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Abstract
Electrodeposition of metal adlayers on semiconductor metal chalcogenides (CdSe, CdS, PbTe, PbSe, PbS, Bi2Te3) is reviewed.
Cathodic underpotential deposition of metal adlayer on metal chalcogenide is the electrochemically irreversible surface limited
reaction. The irreversibility of the upd increases in the row from tellurides to selenides and further to sulfides. The underpotential
shift on chalcogenide nanoparticles increases with particle size. Metal upd on chalcogenides is applied as a means of measurement
of electroactive surface area of chalcogenide electrodes. The method is especially advantageous for multicomponent systems with
other component not supporting upd, such as CdSe-TiO2, CdSe-ZnO. Differences of voltammetric profiles of Pb upd on Bi2Te3 and
Te are applied for detection of Bi2Te3 surface contamination by elemental tellurium. The further tasks in the electrochemistry of
metal adlayers are their incorporation as interlayers in layered chalcogenides and electrodeposition of superlattices.
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Introduction

Electrodeposition of a metal atomic layer (adlayer) on a for-
eign substrate proceeds under thermodynamic conditions dif-
ferent from those of the electrodeposition on the same metal
substrate. The difference which results from effect of substrate
is characterized by the “underpotential shift” ΔEupd of the
adlayer deposition potential vs. corresponding Nernst poten-
tial E(Men+/Mebulk), where Mebulk is bulk metal.
Underpotential deposition (upd) of metal adlayers on metals
and their anodic oxidation have been comprehensively
reviewed [1–7], a less elucidated is the electrochemistry of
metal adlayers on nonmetals, such as chalcogens [8, 9], while
the electrochemistry of metal adlayers on metal chalcogenides
misses review literature, despite great significance of metal
adatoms, submonolayers, and adlayers as intermediates in
electrodeposition of metal chalcogenides [10] and the lately
developed electrodeposition of metal-metal chalcogenide

superlattice structures [11]. Metal adlayer on semiconductor
metal chalcogenide is also an interesting probe object for char-
acterization of size dependences of physical and physico-
chemical properties of semiconductor nanoparticles [12, 13].
Due to correlations of underpotential shift with the semicon-
ductor nanoparticle size, the routine measurement of quantum
dot (QD) size by optical spectroscopy may be substituted by
measurement of underpotential shift [12], when in situ optical
measurement is less convenient, e.g., in multicomponent
nanostructured systems. Selectivity of metal adlayer electro-
deposition on metal chalcogenide components of
chalcogenide-oxide heterostructures is also a useful feature
which allows measurement of electroactive surface area of
the chalcogenide spectral sensitizer in the sensitized wide
bandgap metal oxide photoanodes [14].

The electrochemistry of metal adlayers on chalcogenides
has been applied in works dedicated to layer-by-layer electro-
chemical assembly of metal chalcogenide materials [15–23].
However, most of the works present electrochemistry just of
initial steps of chalcogenide assembly. This minireview is
based on own research of the authors with the focus on the
results published in the last 5 years.

Cyclic voltammetry and frequency response

Electrochemical methods are very powerful in general as a
means of analysis of solids [24, 25], and the metal adlayers
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onmetal chalcogenides are the very characteristic examples of
solid state electrochemistry objects which depend critically on
electroanalytical methods. Especially complicated for
nonelectrochemical analysis are the metal adlayers on the
chalcogenides of the same metal (Pbad-PbTe, Cdad-CdSe,
etc.), as they differ just in the easily mutable chemical state
from metal atoms of the substrate and this determines the use
of highly sensitive electrochemical techniques for characteri-
zation of the electrochemically generated adlayers.

The upd, as well as the anodic oxidation of the electrode-
posited adlayer, is the surface limited reaction which fades fast
at a fixed potential, so the analytical current in stationary volt-
ammetry is equal to zero. For this reason, potentiodynamic
rather than stationary versions of voltammetry and impedance
spectroscopy were used for electrochemical characterization
of the adlayers. While the advantage of cyclic voltammetry
(CV) is self-evident, minor explanation may be required for
the use of potentiodynamic instead of stationary impedance
spectroscopy for frequency response analysis of the cathodic
deposition and anodic oxidation of adlayers.

Figure 1 shows two limiting cases of potentiodynamic
voltammetric profiles of upd with the corresponding equiva-
lent electric circuits derived from impedance spectroscopy. A
pair of perfectly reversible surface limited reactions (the ca-
thodic deposition and the anodic oxidation of an adlayer)
gives mirror symmetric cathodic and anodic peaks (Fig. 1a),
while electrochemical irreversibility of upd results in the sep-
aration of the cathodic and anodic peaks (Fig. 1b). The sepa-
ration of the peaks even in absence of significant mass trans-
port discloses restrictions for reversible charge transfer, while
the mirror symmetric voltammogram indicates immediate
readiness of the adlayer for releasing the captured electron into

the electric circuit upon the potential scan reversal, i.e., a be-
havior typical to electric capacitor. The corresponding capac-
itance Ca in the Faradaic branch of the equivalent circuit of
electrochemically reversible upd was found with stationary
and potentiodynamic electrochemical impedance spectrosco-
py in various reversible upd processes onmetal substrates (Pb,
Cu, Bi, Ag upd on gold, [26–28], Cu upd on Pd [29], etc.). The
capacitance Ca results from oscillation of metal adatom cov-
erage at ac probing [26, 30, 31]. Ca is typically much higher
than the double layer capacitance Cdl . The name
“pseudocapacitance” is often used in literature for
distinguishing Ca from ‘true’ capacitance Cdl of the double
layer. Despite the Ca originates from the electrochemical re-
action and belongs to Faradaic branch of the equivalent cir-
cuit, this pseudocapacitance is, nevertheless, a true capaci-
tance in terms of frequency response analysis and should not
bemixed with “pseudocapacitances”which have been derived
lately from CV and chronopotentiometry in a great number of
pub l i ca t ions abou t supe rcapac i to r s . The l a t t e r
“pseudocapacitances” are usually not capacitances in terms
of frequency response analysis and the use of Farad unit is
inappropriate for their characterization (a detailed discussion
of this issue was presented in [32]).

Metal upd on chalcogens and on metal chalcogenides, con-
trary to the electrochemically reversible upd, tend to the
voltammetric profile of the kind shown in Fig. 1b [26]. No
reverse reaction proceeds in this case at the potential of the
upd peak, so keeping the system at the potential of upd in the
stationary state results not only in zero direct current response
of the upd but also in impossibility of obtaining any alternat-
ing current response of either forward or back reaction. That is
why impedance spectrum has to be acquired in the

Fig. 1 Typical CVs at (a)
electrochemically reversible and
(b) electrochemically irreversible
upd behavior and (c, d) the
corresponding equivalent electric
circuits applicable in the potential
regions of the adlayer cathodic
deposition and anodic oxidation
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potentiodynamic mode with inevitable truncation of low fre-
quencies to provide sufficiently high scan rate. The other con-
sequence of nonexistence of equilibrium between electro-
chemically irreversible forward and back reactions is the com-
plexity of the underpotential shiftΔEupd measurement in such
systems [9, 33]. When the quasiequilibrium potential shown
by vertical dashed line on the right in Fig. 1b is not well
defined as a boundary between cathodic and anodic peaks in
CV, it can be more accurately obtained as intercept of poten-
tial dependences of inverse charge transfer resistances of for-
ward and back reactions derived with potentiodynamic elec-
trochemical impedance spectroscopy (PDEIS) [9].
Peculiarities of PDEIS application for characterization of non-
stationary systems were discussed in [26].

Underpotential shift and adlayer-substrate
interaction

The underpotential shift ΔEupd characterizes favorability of
adatoms deposition on a foreign substrate compared to the
deposition on a same metal substrate and thus may serve as
a merit of metal-substrate (M-S) interaction strength [6].
ΔEupd is determined by several factors [34], which are often
complex to calculate: binding energies in the adlayer and be-
tween adatoms and the substrate, the influence of local surface
defects of the substrate, the effects of solvent and anions.
Despite complexity of ΔEupd prediction, some empirical cor-
relations were found between ΔEupd and characteristics of the
deposit and substrate. For instance, the underpotential shift in
metal upd on metal typically shows correlation with differ-
ences of work functions of the substrate and the deposited
metal [1]. On the contrary, no correlation with the differences
of work functions was observed in metal upd on tellurium [9]
(Fig. 2a). Alternatively, the underpotential shift in metal upd
on tellurium shows correlation with free energy of metal tel-
luride formation [9] (Fig. 2b). The latter correlation is the
indication of metal-chalcogen covalent interaction effect in
metal adlayer growth on tellurium.

Besides the covalent adatom-substrate bonding, electron
energy band structure of a nonmetallic substrate affects the
upd shift, e.g., no electrodeposition of metal adatoms on a
wide-bandgap semiconductor p-selenium was observed in
the potential region of the expected upd under dark condition;
however, the electrodeposition proceeds on illuminated p-Se
and the photoelectrochemically deposited adlayer gives char-
acteristic oxidation peak in the anodic scan [35].
Underpotential shift in upd on nanoparticles of CdS, CdSe,
and some other chalcogenides is controlled by LUMO energy
which is dependent on the semiconductor nanoparticle size, so
the upd appears to be an unusual means for probing energy
band structure of nanostructured materials [12]. Anodic oxi-
dation of Cd adlayers on n-type CdSe and CdS is hindered by
blocking of anodic current on electrode-electrolyte interface.

Figure 3 illustrates role of the chalcogen atom in lead chal-
cogenide in upd behavior. The anodic to cathodic peak sepa-
ration increases in the row PbTe-PbSe-PbS, which indicates
the increasing irreversibility of the upd process and also partial
suppression of the upd and adlayer anodic oxidation on PbS.
The electrochemical irreversibility of the upd increases likely
due to the chemical bond ionic character increase in the chal-
cogenides series.

Ionic compounds such as oxides are not prone to acquire
metal adlayers at underpotential and this provides selective
upd on chalcogenide component of chalcogenide-oxide
heterostructures, which is considered further. The electro-
chemical irreversibility of the upd of the kind shown in Fig.
3b is the indication of restricted electron transfer between
metal adatoms and the chalcogenide support, and the restric-
tion favors the use of upd as electrochemical probe for exam-
ination of energy band structure variation of the chalcogenide
with particle size.

Pbad on Bi2Te3 versus Pbad on Te

Lead upd on bismuth telluride and on tellurium proceed in the
same potential region (Fig. 4) [36–38], but the cathodic part of

Fig. 2 Underpotential shift ΔEupd

for different metals on Te plotted
against (a) work function
difference of Te and metal, and
(b) Gibbs free energy of metal
telluride formation

2587J Solid State Electrochem (2020) 24:2585–2594



voltammetric profile of the upd on tellurium transforms from a
single peak to a two-humped structure in continuous cycling.
The variability of the cathodic branch of voltammetric profile
in upd on tellurium is due to adlayer gradual chemical inter-
action with tellurium and the corresponding gradual transition
from upd on tellurium to upd on telluride in continuous cy-
cling. The underpotential deposition of metal adatoms was
found to be an efficient probe for disclosure of chemical state
of surface layer of tellurium atoms in the substrate, which was
helpful for detection of bismuth telluride contamination by
elemental tellurium in electrodeposition.

Nanoparticles of elemental tellurium which can be
coelectrodeposited with bismuth telluride, especially at high
Te(IV):Bi(III) atomic ratio in electrolyte solution [11], are in-
distinguishable from Bi2Te3 in XRD analysis [37, 38]. As the
latter is typically used to prove phase composition of the elec-
trodeposits, the undetectable contamination by elemental tellu-
rium is a potential catch in the electrochemical preparation of
Bi2Te3-based thermoelectric materials. Fortunately, the electro-
chemistry of metal adlayers provides an efficient procedure for

disclosure of elemental tellurium under conditions of electrode-
position [37]. The detection of elemental Te codeposition ex-
ploits peculiarities of voltammetric profiles variation at contin-
uous cycling of lead upd on bare Bi2Te3 (Fig. 5a) and on ele-
mental Te (Fig. 5b). The first cycles of the upd are hardly
distinguishable on both substrates, but a characteristic differ-
ence appears in further cycles as the additional cathodic peak
before the main peak in upd on tellurium and the characteristic
peak increases with each cycle (Fig. 5b). Though Pb upd on
bare Bi2Te3 is also not fully reversible (Fig. 5a), its
voltammetric profile just scales down to slightly lower current
density showing no additional peaks. Some irreversible mass
increase in first cycles stabilizes leading to reversible mass
changes resulting from adlayer deposition and dissolution in
further cycles on Bi2Te3. Contrary to this evolution, the mass
increase in Pb upd on Te progresses with each cycle. Though
main part of Pb adlayer dissolves from the electrode upon an-
odic oxidation, some oxidized Pb adatoms form nuclei of PbTe
on Te surface, so that the upd in the following cycles proceeds
both on the remaining tellurium surface and on PbTe nuclei, the
potential of the emerging cathodic peak corresponds perfectly
to the potential of Pb upd peak on PbTe [36]. The growing peak
of Pb upd on PbTe under continuous cycling was found to be a
convenient indicator of Bi2Te3 contamination by elemental tel-
lurium and this helped to optimize conditions of electrodeposi-
tion of individual Bi2Te3 and multicomponent nanostructures
based on Bi2Te3 [11, 37].

Chalcogenide particle size effects

Besides chemical state of the chalcogen atoms on a substrate
surface, the chalcogenide particle size is a significant factor for
electron transfer between chalcogenide nanoparticle and metal
ions in the upd. Size effects in metal upd on metal chalcogen-
ides were studied in greater detail with the use of typical quan-
tum dot chalcogenides CdS and CdSe [12, 13] and partly PbSe.

Cd upd on CdS and CdSe were first applied in the electro-
chemical atomic layer epitaxy (deposition) (ECALE/E-ALD
[20, 39–41]) of the chalcogenides, although the publications
about ECALE and E-ALD presented typically just cyclic

Fig. 4 Cyclic voltammograms of tellurium (dashed) and Bi2Te3 (solid) in
the potential ranges of Pb upd from 10 mM Pb(NO3)2, 0.1 M KNO3,
10mMHNO3 electrolyte solution. dE/dt = 50 mV s–1. Substrate: stainless
steel. The current was normalized for real surface area. Insert: inverse
charge transfer resistance of the upd as a function of Bi2Te3 electrode
potential

Fig. 3 Typical voltammetric profiles of Pb upd on (a) PbS, (b) PbSe, and (c) PbTe. Substrate: FTO (a, b), Au (c)
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voltammograms of the first steps of the intermittent deposition
of metal and chalcogen atomic layers in the ECALE/E-ALD
procedures and lacked information about electrochemistry of
metal adlayer on chalcogenide.

Effect of CdS and CdSe particle size in the upd of Cd upd
was examined with the chalcogenide particle size control by
heating at different temperature of chemical bath deposited
(CBD) films [13] and also QD films electrophoretically de-
posited from colloidal solution of QDs of different size [12].
QD sizes in both types of the nanostructured films were de-
rived from optical spectra.

Figure 6 shows cyclic voltammograms and inverse charge
transfer resistance Rct

−1 potentiodynamic profiles of cadmium

upd on the CBD CdS and CdSe films. The latter dependences
obtained by analysis of PDEIS spectra characterize kinetics of
the upd (Rct

−1 is proportional to electrochemical reaction rate
constant). Figure 6c, d insets show the equivalent electric cir-
cuit which fitted well to the PDEIS data in the potential range
of the upd. The absence of diffusion impedance in the circuit
corresponds to negligible contribution of mass transport to the
PDEIS data; however, this does not necessarily exclude mass
transport in the upd, as the low frequencies which normally
give information about diffusion had to be truncated during
impedance spectra acquisition in the potentiodynamic mode.
Themost significant feature in the potentiodynamic profiles of
both the current and Rct

−1 is their clear dependence on the QD

Fig. 5 Evolution of voltammetric
profiles (j) of Pb adlayer cathodic
deposition and anodic oxidation
and cyclic changes of mass (m) in
Pb upd on (a) bare Bi2Te3 and (b)
Te. Electrolyte: 10 mM
Pb(NO3)2, 1 mM HNO3, 0.1 M
KNO3; the first cycles are shown
by dashed lines. dE/dt = 10 mV
s−1. Substrate: Pt on quartz crystal

Fig. 6 (a), (b) CVs and (c), (d)
potentiodynamic profiles of
reciprocal charge transfer
resistance Rct

−1 of Cd upd on CdS
and CdSe CBD films on FTO
substrates with particles of
different size (“bulk” indicates
large CdS particles which were
indistinguishable from bulk CdS
by optical spectra). Electrolyte:
10 mM CdSO4 + 0.1 M Na2SO4

(solid), dotted lines correspond to
blank 0.1 M Na2SO4
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size—the smaller are the chalcogenide QDs the lower is the
underpotential shift. The size effects in the upd on chalcogen-
ide QDs are somewhat similar to those in upd on small metal
particles [42–44], but metal particles show size effects at much
higher size.

Figure 7 presents size effects in cadmium upd (peaks C1)
on electrophoretically deposited (EPD) films of CdSe QDs of
different size [12]. The QDs were synthesized by a method
described in [45] which gives much narrower size distribution
compared to chemical bath deposition and this resulted in the
greater perfectness of the size effects in the upd. The figure
shows also potentials of bulk Cd cathodic deposition (C2) and
anodic oxidation (A2) for comparison with the potentials of
upd, the latter proceeds both in the region of bulkmetal anodic
oxidation and below reversible potential E(Cd2+/Cd). The upd
competes efficiently with bulk phase electrodeposition in a
narrow region below E(Cd2+/Cd) due to overpotential of metal
phase nucleation.

Figure 8a shows in terms of absolute electrode potential
the correspondence of cadmium upd onset potential on
CdSe to LUMO energy levels of CdSe QDs. Based on
comparison of QD size effect on LUMO level and on the
upd onset potential, the upd potential dependence on QD
size was explained in [12] as the effect of the charge trans-
fer control by the size-dependent position of LUMO level:
the decrease in QD size results in the upward LUMO shift,
so the electron transfer from electrode to metal cation via
the LUMO energy level proceeds at more negative elec-
trode potential.

Figure 8b summarizes size effect on upd onset potential on
different chalcogenides. These dependences can help to better
understand cathodic reduction reactions on chalcogenide
nanoparticles, not just upd; e.g., electrochemical corrosion of
AIIBVI particles which proceeds via formation of adatoms of
metal A [46]. Also, the size-dependent upd appears to be an
interesting new means of evaluation of the conduction band
position in chalcogenide nanomaterials [12].

Fig. 7 a Normalized CVs for
CdSe EPD QD films with
different QD size on FTO
substrates in 10 mM CdSO4 +
0.1 MNa2SO4. bOnset potentials
of Cd upd vs. CdSe QD size

Fig. 8 a Energy diagram proposed for charge transfer in upd process on a
chalcogenide nanoparticle. b Onset potentials of upd (derived from CV
and PDEIS) vs. particle size for different chalcogenides. The potentials
are shown for Cd upd on different cadmium chalcogenides and Pb upd on
PbSe
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Electroactive surface area measurement

Electrochemical adsorption of hydrogen on Pt has been for
long time the basic method of real surface area measurement
of platinum electrodes, the electrochemical adsorption of ox-
ygen on gold is a common method of gold electrodes real
surface area measurement [47]. Also, Pb [48, 49], Cu [50],
and Hg [51] upd and oxidation of adsorbed CO layer [52]
have been used to measure real surface area of some metal
electrodes. The simple principle behind the surface area mea-
surement is that adlayer oxidation/deposition charge is propor-
tional to the area. The similar approach has provided measure-
ment of the electroactive surface area of metal chalcogenides
by underpotential deposition of metals. In work [53], the evo-
lution of PbSe film roughness was estimated in the course of
electrodeposition. The electrochemical deposition was termi-
nated at different time and Pb adlayer oxidation charge was
measured. Figure 9 shows the resulting dependence of the

adlayer oxidation charge on deposition time. The figure shows
that PbSe surface area grows fast and almost linearly with time
at very beginning of the deposition and the growth slows
down afterwards. The real surface area became equal to geo-
metric area by approx. third second and showed a 13-fold
excess at 600 seconds of deposition.

The measurement of electroactive surface area of metal
chalcogenides by metal upd is especially helpful in investiga-
tions of chalcogenide heterostructures in which the other com-
ponent is incapable of acquiring metal adlayer at
underpotential, so the upd proceeds selectively on one com-
ponent of the heterostructure and provides information about
electroactive surface area of that particular component.
Figure 10 shows how this method works in the investigation
of spectral sensitizing of wide-bandgap oxides by CdSe nano-
particles [14]. The photocurrent sensitized by CdSe passes
maximum with the increase in number of CdSe deposition
cycles of successive ionic layer adsorption and reaction
(SILAR) technique when the current is referred to geometric
surface area (Fig. 10a) and this may result in a wrong conclu-
sion about variation of CdSe sensitizing activity with number
of SILAR cycles. Renormalization of the same photocurrent
data for the electroactive surface area of the sensitizer compo-
nent provided with the application of cadmium selective upd
on CdSe gave an entirely different dependence of the photo-
current shown in Fig. 10b. The figure shows that the sensitiz-
ing activity of a unit surface area of the sensitizer in fact
increased with number of SILAR cycles even in the region
of the photocurrent decrease of Fig. 10a. The selective upd
provides in tasks of this kind a unique opportunity of deriving
specific characteristics of one component of multicomponent
system from measurements applied on the whole system.

From adlayers to interlayers

Bismuth telluride is an example of chalcogenide with layered
structure. Bi2Te3 crystal consists of Te-Bi-Te-Bi-Te quintu-
ples connected to each other by weak van der Waals bonds.
Metal atoms can be inserted between the quintuples at van der

Fig. 9 The Pb adlayer oxidation charge per geometric surface area vs.
PbSe deposition time on FTO substrate. The inset shows CVs of PbSe
film electrodes in Pb2+-containing electrolyte (deposition time 0.5 s, 5 s,
100 s, 600 s). Images of PbSe films at different stages of electrodeposition
are shown as a row of rectangles on the top

Fig. 10 Sensitized photocurrent
on CdSe/TiO2 (1) and CdSe/ZnO
(2) nanostructured electrodes
normalized for (a) geometric sur-
face area and (b) electroactive
surface area of CdSe sensitizer
component of the heterostructures
at variable number of SILAR de-
position cycles [14]

2591J Solid State Electrochem (2020) 24:2585–2594



Waals planes. The stable form of the inserted bismuth is atom-
ic bilayer—a combination of two adlayers Biad which interact
with bismuth telluride on the one side and form Bi-Bi bonds
on the other side [11, 54]. The product of bismuth bilayer
insertion into bismuth telluride (Bi2)m (Bi2Te3)n appears as
additive to bismuth telluride at bismuth telluride electrodepo-
sition from electrolyte with high Bi(III):Te(IV) atomic ratio
[11]. Figure 11 shows typical voltammetric signatures of
(Bi2)m (Bi2Te3)n at electrochemical conditions of codeposition
with bismuth telluride. The potential region of the anodic peak
attributed to bismuth bilayer anodic oxidation overlaps with
the region of Biad anodic oxidation on Bi2Te3 at moderate
Bi(III):Te(IV) atomic ratio and shifts negatively with Bi(III)
concentration increase (Fig. 11), i.e., in the opposite direction
to the one expected for Nernstian shift of bulk bismuth anodic
peak. The difference in Bi oxidation potentials and the oppo-
site effect of Bi(III) concentration on the potentials of the both
anodic peaks helps to distinguish them electrochemically.

The technique for individual (Bi2)m (Bi2Te3)n electrode-
position was developed [11] based on pulsed potentiostatic
control of two controlled potentials—the potentials of elec-
trodeposition and electrochemical refinement. The refine-
ment was applied after electrodeposition in each period at
the potential which corresponded to a very beginning of
bismuth bilayer anodic oxidation wave. Periodic switching
between the deposition and refinement potentials helped to
obtain the superlattices with general formula (Bi2)m
(Bi2Te3)n and variable bismuth content dependent on elec-
trolyte concentration. The products were identified with
various methods and characterized electrochemically
[11]. Interestingly, the potentiostatic treatment of (Bi2)m
(Bi2Te3)n at the potential of bismuth bilayer anodic oxida-
tion resulted in the product close to bismuth telluride by

atomic composition but having an expanded structure,
which could be of interest for further design of complex
nanostructured materials based on bismuth telluride.

Conclusions

Cathodic underpotential deposition of metal adlayer on metal
chalcogenide is the electrochemically irreversible surface lim-
ited reaction; hence, the cathodic deposition of the adlayer and
its anodic oxidation proceed in poorly overlapping or not
overlapping potential intervals. The irreversibility of the upd
increases in the row from tellurides to selenides and further to
sulfides, additionally the upd is significantly hindered on sul-
fides, probably due to greater ionicity ofMe-S bond and wider
bandgap.

The underpotential shift on chalcogenide nanoparticles in-
creases with particle size. Size effect in Cd upd onCdSe which
was investigated in a greater detail results from size depen-
dence of LUMO energy and its correspondence to the onset
potential of upd. Due to the correlation of the upd onset po-
tential and LUMO energy, the onset potential of cadmium upd
appears to be an unusual electrochemical means of CdSe
quantum dot size measurement, and this may be of practical
use in systems with complications for in situ optical measure-
ment of QD size.

Upd on chalcogenides has been applied as a means of mea-
surement of electroactive surface area of chalcogenide elec-
trodes. Especially advantageous is the application of this
method for the surface area measurement of chalcogenide
component of heterostructures with the other component be-
ing incapable of providing upd, such as CdSe-TiO2 and CdSe-
ZnO.

Metal adlayers on chalcogenides were found to be stable
against reaction with substrate. In contrast, metal adlayer
deposited on chalcogen tend to react with substrate upon
prolonged cycling of the adlayer cathodic deposition and
anodic oxidation. This effect was applied for detection of
trace amount of tellurium on bismuth telluride surface by
lead upd which showed Pb upd on PbTe voltammetric sig-
nature emergence in the continuous cycling in presence of
tellurium.

An interesting further task in the electrochemistry of
adlayers refers to their electrochemical incorporation inside
layered chalcogenides and thus forming superlattice structure.
In particular, bismuth-bismuth telluride superlattices with bis-
muth interlayers can be obtained by electrodeposition in pulse
potentiostatic mode with control of two potentials.

Funding information This research has received funding from Horizon
2020 research and innovation program under MSCA-RISE-2017 (no.
778357).

Fig. 11 Cyclic voltammograms of stainless steel electrode in the
electrolytes with different Bi(III):Te(IV) ratio. dE/dt = 50 mV·s–1. The
current was normalized for real surface area. Inset shows the structure of
(Bi2)m (Bi2Te3)n
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