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Binary interactions in relativistic plasma, such as Coulomb and Compton scattering as well as pair creation and annihi-
lation are well known and studied in details. Triple interactions, namely relativistic bremsstrahlung, double Compton
scattering, radiative pair production, triple pair production/annihilation and their inverse processes, are usually consid-
ered as emission processes in astrophysical problems, as well as in laboratory plasmas. Their role in plasma kinetics
is fundamental1. We present a new conservative scheme for computation of Uehling-Uhlenbeck collision integral for
all triple interactions in relativistic plasma based on direct integration of exact QED matrix elements. Reaction rates
for thermal distributions are compared, where possible, with the corresponding analytic expressions, showing good
agreement. Our results are relevant for quantitative description of relativistic plasmas out of equilibrium, both in astro-
physical and laboratory conditions.

I. INTRODUCTION

Electron-positron plasma is present in many astrophysi-
cal systems2,3. It is also studied in laboratory experiments
with ultra-intense lasers and high energy beams4. Rela-
tivistic plasma has been the subject of extensive research
since the 1970s. Many works focused on binary relax-
ation via Coulomb collisions between ions and electrons5–10,
with a special role of electron-positron creation and annihi-
lation process11,12. Most papers consider an optically thin
or mildly optically thick regime11,13–15. Equilibrium in the
pair plasma has been studied in11,14,15. The energy loss rate
by different processes has been analyzed in16–18. The condi-
tions of dominance of the double Compton scattering versus
bremsstrahlung were discussed in19,20.

While the binary interactions between photons and elec-
trons are the subject of classical textbooks in QED, the
triple interactions such as electron-electron bremsstrahlung,
double Compton scattering, three photon annihilation radia-
tive pair production and their inverse are less represented
in the literature. The theory of these processes is reviewed
in21–23. The differential cross section and energy loss rate
of electron-electron bremsstrahlung is studied in24,25, and in-
teraction rates are obtained for non-relativistic26 and ultra-
relativistic cases27, respectively. The case of electron-positron
bremsstrahlung is considered in28. The differential cross sec-
tion for the radiative pair production is obtained in29, while
the total cross section is found in30. The three-photon anni-
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hilation is studied in31,32. The theory of the double Compton
scattering is developed in33. The cross-section for the non-
relativistic case is obtained in20,34, the emission rate in the soft
photon limit is obtained in35, while the rate at non-relativistic
temperatures is derived in36,37. In summary, this vast literature
presents analytic expressions for reaction rates in equilibrium.
Non-equilibrium rates in relativistic regime can be computed
only numerically.

Astrophysical observations indicate that out of equilib-
rium relativistic plasma is present in such sources as ac-
tive galactic nuclei, binary X-ray sources, microquasars and
gamma-ray bursts3. Energy release in the early Universe
may bring primeval relativistic plasma out of equilibrium as
well38. In laboratory conditions relativistic electron-positron
jets are generated by interaction of intense laser pulses with
condensed matter39–41. Hence most general description of
relativistic plasma dynamics is required, which is given in
terms of distribution function, where particle collisions are
described by the integrals of differential cross-section (or a
matrix element) over the phase space42,43. So far efficient
codes were developed which describe only binary collisions
without induced emission44, binary collisions with induced
emission45, or binary and triple collisions not far from ther-
mal equilibrium46. In this paper we generalize our method
for calculation of collision integrals specifically treating triple
interactions in relativistic plasma. In addition, the new kine-
matic approach, which improve the scheme performance, is
presented for triple interactions.

This scheme was first introduced in the work47 and then
applied to the study of thermalization in relativistic plasma of
Boltzmann particles1,48–50, for the computation of relaxation
timescales51, and description of electron-positron plasma cre-
ation in strong electric fields52. Thermalization process was
studied taking into account plasma degeneracy in53. In con-
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TABLE I. Particle interactions in relativistic plasma
Binary interactions Triple interactions
Compton scattering Double Compton scattering

e±γ−→e±′γ ′ e±γ←→e±′γ ′γ ′′

Coulomb, Møller and Bhabha scattering Bremsstrahlung
e±1 e±2 −→ e±′1 e±′2 e±1 e±2←→e±′1 e±′2 γ

e+e− −→ e+′e−′ e+e−←→e+′e−′γ
Pair production/annihilation Three-photon pair

production/annihilation
e+e−←→ γ1γ2 e+e−←→γ1γ2γ3

Radiative pair
production/annihilation

γ1γ2←→e+e−γ ′

e±γ←→e±′e+e−

trast with non-degenerate plasma described by Boltzmann
equations, quantum statistics is taken into account by adopting
the Uehling-Uhlenbeck equation, which contains additional
Pauli blocking and Bose enhancement multipliers54,55. It was
shown that effects of plasma degeneracy lead to interesting
new phenomena such as Bose condensation of photons56, and
avalanche thermalization due to Pauli blocking57.

This paper is structured as follows. In Section 2 the rel-
ativistic Boltzmann equation with collision integrals for rela-
tivistic plasma is introduced. In Section 3 numerical treatment
for calculation of collision integrals for all binary and triple
interactions in relativistic plasma is described. In Section 4
numerical results are reported, and compared and contrasted
with existing results in the literature. In Section 5 main results
are summarized.

II. RELATIVISTIC BOLTZMANN EQUATION AND
COLLISION INTEGRALS

In a homogeneous and isotropic electron-positron plasma
kinetic equations for distribution functions f are3:

d
dt

f (p, t) = ∑
q
(ηq−χ

q f (p, t)) , (1)

where the summation index q denotes all processes of interac-
tion between plasma particles, ηq and χq are emission and
absorption coefficients correspondingly, p is particle three-
momentum, t is time. The distribution function is normal-
ized such that the number density is given by n =

∫
f (p) d3 p.

We take into account all binary and triple interactions listed
in Table I. The treatment of binary interactions is covered
by many textbooks on relativistic kinetic theory, see e.g.42,43.
Instead, triple interactions are not considered. Accounting
for such interactions is essential for understanding radiation
from plasma, but also for understanding of thermalization
process1,3.

Consider a triple interaction: two incoming particles of
kinds I and II in quantum states 1 and 2 produce three out-
going particles of kinds III, IV , and V in quantum states 3, 4,
and 5. Let momenta of particles before interaction be p1 and

p2, and after interaction be p3, p4, and p5, correspondingly.
This process can be represented symbolically as

I1 + II2 −→ III3 + IV4 +V5. (2)

The inverse process is

III3 + IV4 +V5 −→ I1 + II2. (3)

Energy ε and momentum conservation gives

ε1 + ε2 = ε3 + ε4 + ε5, p1 +p2 = p3 +p4 +p5. (4)

In the Uehling-Uhlenbeck equation collision integrals for
particle I in the state 1 is a function of momentum p1

58 and
time54,55

ηI(p1, t)−χI(p1, t) fI(p1, t) =
∫

d3p2d3p3d3p4d3p5

×
[
W(3,4,5|1,2) fIII fIV fV ×

(
1± f̄I

)(
1± f̄II

)
−W(1,2|3,4,5) fI fII×

(
1± f̄III

)(
1± f̄IV

)(
1± f̄V

)]
, (5)

where f̄I = h3 fI(p1, t)/gI and so on, g being the number of de-
generate spin states (for our plasma it is 2 for all components),
h is Planck’s constant, and W are the transition functions. The
first term in the square brackets corresponds to emission of
particle I in the inverse process (3), while the second term cor-
responds to absorption of particle I in the direct process (2).
This is the general case when all the kinds of incoming and
outgoing particles are different.

It is also possible that particles before and after the inter-
action are of the same kind. In this case collision integrals
become more involved. Without loss of generality consider
the case when I = V . Then two new terms appear in the
collision integral of particle I of state 1: emission coefficient
ηI(p1, t) in the direct process I5 + II2 −→ III3 + IV4 + I1, and
absorption coefficient χI(p1, t) fI(p1, t) in the inverse process
III3 + IV4 + I1 −→ I5 + II2. Combining all these terms we ob-
tain the collision integral

ηI(p1, t)−χI(p1, t) fI(p1, t) =
∫

d3p2d3p3d3p4d3p5

×
[
−W(1,2|3,4,5) fI fII×

(
1± f̄III

)(
1± f̄IV

)(
1± f̄V

)
+W(3,4,5|1,2) fIII fIV fV ×

(
1± f̄I

)(
1± f̄II

)
+W(5,2|3,4,1) fV fII×

(
1± f̄III

)(
1± f̄IV

)(
1± f̄I

)
−W(3,4,1|5,2) fIII(p3, t) fIV (p4, t) fI(p1, t)×

(
1± f̄V

)(
1± f̄II

)]
.

(6)

All triple QED-processes listed in Table I, with the only ex-
ception of three-photon pair production/annihilation, are rep-
resented by four-term collision integrals. These four terms
in particular case of double Compton scattering with corre-
sponding quantum symmetrization multipliers were for the
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first time discussed by Chluba59. In previous works this fact
was ignored and only two terms were considered in collision
integrals, see e.g.19,37. It should be noted that some proper-
ties of plasma, e.g. the detailed balance conditions, may be
studied based on only two terms in collision integrals. How-
ever, the structure of all four coefficients is different, and their
presence in collision integral (6) is essential.

In direct triple interactions transition function W can be ex-
pressed through differential cross-section dσ . Using the def-
inition of dσ60 (Eq. (64.18)) and its relation to number of in-
teractions dN/dV dt per unit volume per unit time from equa-
tion (12.7) of61, we arrive to

W(1,2|3,4,5)d
3p3d3p4d3p5

= c

√
[ε1ε2− (p1 ·p2)c2]2− (mImIIc4)2

ε1ε2
dσ . (7)

The differential cross-section in turn is related to the QED
matrix element squared, averaged over incoming particle po-
larizations and summed over outgoing particle polarizations
X , see62 (Eq. (11.31)). Therefore

W(1,2|3,4,5) =
αr2

e

(4π)2
c7X

ε1ε2ε3ε4ε5

×δ (εinitial− ε final)δ
3(pinitial−p final), (8)

where re = e2/mec2 is the classical electron radius and α is
the fine structure constant. For double Compton scattering
X is given by equations (3), (9), (10) of33. For relativistic
bremsstrahlung X = 16A, where A is given in Appendix B
of63.

For all other triple processes listed in Table I the matrix
elements can be obtained from two aforementioned ones ap-
plying the substitution rule, see e.g.62 (Sec. 8.5). For exam-
ple, exchanging incoming photon with outgoing electron or
positron in double Compton scattering

e−1 + γ2 −→ e−3 + γ4 + γ5

the three-photon pair creation-annihilation

e−1 + e+3 −→ γ2 + γ4 + γ5

process is recovered. Then the matrix element X of this pro-
cess can be derived from X of the one of the double Compton
scattering by the following substitutions

p3 −→−p3, ε3 −→−ε3, p2 −→−p2, ε2 −→−ε2.
(9)

In order to get collision integrals for inverse triple inter-
actions we can make use of detailed equilibrium conditions,
valid for QED interactions43,64, that gives

h3

gIII

h3

gIV

h3

gV
W(1,2|3,4,5) =

h3

gI

h3

gII
W(3,4,5|1,2), (10)

and since in our case all g = 2 we finally obtain

h3W(1,2|3,4,5) = 2W(3,4,5|1,2), (11)

The collision rate is a multidimensional integral over the
phase space of interacting particles, which spans 4× 3 = 12
dimensions for binary interactions and 5×3 = 15 dimensions
for triple ones. The energy-momentum conservation allows
to perform integration over 4 variables, while spherical sym-
metry in the phase space allows to perform additional three
integrals, leaving 5 and 8 integrals for binary and triple inter-
actions, correspondingly. From the computational viewpoint
this problem is highly demanding. In the next section we in-
troduce the fast numerical scheme dealing with it.

III. NUMERICAL TREATMENT OF THE COLLISION
INTEGRALS

The main difference between the approach to the kinetics
of plasma with Boltzmann equations1,49,51 and the present ap-
proach with Uehling-Uhlenbeck equations appears in the de-
pendence of emission and absorption coefficients not only on
the distributions of the incoming particles, but the on distribu-
tions of the outgoing particles as well, owing to the presence
of Bose enhancement and Pauli blocking factors (further re-
ferred to as quantum corrections). Due to this difference in
what follows we adopt a “process-oriented” technique45,53.

Due to the spherical symmetry in the phase space65, we in-
troduce spherical coordinates and discretize it. Zone ΩI

a, j,k of
particle kind I corresponds to energy εa, cosine of polar an-
gle µ j and azimuthal angle φk, where indices span the ranges
1 ≤ a ≤ nε , 1 ≤ j ≤ nµ , 1 ≤ k ≤ nφ . Zone edges are εa∓1/2,
µ j∓1/2, φk∓1/2. Width of a-th energy zone ΩI

a is equal to
∆εa ≡ εa+1/2− εa−1/2. Due to isotropy fI does not depend
on µ and φ , therefore particle density I in the zone a is

Y I
a (t) = 4π

∫
εa+1/2

εa−1/2

c−3
ε

√
ε2−m2

I c4 fI(ε, t)dε

≈ 4πc−3
εa

√
ε2

a −m2
I c4 fI(εa, t)∆εa. (12)

In these variables discretized Uehling-Uhlenbeck equation for
particle I and energy zone a is

dY I
a (t)
dt

= ∑
[
η

I
a(t)−χ

I
a(t)Y

I
a (t)

]
, (13)

where the sum is taken over all processes that include particle
I. Emission and absorption coefficients on grid are obtained
by integration of collision integrals over the zones, and these
integrals are replaced by sums over the grid.

The exact conservation laws (particle number, energy,
charge) are satisfied in the code thanks to implementation of
the interpolation procedure for outgoing particles. The sys-
tem under consideration has several characteristic timescales
for different processes, and the resulting system of ordinary
differential equations (13) is stiff. We use Gear’s method66 to
integrate the system numerically.
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A. Binary interactions

First we recall the treatment of binary interactions intro-
duced in45. Spherical symmetry allows to perform three inte-
grals over the angles of the first incoming particle and over the
azimuthal angle of the second one:

∫
dµIdφIdφII −→ 8π2. P-

symmetry of QED allows to reduce azimuthal angle range for
the third particle

∫ 2π

0 dφIII −→ 2
∫

π

0 dφIII . In addition, energy-
momentum conservation expressed with the δ -function in the
transition function (7) allows to perform additional four inte-
grations, with the usual choice to exclude energy and angles of
the first outgoing particle and energy of the second outgoing
particle

δ (ε1 + ε2− ε3− ε4)δ
3(p1 +p2−p3−p4) =

c2 δ (ε4− ε∗4 )δ (ε3− ε∗3 )δ (ϕ3−ϕ∗3 )δ (µ3−µ∗3 )

ε3 p3 [1− (β3/β4)n3 ·n4]
, (14)

where β = pc/ε , asterisks denote values defined for excluded
integration variables by the energy and momentum conserva-
tion

p∗4 =
AB±

√
A2 +4m2

IV c2(B2−1)

2(B2−1)
, (15)

A =
c
ε

[
p2 +(m2

III−m2
IV )c

2]− ε

c
, B =

c
ε

n4 ·p,

ε
∗
4 = c

√
(p∗4)

2 +m2
IV c2, ε

∗
3 = ε− ε

∗
4 , p∗3 = p−p∗4,

ni = pi/pi, ε = ε1 + ε2, p = p1 +p2.

Then the absorption coefficient for incoming particle I in
binary interaction I + II→ III + IV can be written as

χ
I
a(t)Y

I
a (t)≈

h̄2c4

8(4π)2 ∑∆µII∆µIV ∆φIV ×|M f i|2

× p4

ε3[1− (β3/β4)n3 ·n4]
× Y I

a (t)
εa

Y II
b (t)
εb

×
[

1±
Y III

c′ (t)
Ȳ III

c′

][
1±

Y IV
d′ (t)
Ȳ IV

d′

]
, (16)

where Ȳ I
a are defined as in eq. (12) with the substitution f →

2/h3 and index primes meaning is as follows.
The energies of incoming particles are fixed in the nodes

of the grid, but the energies of outgoing particles are off the
grid. In order to satisfy conservation laws (particle number,
energy, charge) an interpolation procedure is implemented for
outgoing particles. Each outgoing particle is split in two in-
terpolated particles between the adjacent zones with a weight
determined by its energy and the zone width67. Interpolation
redistributes outgoing particle I of energy εa into two energy
zones ΩI

n, ΩI
n+1 defined by εn < εa < εn+1, see Eq. (19) below.

Interpolation procedure for outgoing particles should sat-
isfy the laws of quantum statistics. Any process where a
fermion end up in a fully occupied zone is not allowed. We

introduce therefore Bose enhancement and Pauli blocking co-
efficients as[

1±
Y I

a′(t)
Ȳ I

a′

]
= min

(
1± Y I

n (t)
Ȳ I

n
,1±

Y I
n+1(t)
Ȳ I

n+1

)
. (17)

This procedure allows us to fulfil quantum statistics require-
ments by the cost of partly reducing grid resolution.

Hence emission coefficient for outgoing particle I in inverse
process is

η
I
a(t)≈

h̄2c4

8(4π)2 ∑Ca(ε1)∆µIV ∆µII∆φII×|M f i|2

× p2

ε1[1− (β1/β2)n1 ·n2]
× Y III

c (t)
εc

Y IV
d (t)
εd

×
[

1±
Y I

a′(t)
Ȳ I

a′

][
1±

Y II
b′ (t)
Ȳ II

b′

]
, (18)

where interpolation coefficients are

Ca(ε1) =



εa− ε1

εa− εa−1
, εa−1 < ε1 < εa,

εa+1− ε1

εa+1− εa
, εa < ε1 < εa+1,

0, other ε1.

(19)

Integration over the angles can be made only once at the
beginning of calculations3,49, and we refer to this phase as
integral coefficients calculation. Then we store correspond-
ing integral coefficients for each set of incoming and outgo-
ing particles in the form of three numbers K1,2,3 giving for
elementary terms in binary interaction I + II → III + IV the
following contributions

Ẏa(t) = Ẏb(t) =−Kabcd
1 D,

Ẏc(t) = Kabcd
2 D, Ẏc+1(t) = (Kabcd

1 −Kabcd
2 )D,

Ẏd(t) = Kabcd
3 D, Ẏd+1(t) = (Kabcd

1 −Kabcd
3 )D,

D = Ya(t)Yb(t)
[

1± Yc′(t)
Ȳc′

][
1± Yd′(t)

Ȳd′

]
,

(20)

that fulfil conservation laws by construction. Sum of all con-
tributions from different elementary reactions gives total col-
lision integrals on the grid with 2-nd order accuracy. As each
stored elementary reaction gives 6 terms for the rates Ẏ and
we span elementary reaction space, and not Ẏ themselves,
we denote such an approach as “process-oriented”. Looping
through Ẏ is a more traditional approach49, but it demands
6-time separate treatment of the same D that slows down the
calculations.

B. Triple interactions

The scheme is straightforwardly generalized to triple inter-
actions. However, in contrast to the binary case where index
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pairs I, II and III, IV can be swapped without any change in
the structure of elementary terms (20), in triple case such a
symmetry is absent. So emission and absorption coefficients
for the processes (2) and (3) are discussed separately below.
Further, standard choice of excluded δ -function integrations
is not very convenient in this case as it leads to substantial
slowdown of calculations due to the branching of solutions in
algebraic equations (15) which requires execution of logical
commands.

FIG. 1. The new coordinates adopted for numerical integration on
the phase space.

In order to avoid this branching it is possible to use the
variables of outgoing particle pair: a) the energy of one of
these particles εi, b) its angle φ ′i defined as rotation angle of
its momentum pi around the direction of total pair momen-
tum p = pi +p j. This azimuthal angle φ ′i serves as an angle
of auxiliary spherical coordinate system (µ ′,φ ′) with z′ axis
aligned with p, see Fig. 1, so that the solution of energy and
momentum conservation equations is unique

ε j = ε− εi, φ
′
j = π +φ

′
i , (21)

µ
′
i =

p2 + p2
i − p2

j

2ppi
, µ

′
j =

p2 + p2
j − p2

i

2pp j
,

pi = pi

(
µ
′
i np +

√
1−µ ′i

2
[
n1 cosφ

′
i +n2 sinφ

′
i
])

,

p j = p j

(
µ
′
jnp +

√
1−µ ′j

2
[
n1 cosφ

′
j +n2 sinφ

′
j
])

,

np = p/p, p =
√

p ·p, ε = εi + ε j,

pi =
√

ε2
i /c2−m2

i c2, p j =
√

ε2
j /c2−m2

jc2,

where n1 and n2 are two orthogonal unit normals to p. The

limits of integration are very simple

φ
′
i ∈ [0,2π), εi ∈ [A−B,A+B], (22)

A =
ε

(
ε2− p2c2−m2

jc
4 +m2

i c4
)

2(ε2− p2c2)
,

B =
pc

√(
ε2− p2c2−m2

jc4−m2
i c4
)2
− (2mim jc4)2

2(ε2− p2c2)
,

and δ -function becomes

δ (ε− εi− ε j)δ
3(p−pi−p j) =

δ (µi−µ∗i )δ (ε j− ε∗j )δ (µ
′
j−µ ′j

∗)δ (φ ′j−φ ′j
∗)

ppi p j
, (23)

where asterisks denote solution of kinematic equations (21).
The Jacobian (23) exhibits kinematic singularity with a

clear physical origin: it appears when total or any particle mo-
mentum is zero. Singularities at pi = 0 and p j = 0 disappear
at the collision integral as the corresponding rates tend to a
constant due to velocity dependence. The only survived sin-
gularity is of zero total momentum p = 0: this turns out to be
center-of-mass frame for the chosen particles and in this case
the interval of εi in (22) reduces to a point εi = A, while µ ′i and
φ ′i span all the sphere. As a result, this singularity in the in-
tegrand is compensated by shrinking of the integration limits
of εi and the integral remains finite at this point. However, the
subspace of p = 0 is of much lower dimension than the total
phase space of integration (it is 3-dimensional one versus 6-
dimensional one in our case), so this singularity problem can
be avoided numerically just by rotating slightly each of the
{µ,φ} grids for the particles in the reaction to exclude calcu-
lations at the p = 0 points.

Additional advantage of this scheme is the ease of treatment
of phase space symmetries: to exclude the same particle states
from incomes and/or outcomes it is sufficient to use ascend-
ing (or descending) energy requirements for the same parti-
cles, i.e. in three-photon annihilation we just integrate only
over εγ1 < εγ2 < εγ3 . In the traditional approach εγ2 and εγ3 are
involved functions of angles of integration, that leads to an-
other branching in the innermost integration calculations, or
alternatively to calculation over all the phase space for pho-
tons (effectively increasing the amount of calculations 6-fold)
and introduction of 1/6 multipliers after.

Finally, for the direct process (2) we arrive to the grid rep-
resentation of the absorption coefficient for particle I in the
following simple form

χ
I
a(t)Y

I
a (t)≈

αcr2
e

32π2 ∑∆µII∆εIII∆µIII∆φIII∆εIV ∆φ
′
IV

× pIII

p
X

Y I
a (t)
εa

Y II
b (t)
εb

×
[

1±
Y III

c′ (t)
Ȳ III

c′

][
1±

Y IV
d′ (t)
Ȳ IV

d′

][
1±

YV
f ′ (t)

ȲV
f ′

]
, (24)
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while for the emission coefficient of particle IV we have

η
IV
d (t)≈ αcr2

e

32π2 ∑∆µII∆εIII∆µIII∆φIII∆εIV ∆φ
′
IV

× pIII

p
XCd(εIV )

Y I
a (t)
εa

Y II
b (t)
εb

×
[

1±
Y III

c′ (t)
Ȳ III

c′

][
1±

Y IV
d′ (t)
Ȳ IV

d′

][
1±

YV
f ′ (t)

ȲV
f ′

]
, (25)

the interpolation coefficient C(ε) being defined in eq. (19) and
primed indices having the meaning described after eq. (16).
We use also special refined grid for εIV , that ensures the given
number of integration points for each possible zone set of IV
and V particles (typically 2 points, further refinement does not
change results substantially). Analogous relations hold for the
inverse process.

For each process the sum over the angles again can be per-
formed only once, at the beginning of calculations. Elemen-
tary reaction now is represented by three numbers K1,2,3 giv-
ing the following collision integral terms

Ẏa(t) = Ẏb(t) =−Ẏc(t) =−Kabcdf
1 D,

Ẏd(t) = Kabcd f
2 D, Ẏd+1(t) = (Kabcd f

1 −Kabcd f
2 )D,

Ẏf (t) = Kabcd f
3 D, Ẏf+1(t) = (Kabcd f

1 −Kabcd f
3 )D,

D = Ya(t)Yb(t)
[

1± Yc′(t)
Ȳc′

][
1± Yd′(t)

Ȳd′

][
1±

Yf ′(t)
Ȳf ′

]
,

(26)

for direct reaction and

Ẏa(t) = Ẏb(t) = Ẏc(t) =−Kabcdf
1 D,

Ẏd(t) = Kabcd f
2 D, Ẏd+1(t) = (Kabcd f

1 −Kabcd f
2 )D,

Ẏf (t) = Kabcd f
3 D, Ẏf+1(t) = (Kabcd f

1 −Kabcd f
3 )D,

D = Ya(t)Yb(t)Yc(t)
[

1± Yd′(t)
Ȳd′

][
1±

Yf ′(t)
Ȳf ′

]
,

(27)

for inverse reaction. To find rates Ẏ we span elementary reac-
tion space as in the case of binary interactions.

IV. NUMERICAL RESULTS

In this section the results of numerical calculations are pre-
sented. We compare our results for collision integral with all
known analytical expressions in the literature. They appear to
use only Boltzmann statistics

f̄eq = exp
(
−ε−µ

kBT

)
, (28)

without quantum corrections, so in what follows all compar-
isons are done with such a case. Svensson68 gives analyti-
cal expressions for thermal photon emission coefficients ηγ

in the soft photon limit (εγ � kBT ) for the double Compton
scattering, electron-electron bremsstrahlung, three-photon an-
nihilation and radiative pair production. These rates are in-
versely proportional to the photon energy ηγ ∼ ε−1. We note
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2

η
γ
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-
1

Blue: eγ→eγγ
Red: ee→eeγ
Orange: e+e-→γγγ

Green: γγ→e+e-γ

FIG. 2. Thermal photon emissivity ηγ as a function of photon energy.
Solid curves represent Svensson68 and Haug24 analytical formulas,
see text for details. From top to bottom: double Compton scattering,
relativistic bremsstrahlung, three-photon annihilation, radiative pair
production. The number of nodes is: 60 for energy, 32 for φ angle
and 16 for µ angle. The distribution functions are taken at equilib-
rium with θ = 0.1 and chemical potential being zero.

TABLE II. Numerical accuracy measured by the Q coefficient for se-
lected number of angular grid nodes (nε = 60,nφ = 2nµ ) for different
interactions.

Process/nµ 4 8 16 32
Double Compton scattering 0.143 0.087 0.044 0.049
relativistic bremsstrahlung 0.396 0.336 0.271 0.228
three photon annihilation 0.043 0.012 0.023 0.021
radiative pair production 0.275 0.133 0.085 0.075

that Svensson formula for electron-electron bremsstrahlung
does not correctly describe the non-relativistic limit, there-
fore we use the formula of Haug25, which represents non-
relativistic limit. One should keep in mind that Svensson for-
mulas represent an interpolation between non-relativistic and
ultra-relativistic limits and their accuracy for the intermediate
plasma temperatures is not estimated. For this reason we com-
pare our results only in a non-relativistic domain, selecting for
kBT = 0.1mec2. Below dimensionless energy e≡ ε/mec2 and
temperature θ = kBT/mec2 are used.

The calculations are performed on a logarithmic energy
grid with nε = 60 nodes, with different homogeneous grids
for angular variables, φ -grid is 2 time denser then µ-grid (typ-
ically µ-grid contains nµ = 16 nodes). In order to resolve bet-
ter soft photons we choose the lower particle energy boundary
0.001mec2 and upper particle energy boundary 10mec2. This
energy region perfectly covers thermal distribution of particles
from θ = 0.1 to θ = 1.

Figure 2 shows numerical thermal photon emissivity coef-
ficient compared with analytic formulas (black curves). All
solid curves besides bremsstrahlung are plotted up to the pho-
ton energy e = 0.02, as they are valid only in the soft pho-
ton limit. There is a good agreement with Svensson formula
(A10) in68 for the double Compton scattering (blue dots), see
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FIG. 3. Dependence of Q parameter defined in eq. (29) which char-
acterize accuracy of the calculation of triple interactions on the num-
ber of nodes in angle variables. The accuracy increases with increas-
ing number of nodes.

also Table II and Figure 3. Bremsstrahlung emissivity (red
dots) show deviations from Haug formula (2.10) in24 for soft
photons; this deviation decreases with increasing resolution
in angles, see Table II. Emissivities for three-photon annihi-
lation (orange dots) and radiative pair production (green dots)
are compared with eq. (A18) and (A20) in68, respectively,
differ by a factor of particle density in the case of non-zero
chemical potential and become identical in the case of zero
chemical potential. The latter case is presented in Figure 2. In-
deed, thermal emissivities of both processes coincide for soft
photons, and become different with increasing photon energy.
Overall, our numerical results show a good agreement with
the corresponding non-relativistic formulas.

In order to estimate accuracy of our calculations, we intro-
duce the following quantity for each process

Q = n−1
cut ∑

a

∣∣∣∣ ηa

ηγ(ea)
−1
∣∣∣∣ , (29)

where ηa is given by eq. (25) for Boltzmann statistics. This
coefficient expresses the average relative deviation of numeri-
cal results from analytical ones for energy grid nodes. Limit of
soft photons is adopted to summation index with upper bound-
ary ncut (namely ncut = 15 as e15 = 0.01 = 0.1θ ). Electron-
electron bremsstrahlung emissivity is compared over full en-
ergy domain. Table II and Fig. 3 present values of Q for
selected number of angular grid nodes. The relative error gen-
erally decreases with angular grid refinement. The Q value
saturates for large number of nodes, which indicates that fur-
ther energy grid refinement is needed. The relatively large
errors for relativistic bremmstrahlung can be explained as fol-
lows. As calculations of Haug63 show the differential cross
section of bremsstrahlung strongly depends on angles even at
nonrelativistic energies. Low resolution in angular grid does
not allow to capture this strong dependence, which results in
reduced accuracy, being compared to other interactions. Both
energy and angular grid refinements provide substantial im-
provements of accuracy for bremsstahlung, see Fig. 5 and 6

below. Overall convergence of numerical results to the corre-
sponding analytical ones is from good to satisfactory.
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FIG. 4. Thermal photon emissivity ηγ as a function of temperature
with fixed energy e = 0.05kBT . Solid curves represent Svennson68

and Haug24 analytical formulas, see text for details.

We also present the results of calculations in a wide temper-
ature region θ = {0.03,0.06,0.1,0.2,0.4,0.8,1.5,3} which



Numerical scheme for evaluating triple interactions in relativistic plasma 8

10-3 10-2 10-1 100 101
1043

1044

1045

1046

1047

ϵ/mec
2

η
γ
,s

-
1

γγ→e+e-γ

1044

1045

1046

1047

η
γ
,s

-
1

e
+
e
-→γγγ

1044

1045

1046

1047

1048

η
γ
,s

-
1

ee→eeγ

1044

1045

1046

1047
η
γ
,s

-
1

eγ→eγγ

FIG. 5. Convergence of emission coefficients with increasing grid
resolution, for a fixed temperature θ = 1. The number of nodes in
angles is 4 (blue dots), 8 (red dots), 16 (green dots), the number of
energy nodes is 60. From top to bottom: double Compton scattering,
relativistic bremsstrahlung, three-photon annihilation, radiative pair
production.
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nodes in angles is 16. From top to bottom: double Compton scatter-
ing, relativistic bremsstrahlung, three-photon annihilation, radiative
pair production.
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extends from non-relativistic to mildly relativistic tempera-
tures. We provide a comparison with a fixed photon energy
in the soft photon limit, here e = 0.05θ . The result is shown
in Figure 4, where black solid curve show analytic curves of
Svensson and Haug. The analytical curve for double Comp-
ton scattering is plotted up to θ = 1, and the non-relativistic
analytical curve for bremsstrahlung is plotted up to θ = 0.3.
Three-photon annihilation and radiative pair production are
compared with the same analytic curves (normalized to dif-
ferent number densities), which consist of two segments: non-
relativistic one plotted up to θ = 1 and relativistic one plotted
above θ = 1.

The convergence of our results is demonstrated in Figures
5 and 6, where we present the dependence of emission co-
efficients at fixed temperature θ = 1 with varying number of
nodes in angles (Fig. 5) and in energy (Fig. 6).

V. CONCLUSIONS

In this work we present the first principle calculations
of collision integrals in triple interactions in relativistic
plasma, including double Compton scattering, relativistic
bremsstrahlung, radiative pair production and three photon
creation/annihilation. These processes are important radiative
processes in relativistic plasmas, and their account is essen-
tial also in the studies of non-equilibrium plasmas. The colli-
sion integrals are computed directly by numerical integration
of vacuum QED matrix elements over the phase space of in-
teracting particles on the finite grid. The plasma dressing ef-
fects such as Debye screening are not considered. Uehling-
Uhlenbeck collision integrals computed in this scheme ac-
count for quantum statistics of particles, therefore strongly
degenerate plasma can be modelled as well. The proposed
method allows solution of relativistic kinetic equations for ar-
bitrary non-equilibrium distribution functions, which take into
account all triple interactions for the first time. This is an im-
portant new step, as most existing kinetic codes do not include
triple interactions, and only few include them in a simplified
way. In addition, our method can be applied to other processes
for which matrix elements are known, such as neutrino inter-
actions.

The comparison with existing analytic results for thermal
distributions shows good agreement, with relative errors in the
calculations not exceeding few percent, except for the case of
relativistic bremsstrahlung where the error can reach up to 20
percent. The convergence of interaction rates with increasing
grid resolution is demonstrated.

The new kinetic code, which computes binary and triple
interactions in relativistic plasma out of first principles has
wide applications in astrophysics, as well as for description of
plasmas generated in laboratory.
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