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Abstract
Symmetry underpins our understanding of physical law. Open systems, those in contact with their environment,
can provide a platform to explore parity-time symmetry. While classical parity-time symmetric systems have
received a lot of attention, especially because of the associated advances in the generation and control of light,
there is much more to be discovered about their quantum counterparts. Here we provide a quantum theory
which describes the non-Hermitian physics of chains of coupled modes, which has applications across optics and
photonics. We elucidate the origin of the exceptional points which govern the parity-time symmetry, survey their
signatures in quantum transport, study their influence for correlations, and account for long-range interactions.
We also find how the locations of the exceptional points evolve as a function of the chain length and chain parity,
capturing how an arbitrary oligomer chain transitions from its unbroken to broken symmetric phase. Our general
results provide perspectives for the experimental detection of parity-time symmetric phases in one-dimensional
arrays of quantum objects, with consequences for light transport and its degree of coherence.

Introduction
While the eigenvalues of a Hermitian Hamiltonian are always
real, the Hermicity condition is more stringent than is strictly
necessary [1]. It was shown by Bender and co-workers that
Hamiltonians that obey parity-time (PT ) symmetry can both
admit real eigenvalues and describe physical systems [2, 3].
The condition of combined space and time reflection symme-
try has immediate utility for some open systems, where there
is balanced loss into and gain from the surrounding environ-
ment. The application of the concept of PT symmetry into
both classical and quantum physics has already led to some
remarkable advances and unconventional phenomena, which
cannot be captured with standard Hermitian Hamiltonians [4–
8].

An important concept within PT symmetry is that of ex-
ceptional points. Let us consider the simplest case of a pair of
coupled oscillators, each of resonance frequency ω0 and inter-
acting via the coupling constant g. The two resulting eigenfre-
quencies ω2 and ω1 are given by ω2,1 = ω0 ± g. After includ-
ing gain at a rate κ into the first oscillator and an equivalent
loss κ out of the second oscillator, the renormalized eigen-
frequencies ω′2 and ω′1 of this PT -symmetric setup become
ω′2,1 = ω0 ±

√
g2 − κ2/4 [see Supplementary Note 1]. The

exceptional point (for this N = 2 oscillator system) is

(
g

κ
)
N=2

=
1

2
, (1)

which defines the crossover between the unbroken PT phase
with wholly real ω′2,1, and the broken phase with complex
ω′2,1. Therefore, by modulating the ratio g/κ one can induce a
plethora of (sometimes unexpected) phenomena intrinsically
linked to PT symmetry, for example in light transport where
amplification and attenuation readily arise [4–8].

Recently, optical and photonic systems have become pop-
ular playgrounds to test PT -symmetric effects in the labora-
tory [9–11]. Indeed, recent experiments in the area have seen

non-reciprocal light propagation in coupled waveguides [12],
single-mode lasing in microring cavities [13], extraordinary
transmission in microtoroidal whispering-gallery-mode res-
onators [14], and the development of hybrid optoelectronic
devices [15]. In parallel, there has been much theoretical work
on many-mode PT -symmetric systems [16], including con-
siderations of trimers [17, 18], quadrimers [19–29] and more
generally oligomers [30–45].

Inspired by the pioneering experiments of Hodaei and co-
workers with chains of ring-shaped optical resonators [46],
we develop a simple theory of short oligomer chains in an
open quantum systems approach. In particular, we study
dimer (N = 2), trimer (N = 3) and quadrimer (N = 4)
chains in detail [see also Supplementary Notes 1 and 2]. We
derive the locations of the exceptional points, and explore the
influence of the PT symmetry phase on both the population
dynamics (revealing regions of amplification) and for correla-
tions (showing areas of perfect coherence and incoherence).
Our open quantum systems approach follows in the wake
of a number of recent theoretical works [47–54] which
employ the concept of PT symmetry with quantum master
equations. We note that a related and pioneering experiment
with superconducting qubits has latterly been reported [55],
highlighting the timeliness of quantum PT -symmetry. We
also uncover how the exceptional point of Eq. (1) is general-
ized for an oligomer chain of an arbitrary sizeN , where there
is gain into the first oscillator and an equivalent loss out of
the last oscillator, with neutral oscillators in between. Using
a transfer matrices approach, we derive an interesting scaling
with N of (g/κ)N , and we find a feature due to the parity
of the oligomer which provides tantalizing opportunities for
experimental detection. Finally, we investigate the emergent
and rich PT symmetry phase diagrams when long-range
coupling (beyond nearest-neighbor) is taken into account,
which crucially determines whether the exceptional point is
of higher order (compared to the dimer case) or not.
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FIG. 1. The PT -symmetric trimer. Panel (a): a sketch of the
PT -symmetric trimer chain (colored spheres), where each oscilla-
tor is of resonance frequency ω0, and the coupling constant is g.
The first oscillator (green sphere) is subject to gain κ (yellow ar-
row), and the final oscillator (cyan sphere) to loss κ (purple arrow).
Panel (b): the real parts of the eigenfrequencies ω′n of the trimer,
measured from ω0, as a function of g, in units of κ [Eq. (11)]. Panel
(c): the corresponding imaginary parts of the eigenfrequencies ω′n.
Vertical dashed lines: exceptional points marking broken-unbroken
PT symmetry phases [Eq. (13)].

Results and Discussion
Trimer chain: model
Here we look at simplest nontrivial chain of oscillators, the
trimer chain (N = 3 sites). The trimer [sketched in Fig. 1 (a)]
already displays some interesting phenomena which is com-
mon across all odd-sited oligomers, and yet it retains some
beauty due to its simplicity. The Hamiltonian operator for the
trimer chain reads (we set h̵ = 1 throughout)

Ĥ = ω0 (b†
1b1 + b

†
2b2 + b

†
3b3) + g(b

†
1b2 + b

†
2b3 + h.c.), (2)

where the bosonic creation (annihilation) operators on oscil-
lator n is denoted by b†

n (bn). Each oscillator is associated

with the resonance frequency ω0, and the nearest-neighbor
coupling between sites is given by g. The three eigenfrequen-
cies ωn of the trimer read

ω3,1 = ω0 ±
√

2g, (3a)
ω2 = ω0, (3b)

revealing a solitary eigenfrequency ω2, which is unshifted
from the bare resonance ω0, while the two other eigenfrequen-
cies ω3 and ω1 display a splitting of

√
2g from the central

resonance. Incoherent processes in the trimer chain are taken
into account via the quantum master equation [56–58]

∂tρ = i[ρ, Ĥ] + ∑
n=1,2,3

γn
2
Lbn + ∑

n=1,2,3

Pn
2
L

†bn, (4)

in terms of the Lindblad superoperators

Lbn = 2bnρb
†
n − b

†
nbnρ − ρb

†
nbn, (5a)

L
†bn = 2b†

nρbn − bnb
†
nρ − ρbnb

†
n. (5b)

The unitary evolution is supplied by the commutator term on
the right-hand-side of Eq. (4), where the Hamiltonian operator
Ĥ is given by Eq. (2). Losses into the heat bath are tracked
using the first Lindbladian term, where γn ≥ 0 is the damp-
ing decay rate of the nth oscillator. Incoherent gain processes,
where Pn ≥ 0 is the pumping rate into oscillator n, are mod-
eled by the final term in Eq. (4).

In order to probe the mean-field dynamics, we exploit the
property ⟨O⟩ = Tr (Oρ), for any operator O, with the master
equation of Eq. (4). This procedure leads to the following
Schrödinger-like equation for the first moments of the trimer
chain

i∂tψ =Hψ, (6)

with the three-dimensional Bloch vector

ψ =
⎛
⎜
⎝

⟨b1⟩
⟨b2⟩
⟨b3⟩

⎞
⎟
⎠
, (7)

and where the dynamical matrixH of first moments reads

H =
⎛
⎜
⎝

ω0 − iΓ1

2
g 0

g ω0 − iΓ2

2
g

0 g ω0 − iΓ3

2

⎞
⎟
⎠
. (8)

In Eq. (8), the renormalized damping decay rate Γn of each
oscillator, due to the incoherent pumping Pn, is

Γn = γn − Pn. (9)

Let us consider the configuration where the first oscillator is
subject to gain via P1 = κ (with P2 = P3 = 0), and the final
oscillator can be described by the loss γ3 = κ (with γ1 = γ2 =

0). Then the mean-field theory of Eq. (8) implies the PT -
symmetric Hamiltonian

Ĥ ′
= (ω0 + iκ

2
) b†

1b1 + ω0b
†
2b2 + (ω0 − iκ

2
) b†

3b3

+ g(b†
1b2 + b

†
2b3 + h.c.), (10)
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which is invariant under the necessary twin transformations
of time and space, essentially that means i → −i and (1,3) →
(3,1). This PT -symmetric arrangement of the trimer chain is
sketched in Fig. 1 (a), which highlights that the first oscillator
is subject to gain κ (yellow arrow), and the final oscillator to
an equivalent loss κ (purple arrow). The three eigenfrequen-
cies ω′n from Eq. (10) are

ω′3,1 = ω0 ±Ω, (11a)

ω′2 = ω0, (11b)

where we have introduce the frequency

Ω = 1
2

√
8g2 − κ2. (12)

Equation (11) reveals the renormalization of the upper and
lower eigenfrequency splittings from Eq. (3), due to the in-
coherent processes associated with κ. In particular, there is an
exceptional point [cf. Eq. (1) for the dimer] at

(
g

κ
)
N=3

=
1

2
√

2
≃ 0.353... (13)

which marks the border between the regime when the PT
Hamiltonian is in its unbroken phase with real eigenvalues,
g ≥ κ/(2

√
2), and the broken phase with complex eigenval-

ues, g < κ/(2
√

2).
We plot the eigenfrequencies of ω′n in Fig. 1 using Eq. (11),

where real parts are given in panel (b) and the imaginary parts
in panel (c). The exceptional point of Eq. (13) is denoted
by the dashed gray line, making explicit the broken and
unbroken phases of the system. There are several features
of Fig. 1 which are shared amongst all odd-sited oligomers,
namely: the purely real resonance frequency ω0 (orange line)
is always an eigenfrequency, two eigenfrequencies always
become complex in the broken PT -symmetric phase, and
these two aforementioned eigenfrequencies are always the
two eigenfrequencies closest to ω0 (neglecting the trivial
ω0 solution). Under the popular classification where an
n-th order exceptional point refers to when n eigenvalues
coalesce at the exceptional point [46], Fig. 1 (b, c) exposes
a higher order exceptional point of the 3rd order (compared
to 2nd order for a dimer, see Supplementary Note 1). These
remarks are further justified in Supplementary Note 2, where
analogous behavior with the quadrimer chain (N = 4) is
analyzed in detail, and some features associated with all
even-sited oligomers are discussed in Supplementary Note 3.

Trimer chain: dynamics
The equation of motion for the second moments of the trimer
gives access to the mean populations ⟨b†

nbn⟩ along the trimer
chain. Similar to the calculation leading to Eq. (6), we obtain

d

dt
u = P −Mu, (14)

for the 9-vector of correlators u and drive term P, where

u =
⎛
⎜
⎝

u1

u2

u†
2

⎞
⎟
⎠
, P =

⎛
⎜
⎜
⎜
⎝

P1

P2

P3

06

⎞
⎟
⎟
⎟
⎠

, (15)
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FIG. 2. Population dynamics. Evolution of the mean populations
⟨b†

nbn⟩ along the trimer chain, as a function of time t, in units of the
inverse loss-gain parameter κ−1 [Eq. (20)]. The coupling constant g
reduces from above to below the exceptional point upon descending
the column of panels [Eq. (13)]. The results for the first, second
and third oscillators are denoted by the thick green, medium orange
and thin cyan lines respectively [see the legend in panel (d), which
applies to the whole figure].

where 0n is the zero matrix (of n-rows and a single column),
and with the sub-vectors of u

u1 =
⎛
⎜
⎝

⟨b†
1b1⟩

⟨b†
2b2⟩

⟨b†
3b3⟩

⎞
⎟
⎠
, u2 =

⎛
⎜
⎝

⟨b†
1b2⟩

⟨b†
2b3⟩

⟨b†
3b1⟩

⎞
⎟
⎠
. (16)
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The matrix M of second moments in Eq. (14) reads

M =
⎛
⎜
⎝

M11 M12 M∗
12

MT
12 M22 M23

M†
12 M∗

23 M22

⎞
⎟
⎠
, (17)

where the on-diagonal sub-matrices comprising M are

M11 = diag (Γ1,Γ2,Γ3) , (18a)

M22 = diag (Γ1+Γ2

2
, Γ2+Γ3

2
, Γ3+Γ1

2
) , (18b)

where Γn is defined in Eq. (9), while the two off-diagonal
sub-matrices of M are defined by

M12 =
⎛
⎜
⎝

ig 0 0
−ig ig 0
0 −ig 0

⎞
⎟
⎠
, M23 =

⎛
⎜
⎝

0 0 ig
0 0 −ig
−ig ig 0

⎞
⎟
⎠
. (19)

In Eq. (17), the symbols ∗,† and T represent taking the con-
jugate, conjugate transpose, and transpose respectively.

Let us consider the PT -symmetric arrangement of the
trimer, as sketched in Fig. 1 (a). In this special configura-
tion, the nontrivial eigenvalues of the matrix M in Eq. (17)
are ±i

√
8g2 − κ2 and ±i

√
8g2 − κ2/2, recovering the critical-

ity first expounded at the level of the non-Hermitian Hamilto-
nian in Eq. (13). Using the frequency Ω as defined in Eq. (12),
we find the following analytic expressions for the populations

⟨b†
1b1⟩ =

48g4Ω + 32κg2Ω2 sin (Ωt) + κ (κ4 − 12g2κ2 + 32g4) sin (2Ωt) + 16g2Ω (4g2 − κ2) cos (Ωt) + Ω̃5 cos (2Ωt)

32Ω5
, (20a)

⟨b†
2b2⟩ =

g2

2Ω5
sin2

(
Ωt

2
){8g2Ω + 4κΩ2 sin (Ωt) + 2Ω (4g2

− κ2) cos (Ωt)}, (20b)

⟨b†
3b3⟩ =

4g4

Ω4
sin(

Ωt

2
) , (20c)

where Ω̃5 = 2Ω(8g4 − 8g2κ2 + κ4). Upon approaching the
exceptional point (where Ω→ 0), Eq. (20) reduces to the alge-
braically divergent ⟨b†

1b1⟩ = (1+κt/4)4, ⟨b†
2b2⟩ = (κt/2)2(1+

κt/4)2/2, and ⟨b†
3b3⟩ = (κt/4)4. Below the exceptional point,

the trigonometric functions in Eq. (20) are superseded by hy-
perbolic functions, leading to exponential divergencies.

We plot the populations ⟨b†
nbn⟩ of the first, second and

third oscillators (n = 1,2,3) as the thick green, medium
orange and thin cyan lines in Fig. 2, using the solutions
of Eq. (20). In Fig. 2 (a), where g = κ, a high frequency
population cycle is observed, which is maintained over time
due to the balanced loss and gain in the system. In panels (b)
and (c), where the coupling strength is reduced to g = 3κ/4
and g = κ/2 respectively, the frequency of the population
cycle is successively reduced, while the maxima of the mean
populations are increased due to the closening proximity to
the exceptional point [cf. Eq. (13)]. The broken PT phase is
exemplified in panel (d), where g = 0.35κ < κ/(2

√
2), which

displays the characteristically diverging population dynamics
associated with breakdown beyond the exceptional point.

Trimer chain: correlations
The temporal coherence can be quantified using the first-order
correlation function [56]

g(1)n (τ) = lim
t→∞

⟨b†
n(t)bn(t + τ)⟩

⟨b†
n(t)bn(t)⟩

, (21)

where τ is the time delay, and where the normalization is
taken over a long time scale t → ∞. This quantity has the

property that perfect coherence is associated with ∣g
(1)
n (τ)∣ =

1 and complete incoherence corresponds to ∣g
(1)
n (τ)∣ = 0,

while intermediate cases specify the degree of partial coher-
ence. The manipulations resulting in Eq. (6), and an applica-
tion of the quantum regression theorem, lead to an equation
for the first desired two-time correlator ⟨b†

1(t)b1(t + τ)⟩, via

∂τv +Qv = 0, v =
⎛
⎜
⎝

⟨b†
1(t)b1(t + τ)⟩

⟨b†
1(t)b2(t + τ)⟩

⟨b†
1(t)b3(t + τ)⟩

⎞
⎟
⎠
, (22)

with the 3 × 3 regression matrix

Q =
⎛
⎜
⎝

iω0 +
Γ1

2
ig 0

ig iω0 +
Γ2

2
ig

0 ig iω0 +
Γ3

2

⎞
⎟
⎠
. (23)

Similar equations may be derived for ⟨b†
2(t)b2(t + τ)⟩ and

⟨b†
3(t)b3(t + τ)⟩. The solution of Eq. (22), along with the

definition of Eq. (21), leads to the sought after first-order cor-
relation functions. In the PT -symmetric setup of trimer, as
drawn in Fig. 1 (a), one finds the neat expressions

g
(1)
1 (τ) = g

(1)
3 (τ) =

8g2 cos2 (Ωτ
2
) − κ2

4Ω2
e−iω0τ , (24a)

g
(1)
2 (τ) =

4g2κ2 − κ4 + 32g4 cos (Ωτ)

4g2κ2 − κ4 + 32g4
e−iω0τ , (24b)

which characteristically include the harmonic compo-
nent e−iω0τ , representing a monochromatic field cen-
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FIG. 3. Dynamics of the correlations. Evolution of the real part of
the first-order correlation function g(1)(τ), as a function of the time
delay τ , in units of the inverse loss-gain parameter κ−1 [Eq. (24)].
Panel (a, b, c): the coupling constant g is reduced from above (upper
two panels) to at (lower panel) the exceptional point located at g =
κ/(2
√
2). The results for the first and second oscillators are denoted

by the thick green and thin orange lines respectively [see the legend
in panel (c), which applies to the whole figure]. In the figure, ω0 =

20κ.

tered on ω0, and a pre-factor accounting for the spe-
cific PT -symmetric setup of the trimer. In the limit
of Ω → 0, that is approaching the exceptional point
g → κ/(2

√
2), Eq. (24) tends towards the quadratically

divergent results g
(1)
1,3 (τ) → {1 − κ2τ2/16}e−iω0τ and

g
(1)
2 (τ) → {1 − κ2τ2/24}e−iω0τ . For coupling strengths

below the exceptional point the trigonometric functions are
replaced with hyperbolic functions, indicating exponentially
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FIG. 4. The effect of long-range interactions. Panel (a):
a sketch of the PT -symmetric trimer (colored spheres) beyond
nearest-neighbor coupling, where the first-neighbor coupling con-
stant is g, and the second-neighbor coupling constant is h. The first
oscillator (green sphere) is subject to gain κ (yellow arrow), and the
final oscillator (cyan sphere) to loss κ (purple arrow). Panel (b): the
PT symmetry phase diagram of the trimer, given by the evolution
of the exceptional point (g/κ)3 with the first and second-neighbor
couplings g and h, both in units of κ [Eq. (26)]. White: unbroken
phase. Green: broken phase.

divergent behavior. We plot the real parts of the coherences
g
(1)
1 (τ) and g

(1)
2 (τ) of the first and second oscillators as

the thick green and thin orange lines in Fig. 3, using the
solutions of Eq. (24). In Fig. 3 (a), well above the exceptional
point at g = κ, the PT symmetry ensures an undamped
periodic response, with rapid oscillations and a dynamic
behaviour satisfying 0 < ∣g

(1)
n (τ)∣ < 1. Exactly at g = κ/2,

where all three coherences are accidentally equal as shown
in panel (b), a well-defined wave envelope develops. In
panel (c), at the exceptional point g = κ/(2

√
2), there is

initially regular, high frequency oscillations due to short time
behaviour being essentially dominated by the zeroth order
term g

(1)
n (τ) ≃ e−iω0τ . Once the quadratic correction in κt

becomes non-negligible, the divergence characteristic of the
broken PT symmetric phase finally emerges.

Trimer chain: long-range coupling
Let us now consider the effects of going beyond the nearest-



6

0 0.25 0.5 0.75 1

−0.5

−0.25

0

0.25

0.5

g/κ

Im
(ω̃

′ n
)/
κ

−2

−1

0

1

2
(R

e(
ω̃
′ n
)
−
ω
0
)/
κ

3
2
1

0 0.25 0.5 0.75 1

g/κ

0 0.25 0.5 0.75 1

g/κ

(a) (b) (c)

(d) (e) (f)

h = (1/4)κ h = (1/2)κ h = (3/4)κ

0.660 0.919 0.295

FIG. 5. Exceptional points of the trimer with long-range interactions. Panels (a-c): the real parts of the eigenfrequencies ω̃′n of the
trimer, measured from ω0, as a function of g, in units of κ [Eq. (26)]. Panels (d-f): the corresponding imaginary parts of the eigenfrequencies
ω̃′n. Vertical dashed lines: exceptional points marking broken-unbroken PT symmetry phases. In the first, second, and third columns, the
second-nearest neighbor coupling constant h = κ/4, κ/2 and 3κ/4 respectively. The results for the first, second and third eigenfrequencies ω̃′n
are denoted by the thin green, medium orange and thick cyan lines respectively [see the legend in panel (a), which applies to the whole figure].

neighbor coupling approximation employed in Eq. (2). To do
so, we introduce the second-nearest neighbor coupling con-
stant h, which connects the first and third oscillators, via the
generalized Hamiltonian Ĥ ′ = Ĥ + h(b†

1b3 + b
†
3b1), where Ĥ

is defined in Eq. (2). This extension leads to a generalization
of the eigenfrequencies of Eq. (3) to ω̃n, where

ω̃3,1 = ω0 +
h
2
± 1

2

√
8g2 + h2, (25a)

ω̃2 = ω0 − h. (25b)

The associated PT -symmetric setup of trimer chain is
sketched in Fig. 4 (a) [cf. Fig. 1 (a)]. The resulting eigen-
frequencies ω̃′n are [cf. Eq. (11)]

ω̃′3 = ω0 +

√
8g2 + 4h2 − κ2

3
cos(

α

3
) , (26a)

ω̃′2 = ω0 +

√
8g2 + 4h2 − κ2

3
cos(

α + 4π

3
) , (26b)

ω̃′1 = ω0 +

√
8g2 + 4h2 − κ2

3
cos(

α + 2π

3
) , (26c)

where we have introduced the quantity

α = arccos
⎛

⎝

24
√

3g2h

(8g2 + 4h2 − κ2)
3/2

⎞

⎠
. (27)

The inclusion of second-nearest neighbor coupling h leads
to a significantly richer phase diagram than with nearest-
neighbor coupling only, as is demonstrated in Fig. 4 (b). No-
tably, when h = 0 Eq. (13) is recovered, so that above this

threshold strength of 1/(2
√

2) the system is in its unbroken
phase. With increasing h, the exceptional point (g/κ)3 in-
creases in value, up until h = κ/2. Above this critical point,
the unbroken phase can be explored either with weak enough
g, or strong enough g, with a region of broken phase in be-
tween. This causes a green stripe in the phase diagram of
Fig. 4 (b), which notably contains the equal coupling (h = g)
ring-like limit. The aforementioned broken-unbroken transi-
tions from above and from below can be explicitly seen in
Fig. 5, where the real and imaginary parts of ω̃′n are shown, as
a function of g/κ, in the upper and lower rows respectively. In
the first column of Fig. 5, one notices how a nonzero second-
nearest neighbor coupling (h = κ/4) has led to a larger ex-
ceptional point of (g/κ)3 ≃ 0.660, compared to the nearest-
neighbor coupling case when (g/κ)3 ≃ 0.353. The middle
column, at the critical point of h = κ/2, shows the onset of
a new region of unbroken PT phase for vanishingly small g.
This novel region is even more apparent in the final column of
Fig. 5, where h = 3κ/4 and the exceptional point is well below
the nearest-neighbor value, being (g/κ)3 ≃ 0.295. Across all
of these cases, it is most apparent that the higher (3rd order)
exceptional point of the trimer with nearest-neighbor coupling
only [cf. Fig. 1 (b, c)] has been downgraded to a standard 2nd
order exceptional point in Fig. 5. This is due to the long-
range interactions perturbing the eigensolution otherwise re-
siding exactly at ω0. Similarly rich features due to long-range
interactions are also seen in the quadrimer chain (N = 4), as
is demonstrated in Supplementary Note 2.

Oligomer chains
We have seen some fundamental properties of short PT -
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FIG. 6. Evolution of the exceptional point in arbitrary chains.
The exceptional point (g/κ)N as a function of the number of sites
N in the oligomer chain [Eq. (29)]. Results with even (odd) N are
associated with red (green) circles.

symmetric oligomer chains (specifically for N = 3, and for
N = 2 and N = 4 in the Supplementary Notes 1 and 2). Let
us now consider a general oligomer of arbitrary size N , with
nearest-neighbor coupling only. The eigenfrequencies read

ωn(N ) = ω0 + 2g cos(
nπ

N + 1
) , (28)

where the index n ∈ [1,N ] labels each mode [such that the
specific results for N = 3 reproduce Eq. (3)]. If we gener-
alize the PT -symmetric arrangement of Fig. 1 (a), that is if
we allow for gain into the first oscillator and an equivalent
loss out of the N th oscillator in the chain, so that the setup is
[gain] − [neutral]N−2 − [loss], we can find how the excep-
tional point (g/κ)N evolves as a function of N . The result
of this diagonalization of a chain of an arbitrary N -oscillator
oligomer is derived in Supplementary Note 3, using a trans-
fer matrix method [59–61]. This procedure leads to the rather
beautiful expression [cf. Eq. (1) and Eq. (13)]

(
g

κ
)
N

=

⎧⎪⎪
⎨
⎪⎪⎩

1
2
, N = 2,4,6, ...

1
2

√
N−1
N+1

, N = 3,5,7, ...
(29)

We display graphically the formula of Eq. (29) in Fig. 6. Most
notably, for oligomers of even size N (red circles), the ex-
ceptional point is constant at (g/κ)N = 1/2, and is of 2nd
order. However, oligomers of odd size N (green circles) are
associated with smaller exceptional points than the celebrated
dimer result, and are of higher (3rd) order. These exceptional
points are bounded by the limiting cases of the trimer result of
(g/κ)3 = 1/(2

√
2) ≃ 0.353... and the infinitely long chain

result of (g/κ)∞ = 1/2, as shown in Fig. 6 for chains up
to N = 20 oscillators. In particular, the even-odd behavior
shown in Fig. 6 is ripe for future experimental detection, as is
the trend for increasing large values of the exceptional point
with increasingly long odd-numbered chains, following the
trend encapsulated by Eq. (29), and its inverse-linear asymp-
totics (g/κ)N ≃ (1 −N −1)/2 for large N . While we do not

account for disorder, or for dimerization of the chain (which
may be interesting from a topological point of view [62]), such
extensions can be readily taken care of within this framework.

The addition of next-nearest neighbor hoppings to
oligomers of an arbitrary length allows us to generalize our
investigation of long-range interactions in a short trimer chain
[cf. Fig. 4 (b)]. Similar to the N = 3 case, we can map
the phase diagram marking the regions of broken (colored)
and unbroken (white) PT symmetric phase, as is shown in
Fig. 7 (a, b, c, d) for oligomers of length N = {4,5,6,7}.
The two relevant parameters are the first and second-neighbor
coupling strengths g and h, such that the vertical axis (h = 0)
is marked with analytic results from Eq. (29). Away from this
point, the influence of nonzero next-nearest neighbor hopping
is rather profound: leading to seas (and even enclaves) of
unbroken PT symmetry in a variety of geometries. Recent
advances with so-called programmable interactions in atomic
arrays suggest that the experimental exploration of such
phase diagrams is increasingly accessible [63], aside from the
demonstrated tunable interaction ranges in trapped atomic
ions [64, 65].

Conclusions
We have considered some fundamental properties of
oligomers of an arbitrary size which satisfyPT symmetry due
to having gain into the first oscillator and an equivalent loss
out of the final oscillator. We have unveiled analytically the
behavior of the exceptional points as a function of the chain
length, which governs the stability of the population dynamics
in the system and the presence of amplification. In particular,
we have reported an even-odd effect for oligomers of increas-
ing size, derived the bounds on all possible exceptional points,
and mapped the relevant phase diagrams when long-range in-
teractions are taken into account.

Focusing on short oligomers, we have provided simple
quantum theories locating their exceptional points, and in do-
ing so we found unconventional population dynamics and in-
teresting first-order coherences near to the unbroken-broken
PT -symmetric phases. We have also discussed effects be-
yond nearest-neighbor coupling, which leads to rich PT
symmetry phase diagrams. In particular, we have shown
that reaching the unbroken PT symmetric phase is no
longer purely dependent on going above a threshold value of
coupling-to-dissipation strength g/κ, rather one may also go
below a different threshold value, such that the broken phase
can live in a sweet-spot in-between.

Our versatile theory is relevant across a number of
optical and photonic platforms, including coupled ring
resonators [66], coupled cavities [67], coupled waveg-
uides [68, 69] and meta-atoms [70]. Our theoretical results
provide a route-map for the scaling up of PT -symmetric
systems, and paves the way for the observation of coop-
erative effects in arbitrarily large systems. There are clear
perspectives for the experimental detection of our predictions,
including finite size effects, even-odd behaviors, uncon-
ventional light transport and correlations, and long-range
interactions leading to sweet spot regions of PT symmetry
phase breakdown.
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Methods
In this theoretical work, the methods used are quantum master
equations (as described in the main text [cf. Eq. (4)] and
Supplementary Note 1), and an extended transfer matrices
method (as detailed in Supplementary Note 3).
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