 0

by the virtue of p = mV < m. Thus, only the second main value term in (B.10) gives

contribution.

In a diffusion approximation, one may expand fk(p+q)−fk(p) ≈ q ∂fk
∂p

+ 1
2
qiqj

∂2fk(p)
∂pi∂pj

,

and the following integrals arise∫
q<kmax

∫ 2kmax

q

(
q

ω + E(p + q)− E(p)
− q

ω + E(p′ + q)− E(p′)

)
dω d3q ≈

−(p− p′)K̃1(m, kmax) +O(p4), (B.12)

K̃1 =
4

3
m

(
kmax(3kmax + 4m)− 8k3/2

max

√
m arctan

(
1

2

√
kmax
m

)
+

8m2 ln

(
2m

kmax + 2m

))
,∫

q<kmax

∫ 2kmax

q

(
q ⊗ q

E(p + q)− E(p) + ω
− q ⊗ q

E(p′ + q)− E(p′) + ω

)
dω d3q ≈

(p2 − p′2)K̃2(m, kmax)I + (p⊗ p− p′ ⊗ p′)K̃3(m, kmax) +O(p4), (B.13)

K̃2 =
8

15
m

(
kmax

(
kmax

(
2kmaxm

kmax
2 + 6kmaxm+ 8m2

+ 3

)
− 10

√
kmaxm arctan

(
1

2

√
kmax
m

)
+ 8m

)
+

8m2

(
5 ln

(
2m

kmax + 2m

)
+ 6 arctanh

(
kmax

kmax + 4m

)))
, (B.14)
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K̃3 =
16

15
m

(
kmax

(
kmax

(
2kmaxm

kmax
2 + 6kmaxm+ 8m2

+ 3

)
− 10

√
mkmax arctan

(
1

2

√
kmax
m

)
+

8m

)
− 4m2

(
5 ln

(
2m

kmax + 2m

)
+ 18 arctanh

(
kmax

kmax + 4m

)))
. (B.15)

Finally, we have:

∂ηfk(p) + i
pk

m
fk(p) =

im2

32π2M4
p

(
−K̃1 k

∂fk(p)

∂p

+ 2K̃2 kp∆pfk(p) + 2 K̃3 pikj
∂2fk(p)

∂pj∂pi

)
. (B.16)
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