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Three years ago, our paper [1] has been published, where we advanced the idea of explaining
uantum phase effects for electric/magnetic dipoles, expressed as the sum of four terms [1,2]

δdipoles ≈
1
h̄c

∫
(m × E)·ds−

1
h̄c

∫
((p × B))·ds−

1
h̄c2

∫
(p · E) v ·ds−

1
h̄c2

∫
(m · B) v ·ds (1)

Eq. (11) of [1]) through the superposition of the corresponding quantum phases for point-like
harged particles. Hereinafter m (p) denotes the magnetic (electric) dipole moment, E(B) is the
lectric (magnetic) field, v is the velocity, and ds = vdt is the path element.
Developing this idea, we disclosed two new quantum phases for point-like charges – next

o the known electric and magnetic Aharonov–Bohm (A–B) phases [3] – which we named as
omplementary electric and magnetic A–B phases, correspondingly [1].
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Further on, we found that complementary A–B phases for electric charges can be described
ia fundamental equations of quantum mechanics only in the case [1], where we abandon the
ustomary definition of the momentum operator via the canonical momentum P̂c of a particle in
n EM field, i.e.

P̂c = p̂ +
eÂ
c

→ P̂c = −ih̄∇ (1)

(Eq. (30) of [1]), and adopt its new definition via the sum of the mechanical and interactional EM
momentum for a particle in an external EM field,

p̂ + P̂EM → P̂ = −ih̄∇ (2)

(Eq. (35) of [1]). The proposed redefinition of the momentum operator (2) has a number of important
implications, and their analysis essentially depends on the particular expression for the interactional
EM field momentum PEM for various physical problems (see, e.g., Ref. [3]).

Now, we would like to point out an unfortunate error committed in [1] under determination of
PEM for the system ‘‘point-like charged particle in an external EM field’’ as a function of the scalar
ϕ and vector A potentials of the external EM field.

Namely, the expression

PEM =
eA
c

+
veϕ
c2

+
ev (A · v)

c3
, (3)

btained in Ref. [1] see (Eq. (38) of [1]) must be corrected as

PEM =
eA
c

+
veϕ
c2

−
ev (A · v)

c3
. (3a)

Indeed, we start with the known expression for the interactional EM field momentum via the
Poynting vector [4]

PEM =
1

4πc

∫
V
(E × Be) dV +

1
4πc

∫
V
(Ee × B) dV (4)

Eq. (A.1) of [1]), where E (B) denotes the external electric (magnetic) field, while Ee (Be) stands for
he electric (magnetic) field of a charged particle. Then we obtain, respectively, the first and second
ntegrals on the rhs of Eq. (4) as follows:

1
4πc

∫
V
(E × Be) dV =

veϕ
c2

(5)

Eq. (A.7) of [1]), and
1

4πc

∫
V
(Ee × B) dV = −

1
4πc

∫
V
(A × (∇ × Ee)) dV +

eA
c

(6)

Eq. (A.11) of [1]). Further manipulations with the remaining integral on the rhs of Eq. (6) yield:

−
1

4πc

∫
V
(A × (∇ × Ee)) dV = −

ev (A · v)
c3

−
v

4πc2

∫
V
(A · ((v · ∇) Ee)) dV (7)

Eq. (A.20) of Ref. [1]), and we show in Ref. [1] that for the system ‘‘point-like charge in an external
M field’’, the second integral on the rhs of Eq. (7) vanishes. Hence, combining Eqs. (4)–(7), we
rrive at Eq. (3a), instead of the sign wise erroneous equation (3) reported in Ref. [1].
Therefore, in the Coulomb gauge, the corresponding Hamiltonian with the momentum operator

2) and the interactional EM field momentum (3a) takes the form

Ĥ =
(−ih̄∇−PEM )2

2M + eϕ = −
h̄2
2M∆+ eϕ −

eA·v
c −

eϕv2

c2
+

ev2(A·v)
c3

=

−
h̄2
2M∆+

(
1 −

v2

c2

) (
eϕ −

eA·v
c

) . (8)

The quantum phase of charged particle in an EM field is defined as [5]

δEM = −
1

∫ (
Ĥ − Ĥ0

)
dt, (9)
h̄
2
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where Ĥ0 = −
h̄2
2M∆ stands for the Hamiltonian of a particle outside an EM field. Substituting Eq. (8)

nto Eq. (9), we obtain the quantum phase of a charged particle in an EM field as follows:

δEM = −
1
h̄

∫
eϕdt +

1
h̄c

∫
eA · ds +

1
h̄c2

∫
eϕv · ds −

1
h̄c3

∫
e (A · v) v · ds, (10)

here we designated ds = vdt the element of the path of particle.
The first and the second terms on the rhs of Eq. (10) correspond to the known electric and mag-

etic A–B phases [3], while the third and the firth terms stand respectively for the complementary
lectric and complementary magnetic A–B phases.
The reported corrections do not influence the conclusions of Ref. [1] and open a way to some

ew insights in the physical meaning of quantum phases.
The obtained Eq. (10) allows presenting the resultant quantum phase of a charged particle in an

M field in general form,

δEM = −
1
h̄

(
1 −

v2

c2

)∫
eϕdt +

(
1 −

v2

c2

)
1
h̄c

∫
e (A · v) dt = −

1
h̄γ 2

∫
Lintdt =

1
h̄γ 2 Sint,

(11)

where we have used the equality ds=vdt, and designated

Lint = −eϕ +
e
c
A · v (12)

the component of the Lagrangian of a charged particle, responsible for its interaction with the EM
field. Then, we have used the definition of the interactional component of the action Sint =

∫
Lintdt

Hence, in the non-relativistic limit, where we can put γ≈1, the total phase of a charged particle
occurs proportional to the total action Stotal for a charged particle, which is composed as the sum
of the mechanical SM and the interactional field component Sint, i.e.,

δtotal =
1
h̄
(SM + Sint) =

1
h̄
Stotal. (13)

Thus, the known semi-classical limit for the wave function of a freely moving particle [5]

ψ = ψ0eiSM/h̄

keeps its shape for charged particle in an EM field, too, with the replacement of mechanical
component of action SM by the total action Stotal, i.e., ψ = ψ0eiStotal/h̄.

Next, we re-address Eq. (10) for the phase of a charged particle in an EM field and consider only
the velocity-dependent phase components expressed by the last three terms of this equation. Using
Eq. (3a), we can write for these phase components

δEM (v) =
1
h̄c

∫
eA · ds +

1
h̄c2

∫
eϕv · ds −

1
h̄c3

∫
e (A · v) v · ds =

1
h̄

∫
PEM · ds. (14)

Concurrently we remind that the phase for a freely moving particle is given by the equation

δfree (v) =
1
h̄

∫
PM · ds (15)

due to the de Broglie relationship, where PM denotes the mechanical momentum of a particle.
The total velocity-dependent phase of charged particle is given as the sum of Eqs. (14) and (15),

and is equal to

δtotal (v) =
1

∫
(PM + PEM) · ds. (16)
h̄

3
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Taking also into account that the total phase δtotal(v) of a moving charged particle can be
resented via the corresponding wave vector k as

δtotal (v) =
1
h̄

∫
k · ds, (17)

we obtain through comparison of Eqs. (16) and (17) k = (PM + PEM) /h̄.
Hence the wavelength of charged particle moving in the EM field is equal to

o = h̄/|PM + PEM | . (18)

Eq. (18) shows that the de Broglie wavelength of a charged particle moving in the presence of an
EM field depends not only on its mechanical momentum, but rather on the modulus of the vector
sum of mechanical PM and interactional electromagnetic PEM momenta.

Detailed analysis of the physical implications of Eqs. (13) and (18) will be done elsewhere.
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