The Journal of Geometric Analysis (2020) 30:3806-3858
https://doi.org/10.1007/s12220-019-00219-x

n

Check for

updates
Homogeneous Integrable Legendrian Contact Structures in
Dimension Five

Boris Doubrov'® - Alexandr Medvedev?3 . Dennis The%>6

Received: 12 September 2016 / Published online: 4 July 2019
© Mathematica Josephina, Inc. 2019

Abstract

We consider Legendrian contact structures on odd-dimensional complex analytic man-
ifolds. We are particularly interested in integrable structures, which can be encoded
by compatible complete systems of second order PDEs on a scalar function of many
independent variables and considered up to point transformations. Using the tech-
niques of parabolic differential geometry, we compute the associated regular, normal
Cartan connection and give explicit formulas for the harmonic part of the curvature.
The PDE system is trivializable by means of point transformations if and only if the
harmonic curvature vanishes identically. In dimension five, the harmonic curvature
takes the form of a binary quartic field, so there is a Petrov classification based on its
root type. We give a complete local classification of all five-dimensional integrable
Legendrian contact structures whose symmetry algebra is transitive on the manifold
and has at least one-dimensional isotropy algebra at any point.
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1 Introduction

One of the main goals of this paper is to approach this complete classification of
Levi non-degenerate real hypersurfaces in C> that form the boundary (or rather its
smooth part) of a possibly unbounded homogeneous domain in C3. It is well-known
that all such bounded domains are symmetric. This result is attributed to Cartan [9],
who however never published any details on this. A more recent classification of
homogeneous bounded domains up to dimension 8 is present in [14]. We note that the
first non-symmetric examples of bounded homogeneous domains are due to Pjateckii-
Shapiro [22] and appear only in dimension 4. The unbounded case, however, is much
less studied. One of the examples of such domains is given by the real hypersurface

Im(z 4+ wx) + |x|* =0,

known as the Winkelmann hypersurface [27]. This hypersurface separates C3 into
two open domains, both of which are preserved by an 8-dimensional real Lie group
of biholomorphic transformations, which is the maximal symmetry dimension of a
non-spherical Levi non-degenerate hypersurface in C3.

Loboda [17-19] obtained the complete classification of all strictly pseudo-convex
real hypersurfaces in C> with large (of dimension 6 and higher) symmetry groups. He
also classified such surfaces with 7-dimensional symmetry with indefinite Levi form.
The classification of hypersurfaces with 6-dimensional symmetry and indefinite Levi
form has been still open.

We approach this problem by considering its complex counterpart. Namely, the
geometry of real analytic Levi non-degenerate hypersurfaces in C3 is closely related
to complete systems of 2nd order complex PDEs on one function u(x, y) of two
variables. We refer to works of Sukhov [23,24], Gaussier, Merker [13,20] for more
detail. Complete systems of 2nd order PDEs on one function of an arbitrary number
of independent variables can be represented as differential geometric objects known
as Legendrian contact geometries.

The present paper focuses on the detailed study of these geometries. In particular,
we obtain the complete list of integrable Legendrian contact structures in dimension
5 with transitive symmetry algebras of dimension 6 and higher. The next step, a
classification of homogeneous CR structures in dimension 5 and the corresponding
homogeneous hypersurfaces in C3, will be treated in a separate paper [11].

A Legendrian contact structure (M; E, F) is defined to be a splitting of a contact
distribution C (on an odd-dimensional manifold M) into the direct sum of two sub-
distributions E, F' that are maximally isotropic with respect to the naturally defined
conformal symplectic structure on C. Such structures can be treated in both the real
smooth and complex analytic categories. In the current paper, we assume that all our
manifolds and related objects are complex analytic, although many results are also
valid in the smooth category.
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3808 B. Doubrov et al.

We shall exclusively deal with infegrable Legendrian contact structures (or just
ILC structures), which means that both isotropic subdistributions are completely inte-
grable. The main sources of ILC structures are compatible complete systems of 2nd
order PDEs on one unknown function of several variables (considered up to point
transformations), i.e.

0%u .
W—fu(x,u,au), 1<i,j<n,
and the complexifications of (Levi non-degenerate) CR structures of codimension 1.

The smallest dimension of a manifold with a Legendrian contact structure is 3. In
this dimension both isotropic subdistributions are 1-dimensional and are automatically
completely integrable. The corresponding ILC structures can be encoded by a single
2nd order ODE and have been well-studied starting from the pioneering work of Tresse
[26] (see also [2,6,21]). Their real counterpart, CR structures on 3-dimensional real
hypersurfaces in C2, have also been well-studied starting from the classical works of
Cartan [7,8].

Legendrian contact structures belong to the class of so-called parabolic geome-
tries. In particular, they enjoy a number of important properties derived from the
general theory of parabolic geometries [4]: the existence of a natural Cartan connec-
tion, description of the principal invariants in terms of the representation theory of
simple Lie algebras, finite-dimensional symmetry algebras, and the classification of
submaximal symmetry dimensions [16]. Legendrian contact structures are modeled
by the flag variety Flag, ,,,; (C"*?) of pairs of incident lines and hyperplanes in C"*!
equipped with a natural action of PGL(n + 2, C).

We note that in [25], Takeuchi studied the special class of Legendrian contact
structures that are induced on the projective cotangent bundle M = P(T*N) from a
projective structure (N, [V]). With the sole exception of the flat model, this induced
structure on M is never an ILC structure. Thus, his study is transverse to our study
here.

In the current paper we are mainly interested in the classification of multiply tran-
sitive ILC structures in dimension 5. The term “multiply transitive” means that the
symmetry algebra of the ILC structure should be transitive on the manifold and should
have a non-trivial isotropy subalgebra (i.e. at least one-dimensional) at each point. As
our study here is local in nature, we may as well require these conditions in an open
subset of the manifold.

In dimension 3, all multiply transitive ILC structures are flat. This reflects a
well-known fact that any 2nd order ODE is either equivalent to the trivial equation
u”(x) = 0 and has 8-dimensional symmetry algebra, or its symmetry algebra is at
most 3-dimensional. In dimension 5 this is no longer the case, as, for example, the sub-
maximally symmetric ILC structures have symmetry algebras of dimension 8 and are
multiply transitive [16]. In fact, all ILC structures with 8§ symmetries are locally equiv-
alent. This leaves us with the classification of ILC structures with 6- and 7-dimensional
Ssymmetry.

As in the case of the geometry of scalar 2nd order ODEs, complete systems of
2nd order PDEs also admit a notion of duality that swaps the set of dependent and
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independent variables with the space of constants of integration parametrizing the
generic solution. This corresponds to swapping the two isotropic distributions defining
the ILC structure. We classify ILC structures up to this duality and indicate which
structures are self-dual, i.e., locally contact equivalent to their dual.

In his famous 1910 paper [5], Elie Cartan studied the geometry of rank two distribu-
tions on 5-manifolds having generic growth vector (2, 3, 5). For such structures, Cartan
solved the local equivalence problem and obtained a classification of all multiply tran-
sitive models.! While the equivalence problem was solved by means of Cartan’s
equivalence method [12], we bypass this step in our study of ILC structures by using
the full power of parabolic geometry. Indeed, representation theory is used to quickly
construct the full curvature module and set up the structure equations for the (regu-
lar, normal) Cartan geometry. Our classification of multiply transitive ILC structures
implements Cartan’s technique, which we refer to as Cartan’s reduction method.

There is another striking similarity between ILC structures in dimension 5 and
(2, 3,5) distributions. In both cases the fundamental invariant is represented by a
single binary quartic. Similar to the Petrov classification for the Weyl curvature tensor
in Lorentzian (conformal) geometry, we classify ILC structures in dimension 5 by the
number and multiplicity of roots of this quartic. We also prove that non-flat multiply
transitive structures may only have type N (a single root of multiplicity 4), type D (two
roots of multiplicity 2), or type III (one simple root and one root of multiplicity 3). This
is quite similar to Cartan’s result [5] that all multiply transitive (2, 3, 5)-distributions
have either type N or type D. We identify the maximal symmetry dimension for each
Petrov type in Theorem 3.1.

The main result of our paper can be summarized as follows:

Theorem 1.1 Any multiply transitive ILC structure in dimension 5 is locally equivalent
to the ILC structure defined by one of PDE models in Table 1 or its dual.

Remark 1.2 We denote by ujy, u12, uy the second order partial derivatives of the
unknown function u, and use the notation p = uy, g = u, for the first order derivatives.
The functions F,, and G, are defined as follows:

z*, n € C\{0, 1}
@), w=0
@ =1 @), w=1
exp(z), u = 00
7“, keC
gK(Z) = eXp(Z), K = 00

In particular, the parameters j, x are both allowed to take the value oo if the contrary
is not stated.

Remark 1.3 A checkmark or cross under the SD column indicates that every element in
the indicated family is self-dual or not self-dual, respectively. The situation for N.6-2

! One inadvertent omission from Cartan’s list was recently discovered in [10].
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Table2 Symmetry algebras of multiply transitive ILC structures

Model Derived series (DS) Nilradical Comments
N.8 [8,6,4,0] 6-dim, DS = [6,4,0], LCS =
[6,4,3,1,0]
N.7-1 [7,5,2,0] 5-dim, DS = LCS =[5,2,0]
N.7-2 [7,6,6] 4-dim abelian (s03 X (C3) x C
N.6-1 { {2’ Z’ f 8}’ w7 8 5-dim, DS = [5,2,0], LCS =
R [5.2.1.0]
5-dim, DS = [5, 2, 0], o
N.6-2 [6,4,0] LCS =15,2,1,0] ~’ -
4-dim abelian,
b7 [7,6,6], L#£0 1-dim abelian, L#£0 sly xslp x C
’ [7,6,4,3,3], A=0 3-dim Heisenberg, 1 = 0
D.6-1 [6,6] 1-dim sly X s3, 53 is Heisenberg
D.6-2 [6,4,1,0] 4-dim, DS = LCS = [4,1,0]
D.6-3 [6,6] 0-dim sly x sl
D63  [66] 3-dim abelian s03 x C3
D.6-4 [6,6] 0-dim sly x slp
1IL.6-1 [6,4,2,0] 4-dim, DS = [4,2,0], LCS =
[4,2,1,0]
111.6-2 [6,5,5] 2-dim abelian alp x C2

is more complicated. The corresponding ILC structure is self-dual if and only if the
parameters @ and « satisfy u —x —2 =0o0r u + « + 1 = 0 (see Table 14).

Remark 1.4 Equations from different items in this list correspond to inequivalent ILC
structures. However, there are some additional equivalence relations on parameter
spaces for multi-parameter equations within the same item. They are indicated in the
last column of Table 1.

Our labeling abides by the following rules. The first letter (N, D, or III) denotes the
type of the invariant binary quartic. The next digit (6, 7, or 8) refers to the dimension
of the symmetry algebra. The final digit is a labeling of the equation within the given
subclass. Finally, the case D.6-3 is a limit of D.6-3 as the parameter A tends to
infinity.

Table 2 describes basic algebraic properties of symmetry algebras for obtained
models.

The paper is organized as follows. In Sect. 2 we provide generalities concerning
Legendrian contact structures, establish the relationship between ILC structures and
compatible complete systems of 2nd order PDEs, discuss the notion of duality, define
the (regular, normal) Cartan connection associated with a given ILC structure, and
provide explicit formulas for the fundamental (harmonic) part of its curvature.

In Sect. 3 we specialize to 5-dimensional ILC structures, define the fundamental
binary quartic and prove that ILC structures of types I and II cannot be multiply
transitive. We also reconstruct the full curvature tensor of the Cartan geometry.
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In Sect. 4 we proceed with the detailed Cartan analysis of the general regular,
normal Cartan connection, which involves normalizing parts of the curvature and
its derivatives, reducing the Cartan bundle and iterating the procedure. As we are
interested only in multiply transitive ILC structures, we terminate this process as soon
as the fibers become 0O-dimensional. This leads us to the list of all possible structure
equations for the reduced bundles. We integrate each of these structure equations and
come up with the corresponding ILC model defined in terms of the system of 2nd
order PDEs. Finally, in the Appendix we give the detailed Lie algebra isomorphisms
establishing the correspondence between the Cartan equations of the reduced bundle
and the model systems of 2nd order PDE:s, the equivalence relations on the parameters
and the duality.

2 Legendrian Contact Structures
2.1 Generalities

On any contact manifold (M, C), the contact distribution C C T M is locally defined
by the vanishing of a 1-form o (unique up to multiplication by a non-vanishing func-
tion), and do | ¢ is a (conformal) symplectic form. Given a splittingC = E®F C TM
into transverse Legendrian subdistributions E and F,i.e. do|g = O and do|r = 0,
we say (M; E, F) is a Legendrian contact (LC) structure. Let d1m(M )y=2n+1,s0
n = rank(E) = rank(F). Two LC structures (M; E, F) and (M E F) are (locally)
equivalent if there exists a (local) diffeomorphism ¢ : M — M such that d ¢(E) =

and d¢(F) = F. There is also a natural notion of duality of LC structures: the dual
of( M, E,F)is(M; F, E).

Since E and F are Legendrian, then [E, E] C C and [F, F] C C. The projections
from C onto E and F induce maps 7 : ['(E) x I'(E) — I'(F) and tr : I'(F) X
I'(F) — T'(E) that obstruct the integrability of £ and F. The structure is semi-
integrable or integrable according to whether one or both of tg, tF are identically
zero. In the latter case, we call it an ILC structure.

Proposition 2.1 Given any contact manifold (M, C) of dimension 2n + 1 and a rank
n integrable subdistribution V. C C, we may choose local coordinates (x', u, p;) on
M such that contact form is 0 = du — p;dx' and V = span{0d, }.

Proof Since V is integrable and rank n, then by the Frobenius theorem there exist local
coordinates {xi}l.szl such that V = ker{dx! = ... = dx"*!}. Hence, C = ker{c},
where o = Ldx! + ...+ )»n+1dx”“ . The contact condition (do)" A o # 0 implies
that not all A; can simultaneously vanish, so WLOG A, # 0 locally, and after
rescaling we may assume A, 1 = 1. Now define u = x"*! and p; = ;. The contact
condition guarantees that (x’, u, p;) is indeed a coordinate system. O

Suppose that V := F is integrable, i.e. the LC structure is semi-integrable. By
Proposition 2.1, there exist functions f;; = f;; (x*, u, pe) with f; i = fji (since E is
Legendrian) such that

= span{D; := 9,i + pidu + fijop;}, V = span{d), }. 2.1)
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Equivalently, we are studying the geometry of the system of scalar 2nd order PDE

0%u o
o Sij(x, u, ou), 1<i,j<n, 2.2)
considered up to point transformations. These are contact transformations that preserve
the (vertical) bundle V. All such transformations are precisely the prolongations of
arbitrary diffeomorphisms in the (x’, u) variables. The system (2.2) is overdetermined
if n > 1. If n = 1, then (2.2) is a single 2nd order ODE, whose point geometry has
been well-studied [26].

Remark 2.2 Consider the jet spaces J* = J¥(C", C) and projections né‘ L £
On J2, the contact system is {du — pidxi, dp; — pijdxj}, expressed in standard jet
coordinates. Pulling back to a submanifold £ defined by p;; = f;; (x*, u, pe) yields
the subbundle E in (2.1). The restriction 7112| g : & — Jlisalocal diffeomorphism.
The subbundle V in (2.1) is tangent to the fibers of n& o 7112.

Lemma 2.3 The PDE system (2.2) is compatible if and only if E in (2.1) is integrable.

Proof 1t is easy to see that [D;, D;] € E if and only if [D;, D;] = 0, which happens
if and only if D; fix = D; fjx for 1 < i, j, k < n. This is exactly the compatibility
condition of (2.2). O

2.2 Duality

If the dual LC structures (M; E, F) and (M; F, E) are equivalent, then we say that
the structure is self-dual. For ILC structures, the notion of duality generalizes the
classical duality for 2nd order ODE [6]. Namely, for the ILC structure (M; E, V)
given by (2.1), we can (by Proposition 2.1) find coordinates (', v, g;) for the dual
ILC structure (M; V, E), i.e.

V = span{ayf +gi0y + ﬁjaqj} , E =span{d,}.

Then 8}?,-281; - = fi j is the dual system to (2.2) (and is well-defined only up to point

transformations).

Example 2.4 The simplest example of an ILC structure is the flat model u;; = 0.
The Legendre transformation (', v, gx) = (pi,u — pjx/, —xk), is a contact (but
non-point) transformation which swaps the £ and V subbundles, so this structure is

self-dual.

Example 2.5 For ILC structures when n = 2, we have the self-dual D.7 systems:
Si:oun=ph upn=0 up=»ir* reC\{-1},
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3814 B. Doubrov et al.

where p = u1 and g = u,. For fixed A, a self-duality, i.e. a swap (E, V) — (V, E),
is exhibited by

D(x,y,u,p,q)
(et b= (4 L) —u st inp) + Fin-g), £.g) L h £ 0;
(— (x+%>,—q,—u+qy+ln(—p),p, —y), A=0

Moreover, S;, = Sy when A # 0 via the transformation ®(x, y,u, p,q) =
(v, x, Au, Agq, Ap).

As in the case of dual 2nd order ODEs, the dual ILC structures can be constructed
in terms of the corresponding PDE models via swapping the space of independent and
dependent variables with the space of integration constants parametrizing solutions
of a given compatible PDE. In more detail, the general solution of any compatible
system (2.2) is parametrized by n + 1 constants of integration and can be written as:

F(x',u;a’/,b)=0, 1<i,j<n. (2.3)

We can consider this as an (n + 1)-parameter family of hypersurfaces in (x, u)-space
with parameter space (a’, b). On the other hand, we can (locally) regard b as a function
of a/, so that (2.3) can be interpreted as an (4 1)-parameter family of hypersurfaces in
(a’, b)-space with parameter space (x’, u). This is the solution space of a well-defined
compatible system of 2nd order PDE’s on b(a/).

Algorithmically, we construct the dual PDE system by differentiating (2.3) with
respect to a/ (regarding x’, u as constants and b as a function of a’), solving the
obtained system of n + 1 equations with respect to x*, u and substituting the solution
into the second order derivatives of (2.3) with respect to al.

Example 2.6 In the simplest example of the flat equation u;; = O the general solution
is given by:

u=a'x'+...a"x" +b.

Treating b as a function of a/, differentiating this solution twice and excluding x', u
we get the same flat equation b;; = 0. This again demonstrates the self-duality of the
flat model.

Example 2.7 The I11.6-1 system u1; = Lq u12 = upy = 0 has general solution

u:—ay+c—b(x+a)2, a,b,c eC.

Regarding c as a function of a, b and treating x, y, u as parameters, we have ¢, =
y +2b(x + a), cp = (x +a)?, and

Caa = 2b, cap =2(x +a) = £2./cp, cpp =0.
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WLOG, the £+ ambiguity can be eliminated: the corresponding PDE systems are
equivalent via the point transformation (a, b, ¢) +— (—a, b, ¢). Thus, the dual system
to I11.6-1 is

uyp =2y, up=2Jq, uxn=0.

Our classification indicates that II1.6-1 is not self-dual (but a priori this is not at all
obvious).

2.3 LC Structures as Parabolic Geometries

There is an equivalence of categories between (holomorphic) LC structures (M; E, F)
and (regular, normal) parabolic geometries (G — M, w) of a fixed type (G, P) [4].
Here, G = PGL(n + 2, C) acts on the flag variety of pairs of incident lines and
hyperplanes:

*
G/P =Flag, (cc"+2) — (&, 7) : 7(6) = 0} C CP"*! x (CIP’”“) ,

and P C G is the parabolic subgroup that is the stabilizer of a chosen origin. Since
A € GL(n + 2,C) and AA (for . € C*) have the same action on G/P, we will
instead use G = SL(n + 2, C). The kernel of this action is isomorphic to the cyclic
group Z, 42, generated by multiples of the identity matrix by (n + 2)-th roots of unity.
In terms of Lie algebras, P corresponds to the parabolic subalgebra p C g = sl,1»
defined by the contact grading:

a U vy b=—a—tr(A), P
sl = X A W l:aeC Aegl,, { =9g2®9-1900Dg1 Po.
B Y b etc. e

(2.4)

The reductive part Gg C P has corresponding subalgebra gg = C2 x sl,, (correspond-
ing to the diagonal blocks (a, A, b)) and there is a unique element Z € Z(go) that
induces the grading. We refer to the eigenvalues of Z on a particular go-module as its
homogeneities.

At the origin o € G/P, we have T,(G/P) = g/p. Define the subspaces
E,, F, C T,(G/P) (or subspaces in g_;/p) corresponding to X, Y in (2.4) respec-
tively. The induced G-invariant structure (G/P; E, F) is the flat LC structure, and
(G — G/P,wg) is the flat model, where wg is the Maurer—Cartan form on G.
The dimension of the Lie algebra of (infinitesimal) symmetries of the flat model is
dim(G) = n% + 4n + 3.

A Cartan geometry (G — M, w) of type (G, P) is a curved analogue of the flat
model. It consists of a principal P-bundle G — M equipped with a Cartan connection
w € Q1(G; g). This means:
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3816 B. Doubrov et al.

(CC.1) w, : T,G — gis a linear isomorphism for any u € G;

(CC2) Ryw =Ad,-1 owforany p € P;

(CC.3) w(¢a) = Aforany A € p, where {4 (1) = %‘1:0 Rexpea)(u), i.e., £a is the
fundamental vertical vector field corresponding to A.

The curvature of (G — M, w) isthe 2-form K = dw+ % [w, w] € Q%(G; g). Using the
framing of T'G provided by w yields a P-equivariant functionk : G — /\2 g* ® g that
descends to k : G — A%(g/p)* ® g since K is horizontal. For parabolic geometries,
the Killing form on g yields a P-module isomorphism (g/p)* = p, so we obtain a
functionk : G — /\2 P+ ® g. The geometry is

e regular if « is valued in the subspace of /\2 P+ ® g consisting of positive homo-
geneities;
e normal if 3*k = 0, where 3* is the Lie algebra homology differential.

2.4 Harmonic Curvature

For regular, normal parabolic geometries, since (9*)?> = 0, we may quotient k¥ by
im(9*) to obtain kg : G — ]fg((g*)) . This fundamental curvature quantity is called
harmonic curvature and is a complete obstruction to flatness of the geometry. The
l;enr((g*)) is completely reducible, so p acts trivially. By a result of Kostant

[4,15], the 2-cochains Cz(g,, g) admit the (orthogonal) go-module decomposition

P-module

ker(9*)
—
C%(g_, g) = im(3*) @ ker(J) ® im(d), (2.5)
—— ———
ker(9)

where 9 is the Lie algebra differential, and [J = 99* + 9*9 is the Kostant Laplacian.
Thus,

ker(@™) ker(@) = X@ _
im(9*) im(d)

H*(g-. 9).

The go-module structure of the Lie algebra cohomology group H>(g_, g) is com-
pletely described by Kostant’s Bott—Borel-Weil theorem [1,4,15]. For LC structures
with n > 2, H?(g_, g) decomposes into three go-irreps

H*(g_,9=WoT &T,

having homogeneities +2, +1, +1 respectively. The T| and T» components of g
are precisely the torsions ¢ and tr (see Sect. 2.1), and these vanish in the ILC case.
Results from twistor theory (see [3]) indicate that the LC structures with trivial W and
T> components for ky correspond to projective structures. This is the case that was
studied by Takeuchi [25].
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Homogeneous ILC Structures in Dimension Five 3817

2.5 Parametric Computations of Harmonic Curvature
Consider a semi-integrable LC structure (M; E, V) given by (2.1). We will give an

explicit formula for the W-component of k.
We use the following coframe for computations on the manifold M:

0i=dxi, m=dp,-—ﬁjdxj, 0=du—pidxi, 1<i,j<n,
so that
E =ker{o, m;j}, V =ker{o,0'}.
The differential of an arbitrary function F is defined by the formula:

dr , OF aF
dF = —0' + — 7, + —o0,
dx’ o pi ou

where % :=D; (see (2.1)) is the total derivative with respect to x'.
Let (G, w) be any regular Cartan geometry of type (G, P) with underlying structure
(M; E, V) and curvature K. Let E,? € gl,,1» denote the element with 1 in the a-th

row and b-column and O otherwise. Here, welet0 < a,b <n+ 1.If s : M — G is
any (local) section, write

s*o = 0% E.?, s*K = K% E,",
where K%, = dw?p + 0% N @f.

Lemma 2.8 There exists a section s: M — G such that s*w satisfies

0"y =0, &o=0, " =m, 0% =0 mod {6}

Proof Consider a section s: M — G. Since o is regular, the negative part of s*w is
an adapted coframe, i.e.
"y =eo, "l = gj,-nj +gio, o= hijej + hio.

An arbitrary section § is given in terms of a function 2: M — P suchthats = s - h.
This satisfies:

§*o =h"" (s*0)h + h~'dh.

Since h~'dh term is p-valued, the negative part of s*w transforms via the adjoint
action.
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Using the G-action, we can normalize e = 1 and g/; = §/;. Since

Kn+10 — dwn+10+wn+la /\wao = do +wn+1i /\wi()
(—m; +h'imj) A6 mod o,

and regularity implies K"*'o = 0 mod o, then h'; = &';. Using the action of
subgroup of P corresponding to g1, we can normalize g; = 0, 4" = 0. Similarly, using
the subgroup of P corresponding to g, we can normalize @’ =0 mod {0, & j}.0

With respect to such a section, write
&% =r%% 0" + 5% 1 + 1% 0.

To obtain the harmonic part of the normal curvature, it is sufficient to compute
normalization conditions only in homogeneities 1 and 2. For any regular, normal
parabolic geometry, the lowest homogeneity curvature component is harmonic [4].
Thus, all curvature components in homogeneity 1 must vanish except the coefficients
of 6/ A@* in K"*1;, and this corresponds to the torsion of our semi-integrable structure.
Recalling that w”+1n+1 = —w¥) — w!; since w is sl,42-valued, we have:

Kn—HO — da)"+10 +wn+1a /\Cl)aO za)n+10 /\Q)Oo_i_wn—i-lth1 /\wn+10

=0 A Q%+ ')

@2rl; +riipo A6+ 25%7 +5'iM)a A
K'o=do'o+o'q Aoy =g Ao’ +0'jAwly  modo
= (' 1jiy + 008" k)0 A 07 + (57 = 5% 8" Hm A6/ mod o
K™ = do"™ + 0" A0 =dm Al 0"y A mod o
_dfij

, : 0 fik
= WW N <r’ik + ok +r'n)dl i — %) 7j A O*

J
+ (Sjik + (%" + s[zk)éj,-) wi Amp  mod o

We confirm that the coefficient of 6/ A 6% in K"*!; is indeed the obstruction Dy fij—
D; fix to integrability of E. All remaining terms above are zero, so we get:

sik =0, % =0, % =- —fl],
n+20dp;

i Ofjik 1 0fu
rjk=—_4"—"— 8 j —_—.
api n+2dp

(2.6)
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Proceed now to homogeneity 2. Using (2.6), we compute:
K"0=s"n+1fn,-A0+(r"n+1,j—t"j)efmf 2.7
dfi; . dfii )
+1, _ YSij k ij 0.
K" l_dkaJAG +<8u rlj)gf/\g

+ (zj,- —s% + Sijtkk) TiAG (2.8)

dr0; S arQ; , .
K% = ( C: g +r0,-,-> 0/ A O+ <% +s0i~’> ;A0 modo  (29)
X

Pj
K'j= < dxi + 60 +rlpkrpjl> AN
ariﬂ k i ki i 0k I
+ m—a ltl,-—(S jr’n+1,1—8lls T B (2.10)
+shpifme Ay mod o (2.11)

To obtain the pullback s*x : M — /\2 p+ ® g of the curvature function « : G —
/\2 p+ ® g, we note that the framing provided by w together with P-equivariancy of
allows us toidentify o = "*1¢, 0" = w'gand 7; = " *!; with (E;°)%, (E;41/)* and
(Eo"thH* respectively. A form B on gl, ., which is defined by B(X,Y) = tr(XY)
and is proportional to the Killing form on gl , induces a P-module isomorphism
(g/p)* = p4. This allows us to make the replacements

0/ < Eol, nj<—>Ej"+1, o < Eg"T!

in the curvature 2-form K. The homology differential 9* : /\2 P+ g — prQgis
defined on decomposable elements as

PFXAYQU)=-Y®[X,v]+XQ[Y,v]—[X.Y]®0v.

We introduce a bi-grading on /\* p+ ®g. Leth C gl,, be Cartan subalgebra for the
standard upper-triangular Borel subalgebra. Let also Z; € h, 1 <i <n + 1 be a dual
basis to the simple roots basis«; € h*, 1 <i < n+1. Thenthe pair (Z;, Z, ) induces
bi-grading X — (ai, ay+1) where [Z;, X] = a; X fori = 1,n + 1. Homogeneity
of an element X is equal to a; + a1 since Z = Z; + Z,+1 where Z is a grading
element. Moreover, since 3* is P-equivariant map it respects bi-grading.

In order to compute harmonic curvature it is sufficient to use only d*«(1,1) = 0 and
0%k (0,2) = 0 normality conditions. Using (2.7)—(2.10) and K"l = —K% — KY;
we compute:

0= a*’((l,l) _ (rin+1,j _ tij) <E0n+] ® (Eij _ 5ijE00) _ on ® Ein+])

+ (ljj — SO,‘j +3j,‘lkk)
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(_Eon+l ® (Eji _ SjiEn+1n+l) + Ejn—H ® Eoi)
ar%i o n+1 iy s ontl 0
+ W—FS,"/ (—Ej ® Ey —I—SjE() ®E0)
J
ari il . . .
+ (api — Skltlj — Skjranr])l — Sllsojk)
(Eol ®8jkEin+l + Ekn+1 ®5liE0j _|_51kEOn+1 ® Eij)
arSor arly k
+( o om0 T T
(Eol ® Ekn+1 _5k1E0n+1 ® En+1"+1>
ari 9% arky ; ;
=< p LA g X+ p M 42— 87 (Sokk+tkk)
Pk pPj Pj
artjk i ik n+1 ; ' nt1
+ 3bk — 4+t =8t )| Eo ®<Ei]_5ijEn+l )
ar% 0 i n+l 0 n+l
T\ TS T Ep ®(Eo — Ent1 )
1
ark. ar0; ; ; ;
+( - z'k -5 91 _ (n—|—2)SOiJ +68/; (tkk _rkn+l,k>) Ejn+1 ® Eo,
Pj Dj
0= 3*K(0,2) - _ stn+lejn+1 ® Ein+1

_|_Szn+]]El_n+1 ® Ejn—H — (S]nJrll —(n+ 1)Sln+]j> Ejn+1 ® Ei"_H.

Substituting (2.6) we obtain linear system of equations on coefficients of normal
regular Cartan connection:
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_ 3% fik
dpjopk
2, 2

9% fik r 1 % fu

— (4217 i — 8 (Sokk + tkk) )

_ . — ) VT L
dpidpr  'n+23pdpk (D=8

1 82fij i 0. i
—_ — —_ t . . —_ .’
n+23pi3pj+ it 8 I n+1,i
3% fik

= — (n+2)s%7 +8/; <tkk — k) :
Ipjop ’
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Solving the linear system of equations above we get the homogeneity 2 coefficients
of normal Cartan connection needed for the computation of kg :

. 1 9%f , 1 92
t = Jik i Jik_ (2.12)
n+20dpidpr Y (m+2)(m+1) dpdpr
rlavy=1';, (2.13)
. 1 9%f
0/ = Jik_ (2.14)
n—+20p;dp
syl =0. (2.15)

From Kostant’s theorem we know that W has the lowest weight vector ¢g = Eo! A
E,"*' ® E,'. The element ¢ belongs to the module V generated by:

wlkij = Eok A E1n+1 ® (E,'j — SijEn_;,_anrl) .

The module W is the submodule of V consisting of tensors that are trace-free in
(i, j), symmetric in (l, i), and symmetric in (k, j). We denote coefficients of ¥ which

corresponds to wlk i as Wlki ;j and assume that

3% fij

Tk = — .
dprdpi

and le = Tiilj, T = Tiijj. According to (2.10)

i
whi. — _ 3’./k_81ti__51_i _sil
kj= apr Kkl j jrn+1k krj,—11]-

Using (2.6) and (2.12)—(2.14) we obtain that Wiy j is equal to trace-free part of tensor
leiji

. . 1 . . . .
Wlklj — lelj _ m <5l]le +31lej +8l]le +61le])
1

[ qi . [ oi
+5713i;173<8k31+8’8k)T'

Coefficients W} j are symmetric in (i, 1), (j, k), trace-free in (i, j) and form the
W-component of k.
We summarize computations of this subsection in the following theorem.

Theorem 2.9 With respect to the section s defined by Lemma 2.8, the W component
of the harmonic curvature of the regular, normal connection for semi-integrable LCS
given by 2.1 is

Wi E* A B @ (B = 8 ™), (2.16)
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where W'} j is the trace-free part of the tensor

3% fij

Tl = '
! dp1dp;

3 ILC Structures in Dimension Five

Henceforth, we specialize to the n = 2 ILC case, which corresponds to compatible
PDE systems

uyn=F, up=G, up=~H,
where F, G, H are functions of (x, y, u, p, q) with p = uj and ¢ = u,. Equivalently,
E and V asin (2.1) (with f11 = F, fi2 = G, f»» = H) are both integrable.
Let us fix notation for p. Take the standard (upper triangular) Borel subalgebra,

diagonal Cartan subalgebra ) C sl4, and simple roots o; = €; — €;11 € h* for
i = 1,2, 3. The dual basis Z1, Z», Z3 € b to the simple roots is given by

ledlag (97_13_15_1>’ Z2=d1ag (lyl’_l’_l>’
4 4 4 4 22 2 2

Z3 = diag <l,l,l,—§>.

: 444 3

The grading element adapted to P is Z := Z; + Z3. Use linear coordinates on p:

Bt 1 ) ts
0 v + % v 3 cp 3.0
0 v3 —v; + % t4 ’ ’
0 0 0 —atio

We have go = Z(go) X (go)ss = C* x sk, where C* = span{Z;, Z3}. In terms of
the standard basis {E,”}0<q4.p<3 of gly, a standard sl,-triple spanning the semisimple
part (go)ss C p is given by:

H:=E'—E? X:=E? Y:=E" (3.2)

-3 4 -3
For ILC structures, x takes values in? the module W = X——o—X (in the
notation of [1]). With respect to (Z1, Z3), W has bi-grading (+1, +1) so that its
homogeneity is +-2. As sl-modules, W = @4 (C?), i.e., the space of binary quartics
inr, s, say. Hence, kg (up to sign) is:

2 In terms of sl4 fundamental weights {1;}, W has lowest weight 311 — 442 + 343 = a| — ) + a3 by the
“minus lowest weight” convention [1].
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ki = Fagr* +2(Fpg — Gg)r’s + (Fpp — 4G pg + Hyg)rs?
+2(Hpg — Gpp)Is® + Hpps*. 3.3)

Strictly speaking, this is the pullback of xz by a (local) sections: M — G. Since P4
acts vertically trivially on ker(9*)/im(9*), (3.3) is canonically defined only up to a
Go-transformation.

3.1 Petrov Classification

As in the Petrov classification of the Weyl tensor in 4-dimensional Lorentzian (con-
formal) geometry and the classification of (2, 3, 5)-distributions [5], ILC structures
can be classified based on the (pointwise) root type of the binary quartic field (3.3).
We use the same notation for types as in the Petrov classification, e.g., type N and D
indicate a single quadruple root and a pair of double roots, respectively.

Any ILC structure admits at most a 15-dimensional symmetry algebra and 15 is
realized only on (an open subset of) the flat model (up to local isomorphism). Among
(regular, normal) parabolic geometries (G — M, w) of a given type (G, P), Kruglikov
and The [16] gave a general method for finding the submaximal symmetry dimension,
i.e. the maximal symmetry dimension for any non-flat structure, and for ILC structures
this dimension is eight. These techniques can also be used to determine the maximal
symmetry dimension for ILC structures with constant root type. We briefly outline
their method. A non-trivial root type corresponds to a Gg-orbit {0} # O C W (or
in type I, a collection of Go-orbits). Defining a? = g_ @ ann(¢) for non-flat ILC
structures, we have:

dim(inf(G, w)) < max{dim(a®) : ¢ € O} = 5 + max{dim(ann(¢)) : ¢ € O}.
(3.4)

Since dim(ann(¢)) is constant along Go-orbits, it suffices to evaluate it on a cross-
section.

Theorem 3.1 Among ILC structures with constant root type, we have:

Root type (6] N D I I I
Max. sym. dim. 15 8 7 6 5 5
Sharp? v v v v v v

Proof See Table 1 for type N, D, III models with the stated symmetry dimensions.
A Type I model with 5-dimensional symmetry is given by:

uy =687 —6uS*? +2u* — q)S —2pq, w1 =387 —2uS —¢*, uy =25,
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where S = p 4 ug. Its harmonic curvature is given by the quartic:

4
K = = r(ur 4 s)(r — (ur + S~V 3Br — 2(ur +5)S1/3),

which has four distinct roots on the open set {S # 0}. The equation is invariant with
respect to the action of sl x C? generated by:

Oy, 0y, X0y 40y —qdp, 2x0y+ ydy —ud, —3pd, —2qd,,
x20, + xydy + (¥ — xu)d, — (u +3xp + yq)dp, + (1 — 2xq)0,.

Next, consider

A2 p AL pl
9

uyy = p*gt, up = pttlg nt2

u = qu
which is type Il when A, u # 0, L + u # 0, 1 according to

k= p* 2" 2 (pr — g9)* (u(p — D + 2Ampq rs + A0 — 1)g* s2).
The symmetry algebra is generated by the 5 vector fields:

Oy, ays Oy, —p(x0x — pap) +)‘(yay _qaq)’
(I+ X+ u)(xdy + yoy) + (A + p)ud, — pd, — qo,.

Now we establish upper bounds. Up to scale, representative elements in the Go-
orbits are

N:s*: D:r?s?; ILrs®; ILr’s(r—s); Lrs(r—s)(r—cs), c e C\{0,1]}.
The annihilators of the above elements, cf. (3.2), are spanned by:

N:Z—2Z3,Y, H+4Z; D:Z, - Z3, H;
l: Z1 — Z3, H+2Zy; ILI: Z) — Zs.

By (3.4), the result is proved for N and D, while for III, II, I the upper bound is one
more than in the stated result. For the latter, we show that the upper bound is never
realizable.

Consider the type III orbit and assume there is a model with 7-dimensional sym-
metry algebra s. According to [16, Corollary 3.4.8] (in particular, ILC structures are
“prolongation-rigid”), s admits a natural filtration 5 = 52 > s 5 §© with
associated-graded Lie algebra isomorphic to g_» @ g—1 @ ag, where ag is the above
annihilator of the type Il orbit and g_1, g—» are graded subspaces of g = sl4. In other
words, s is a filtered deformation of the above 7-dimensional graded Lie algebra.

Any such deformation is necessarily invariant with respect to s = aq. Fix a
basis T1 = Z1 — Z3,T» = H + 2Z; in ayp. Its action on g_1 and g_» diagonalizes
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with pairs of eigenvalues (—1, —1), (—1, —3), (1, —1), (1, 1) and (0, —2) respectively.
Denoteby E; = E{°, Ey = E;°, F| = E3', F, = E3?, U = —E3" the corresponding
eigenvectors of this action. Then all possible deformations of g_»@g_1 @ ag preserving
the filtration and the action of ag have the form:

[T, E\l=—E1, [T, Ex]l=—E, [, F1l=F, [T, FR2]=F,
[T2, E\] = —E1, [T, E2] = =3E, [Tz, Fil=—F1, [T, F2]= P,
[T, U] = -2U,

[Ev, 11 =U, [E1, F2l=aT\ +bTy, [Ez, F2]=U, [F,U]l=ckF.

However, due to Jacobi identity we get a = b = ¢ = 0. Thus, there are no non-trivial
deformations in Type III case, thereby contradicting [[15], Proposition 4.2.2], and
dimension 7 of symmetry algebra is not realized.

Similarly, for types I and II we have the one-dimensional annihilator ag spanned by
T = Z1 — Z3. Using the same argument, we get a 4-parameter family of non-trivial
deformations s given by:

(T,E\l=—-E, [T,E:l=-E;, [T,Fil=F, [T,F]=F,
[Ev, Fil=U +anT, [E1, F2l=anT, [E, F1]l=aT,

[E2, F2] = U + axnT,

[E1, Ul = —anE| +ank;, [E,U]l=ankE —anks,
[FI,Ul=ankt) —axkFy, [F2,Ul=—ank +anks.

Replacing U by U +AT, we may assume that apy = —ajj. Each of these deformations
s defines an S-invariant ILC structure on the homogeneous space S/Sp, where S is the
corresponding Lie group and Sy is the subgroup corresponding to the 1-dimensional
subalgebra spanned by 7. The linear map « : s — sl4 given by

1 1 1 1
Ei— E° - 5011E13 - 5012E23, Ey > Ex° — 561211513 + —ai B>,

2
1 1 2 ) 1 1 2
Fi— Ey — zanEo - EClZIEO , = Ey" — zaleo +§a11Eo ,

o 1 1 2 1 NP 3
U —Ej3 —§(a11E1 +anE1" +apnky —ank; )—Z(au—i-auam)Eo

isin fact a Lie algebra homomorphism. Hence, all these deformations are in fact trivial
and yield the flat ILC structure [4, Sect. 1.5.15-16]. This contradicts the type I or II
assumption. O

We exclude types II and I from further consideration, since no multiply transitive
models exist.
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3.2 Curvature Module

Since ILC structures are torsion-free geometries, a result of Cap [3, Sect. 3.2 corollary]
implies that the curvature function « takes values in the P-module K C /\2 PP
generated by W. We refer to K as the curvature module.

From Kostant’s theorem, W has lowest weight vector ¢g = Eol ANEPQE! < s,
and we generate all of W by applying the raising operator E12 <> rds. The result of
applying the raising operators Eo', Eo?, E13, E2>, E¢® € py to W is given in Table 3.
Introduce coordinates on K (26-dimensional):

Quartic [A = A[r* +4Aar7s + 6A3r2s% + 4A4rs> + Ass?
Cubic |B = 4(Bir’ 4+ 3Bar*s + 3B3rs” + B4s )wi

B’ = 4(Bsr3 4 3Bgr?s + 3B7rs% + Bgs>)w»
Quadratic|C = 6(Cir* + 2Cars + C35%)w?

C = 12(C4r? + 2Csrs + Ces2)wwa

C' = 6(C7r* + 2Cgrs + Cos>)W3

Linear [D = 12(Dir + Dys)wiw,

D' = 12(D3r + Dss)w w3

3.3 Structure Equations

Write the Cartan connection w € Q'(G; g) as

351:-{2 7 T Ts
© =[] = w1 V] + —ZZZCI Uz; - 73
w) V3 —v1 + ZTQ T4

s >3 o _4“14‘-13{2

Decompose K = K%, E,?, where K%, € Q*(G). By torsion-freeness, K ' = K2 =
K3y = K3 = K3, = 0, and for ILC structures K%y = K33 = 0. The structure

equations are dw®, = —w®: A @y + K%, i.e.
dr1=(\)17{1)/\T1+V3/\12715/\E'3+K01 doy= (1 — Vi) Aw| — Vv AD2 — T3 A D5
d‘[2=l)2/\t1*(§1+U1)/\‘[27‘[5/\ZD'4+K02 doy=—-1n3Aw+ (V) + 1) Aoy — T4 A @5
du=15AD1 — (W + ) AT — AT+ K3 dw3= (Vi + ) AN T3 + V3 A @y + T A D5
du=t5 "Dy — 3 AT+ (1 — ) AT+ K23 doy=vy A@3+ (52 — Vi) AD4 + T2 A @5
dis=—T AT -1 AT — (1 +0) ATs+ K dws =@ A @3 + @2 Awy + (§1 + §) A @5
d{lz—%fl/\wl—%‘L’z/\wz—‘r%T3/\w3+%‘[4/\w4—1’5/\?,U5

d{z:l‘[l/\HII-‘rltz/\wz—3{3/\&13—31’4/\&74—‘[5/\135
dvlzztl/\wl—i‘rz/\wz—7‘[3/\133-1—51’4/\1274—1)2/\1)3-5—%](11—%Kzz
dn=nmAw =2V A —T3Aws+ K

dvii=1i Ay + 201 AV — T4 Az + K2
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Table 3 The curvature module for ILC structures

(Z1, Z3)-grade Label 2-chain
(+1,41) rt E? ANE? Q E;2
ar3s —Q®E12-Ey2ANE?QH
6r2s2 —E) ANEPQEZ—EQAEPRP®E+Q®H
4rs3 Q®Ex! + Eyl AE2PQH
st EO1 /\E23®E21
(#2,41) 43w, Eo? AEy} ® E12 + Eg2 A E3 ® Ep?
12rsw; —E)' AEQ3®E12—E)2AEPQE) — QR Ey2 — Eg2 AEQ3 ®H
12rs2w; —E)2AEP®Ey —Eg! AEXRQEQ?2 +QREy! + Egl AE3 ®H
4S3W1 E()1 /\E03®E21 +E01 /\E23®E0]
(+1,+2) 4I’3W2 E13/\E03®E12+E13/\E02®E13
2 3,53 2 3,2 3 3_ 53 g3
12r“swop E)’NE)yY QEI"+EI° NE)*QE’+QQE] Ei° NEp” ®H
12I’S2W2 —E13AE03®E2I —E23/\E01 ®E13+Q®E23 —E23/\E03®H
4S3W2 —E23 A E()3 ® E21 - E23 A Eol ® E23
(+3,+1) 6r’w? Eo* A Ep® ® Eg?
12rsw? Eo® AEo? ® Eo! + Eo® A Ep' ® Eg?
GSZW% E()l A E()3 ® EO1
(+2,42) 12I’2W1W2 E13 AE()3 ®l’7()2—i-E()3 A E02 ®E13 +E13 /\E()2®E()3
24rswiwyo E()3 A E()2 ® E23 - E()3 A E23 ® E02 +Q® E()3
+EQP AEPQE) —Epd AEy! @ E3
1252W E 1 E 3 3 3 3 1 1 3 3
W2 0 NEYC®E’ +E)y ANE) QEy +Ey NEP®Ep
(+1,43) 6r2w3 Eg> AE3 @ Ef?
IZFSW% E03AE13®E23+E03/\E23®E13
652W% E03 A E23 ® E23
(+3,42) 12rw?w, Eo3 A Eg2 ® Eg?
12swiwy Eo' A Ey? ® Eg?
(+2,43) 12rwy w3 Eo> ANE® ® Eg?
125w w3 Eo3 A E2® @ Eg?

Notation: Q2 := Eol A E13 - EO2 A E23

p-module description: Degree 4 polynomials in r, s, w, wp modulo w?, W%, W%Wz, W%W%, wiw3

3

sh-action: H= E;! — E22 <1 —sds, X=E;2<rds, Y=E) < sj

p--action: Eo! < widr,

E()2 < W10ds, E13 <« —Wp0s, E23 < W20y, E()3 0

To convert fromkx : G — /\2 P ®gto K € Qz(g; 9), the Killing form on sl
induces (g/p)* = p:

1

E()l(—)a)o:

3

E23<—>a)2=

wl,

w4,

Eo> & 0’0 =, E’ < o’ =,

E03 <~ a)30 = 5.
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Writing @y := @y Ay for 1 <k, <5, we have

K'I = — K% = —Ayoons + A3(w13 — w24) + Auwig — Bowos + Bywis — Bewss — Brwus
K'y =+ Ay — Ay(wi3 — w24) — Aswis + Biwos — Bywis + Bswss + Bewss
K| = — Ayos + Ag(w13 — @24) + Aswrig — Bywas + Bywys — Byorss — Bswus
K°| = — Bywys + B3(w13 — w24) + Bawis — Cowos + Czwis — Csmss — Cotvas

K% =+ Biw; — Ba(wi3 — wa4) — Bywwis + Cramas — Cawmys + Cawss + Cswus

K'3 = — Bsaz + Bo(w13 — wa4) + Bywia — Cawas + Csarys — Cramzs — Cyavas
K?%3 = — Bewas + By(w13 — wa) + Bswia — Cswas + Cewys — Cymrzs — Cows
K3 = — Cumaz + Cs(w13 — @) + Cowia — Diwas + Dawys — Diywss — Dawis

Recall from Sect. 2.3 that x is P-equivariant. Let A be the P-representation K.
Then

R;K =2pHk = )K= —A(X) k.

%
exp(e X
de e=0

We let § refer to the infinitesimal p-action. Given X € p as in (3.1), we obtain Table 4.

On g, the curvature coefficients A, B, C, D will satisfy structure equations that
also account for variation in the horizontal direction. These are immediately deduced
from Table 4. For example,

d(A) =6(A1) +a1 = (&1 + o +4v) AL +4nAr +a. (3.5)
Here, | is a semi-basic form, i.e., it is a linear combination (with coefficients that are
functions on G) of the z;. We have abused notation in (3.5) by taking a slightly different
meaning for 6 (A1): we have taken the corresponding formula in Table 4 and replaced
Lie algebra parameters by their corresponding forms in the Cartan connection. This

abuse is justified by axiom (CC.3) in the Cartan connection definition. Similarly, we
will write

d(A;)) =6(A;) +a;, d(By) =8(B;) + Bi, d(Cy) =48(C)) + v,
d(D;) = 8(D;) + 6.

(The repetition of § in the last formula is slightly unfortunate, but should not cause
much confusion.)

3.4 Duality

The pullback of the subbundles E, V C T M via the projection w : G — M are
n N E)={my=oy=ws =0}, 77 '(V)={o1 =22 =5 =0}.
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Table 4 Vertical derivatives of curvature coefficients

—68A1 = (21 + 22 +4v)A| + 424

—68Ay =v3A1 + (21 + 22+ 2v1)A2 + 30243

—68A3 =2v3A2 + (21 +22)A3 + 20244

—08A4 =3v3A3 + (21 + 22 — 2v1)A4 + 1245

—08A5 =4v3A4 + (21 + 22 —4v1)As

—38B1 = (2z1 + 22 +3v1)B; +3vyBy + 11 A + 1 Ay

—68By =v3B) + (221 + 22 +v1) By + 202 B3 + 11 Ay + A3

—8B3 =2v3By + (221 + 22 —v1)B3 +vu By + 11 A3 + 1 Ay

—6Bg =3v3B3 4+ (221 + 22 — 3v1)Bg + 11 As + 1 As

—8Bs = (21 + 220 +3v1)Bs + 3v2Bg + 14A1 — 1342

—38Be = v3Bs5 + (21 + 2220 + v1)Be + 2v2 B7 + 14Ap — 13A3

—38B7 =2v3Be + (21 + 222 —v1)B7 +v2Bg + 14A3 — 13A4

— 0By =3v3B7 + (21 + 222 — 3v1)Bg + 14 A4 — 13As5

—8C1 = (321 + 22 +2v1)C1 +2v2Cy + 261 B + 2By

—38Cy = v3C1 + (321 +22)C2 +v2C3 + 211 By + 21, B3

—8C3 =2v3Cy + (321 + 22 —2v1)C3 + 211 B3 + 21 By

—8Cq = (221 + 220 +2v1)Cq +2v2C5 + 14 B] — t3By + 11 Bs + 12 Bg
—8C5 =v3Cq4 + (221 +222)C5 +vpCq +14By —t3B3 + 11 Bg + 12 B7
—8Cq =2v3Cs5 + (221 + 220 —2v1)C¢ + 14 B3 —t3B4 + 11 B7 + 1 By
—8C7 = (21 + 322 +2v1)C7 + 2v2Cg + 214 B5 — 23 Bg

—38Cg = v3C7 + (21 +322)C8 + v2C9 + 214 Bg — 213 B7

—68C9 =2v3Cg + (21 + 322 — 2v1)Coy + 2t4 B7 — 2t3Bg

—8D1 = (321 +2z20 +v1)D1 +v2 Dy +14C1 —13Cy 4+ 2t1C4 + 212Cs
— 8Dy =v3D1 + (321 + 220 —v1) Dy +14Cr — 13C3 4 211 C5 + 212 Cg
—8D3 = (221 + 320 + v1)D3 +v2 Dy + 2t4C4 — 213C5 + 11C7 + 12 Cg
— 8Dy =v3D3 + (221 + 320 —v1)Dg + 2t4C5 — 213C + 11Cg + 12Cg

These are interchanged by the duality transformation, a representative of which is

L (1, 2, W3, W4, Ts, {1, §2, V1, V2, V3, T1, T2, T3, T4, T5)
= (3, W4, @1, W2, =05, {2, L1, —V1, —V3, =12, T3, T4, T, T2, —T5),

which induces

(A1, Az, A3, Ayg, As) > (As, —Ag, A3, —A2, Ay)
(B1, B2, B3, By, Bs, Bg, B, Bg) — (—Bs, B7, —Bs, Bs, B4, —B3, By, —B1)
(C1, €2, C3, Cy, Cs, Cg, C7, Cg, Co) > (Cg, —Cs, C7, —Cs, Cs5, —C4q, C3, —C2, C1)
(D1, D2, D3, D4) = (D4, —D3, —D», D)
In particular, the induced action on the quartic is realizable by a G-transformation,
namely that induced by p : (r, s) — (s, —r). Since any Go-transformation preserves

root type, this proves:
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Proposition 3.2 The duality transformation preserves root type.

However, p induces the following transformation on B, C, D coefficients:

(Bl’ BZ’ B?)v B47 BSa B6’ B77 BS) = (_B4’ B?)v _B2’ Blv _B87 B79 _Bﬁv BS)
(C1, €2, C3, C4, C5, Cg, C7, Cg, Cy) = (C3, —C2, Cy, Cg, —Cs, Cy4, Cy, —Cg, C7)
(D1, D2, D3, D) = (=D, D1, —Dg4, D3)

Note that the composition p o ¢ preserves A and induces

(B1, B2, B3, B4, Bs, Bg, B7, Bg) — (—Bs, —Bg, —B7, —Bs, B1, B2, B3, Bs)
(C1, C2, C3, C4, Cs, Cg, C7, Cg, Cg) > (C7, Cg, Cg, —C4, —Cs5, —Cg, Cq, C2, C3)
(D1, Dy, D3, D4) + (D3, D4, —D1, —D»)

4 Cartan Analysis

Starting with the (regular, normal) Cartan geometry (G — M, w) which is an
equivalent description of any ILC structure, the goal is to classify all homogeneous
subbundles of total dimension at least six that are obtained via natural reductions of the
structure group P. We give an outline of how this is achieved in the type N case. The
analysis for types D and III are similar, so we only provide a few details on how the
analysis is begun in these cases. Types II and I do not contain any multiply transitive
structures. The reader interested in the full details of the Cartan analysis is encouraged
to examine the Maple files that accompany the arXiv submission of this paper.

4.1 Type N Reduction
Using the P-action (Gp-action), we can always normalize A = st ie., As =1, Ay =

A3 = Ay = A = 0.3 Now 0 = d(A;) are equivalent to:

1
aj=ax=03=0, v2=o0y4, V1=Z(§1+§2—a5). 4.1

Differentiating the v -relation in (4.1) yields the vertical action on coefficients in o5 =
asjw ;. (More precisely, we calculate 0 = d(v; — 4—1‘(4“1 +0H—a3)) NT AT j ATk ATy,
where | <i, j, k,1 <5)

3 This normalization is always possible working over C, but over R we would have two possibilities:
A= +st
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22 — 3z1
das; = (—) asy + (asy — 4agr)vs — 311,

4
dasp = — <5Z14j) asy —4agnvs + 1y,

dasy = (@) as4 — (as3 + 4ass)vs — 3,

dasz = — (#) as3 — 4aq3vy + 13,

dass = —ass5(z1 + 22) — 4a45v3 — as3ty — asalr + asi13 + aspty — 21s.

The t; induce translations on as;, so we can always normalize os = 0. This forces
ti = Ajv3, where (A1, A2, A3, Aq) = (—%041, daqr, 4aq3, —%a44, —2ay4s). Hence,
there exists functions 7;; such that

5 =nv+ Y T, 4.2)
j

We have reduced to a 3-D structure algebra (with parameters v3, 71, z2). We will show
that:

Theorem 4.1 Any multiply transitive type N structure with the normalizations A = s*

and as = 0 satisfies B=C = D = 0.

The integrability conditions 0 = d*v; A ws (i = 1,2, 3) force

By =By=Bs=Bs=0, as =—2B4, as =—2Bs,
a43 = +2B7, a4 = —2Bg,

and 0 = d(B;) = d(B;) = d(Bs) = d(Bg) are equivalent to:
Br=PBs=0, pr=2Bss, P6=2B704.

Moreover, B3 and By are relative invariants:

7 3 5 ,
5By — — (M) B, 5By — 5Bsus — <Zl_+22> B..
4 4
3 7 5
5By = — (%) By, §Bs = 5B7vy — (ZI—'ZTZZ) Bg.

If B3 B7 is nowhere vanishing, we can normalize (B3, B4, B7) = (1, 0, 1). This triv-
ializes the structure algebra and so such structures admit at most five symmetries
(henceforth excluded since these are not multiply transitive). We have the following
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trichotomy:*

Condition Bound on symmetry dimension
B3 =B7=0 8
(B3, B7) #(0,0), B3B7 =0 6
B3B7 #0 5

Lemma 4.2 No structures with 6 symmetries exist when (B3z, B7) # (0,0), B3B7 = 0.

Proof By duality, take B3 # 0 and B7 = 0. Normalizing (B3, B4) = (1, 0) forces
21 Z

70 = —%zl, v3 = 0. The structure algebra is reduced to diag(g, —%, -4, 32

=), and
this acts trivially vertically under the 6 symmetry assumption. Hence, Bg = 0. From
0 =d(B3) = d(Bs4) = d(B7) = d(By),

7 4 1 —0 —
h=-—30+3h wv=sm—p). p=0 f=-mu

All coefficients with nonzero (vertical) scaling weight with respect to z; must vanish.
Differentiating the relations on &3, v1, v, v3, 71, T2, T3, T4, T5, We conclude from these
weights that

Bs=Pr=Pg=n=1m3=14=v3=0, as5=0, T;; =0,

@i, )) ¢ {(1,5), (5, D}

But differentiating vz = 0 then yields the contradiction 0 = @1 A @ — (T15+ 1) w2 A
ws5. O

Thus, B3 = B7 = 0 for multiply transitive structures. Now 0 = d(B3) = d(B7)
implies:

B3 = Baos, P7 = Bgay.

Moreover, B4, Bg are relative invariants.

Case Condition Bound on symmetry dimension
(@) By =Bg=0 8

(b) (B4, Bg) #(0,0), B4Bs =0 7

(c) ByBg #0 6

Lemma 4.3 Any multiply transitive type N structure with normalization A = s* satis-
fies B =0.

4 Implicitly, this trichotomy depends on B3 and B7 have locally constant type, i.e., the stated invariant
conditions are true locally. For (multiply) transitive structures, this is always true.

@ Springer



Homogeneous ILC Structures in Dimension Five 3833

Proof Suppose B4Bg # 0. Normalizing B4 = Bg = 1 forces z; = zo = 0. Hence,
{i = Z;jw . For multiply transitive structures, Z;; are constant, w1, ..., @s, v3 lin-
early independent, and v3 must act vertically trivially. This forces C; = 0 (i # 3,6, 9),
Dy =D3=0,

16 16
T23=T32=—3, T22=T33=—?, Zip=—17y3 =4,
7 7 4 32
= — = -, a. = -,
13 2=z, a4 9

and several more linear relations between 7;; and Z;;. Since all B, C, D coefficients
must be constant, apply d to get further relations. Imposing Bianchi identities yields
Cz =Co = % and C¢ = g. A contradiction is then obtained from 0 = d%t; A w3 A

w4 7& 0.
The case By # 0, Bg = 0 is more involved, but similarly yields a contradiction. O

Given B = 0, the conditions 0 = d?v; imply Cj=0forj#3,6,9,and
ass = Ce, bap = —C3, byz =2Cs, bgr =—2Cq, bg3 =Coy, bg| = —bu.

Now imposing 0 = d(B4) = d(Bg) and 0 = d(vy — aes), we obtain C3 = Cg = Cg =
0,s0 C =0, and

hi=03G#1), T3;=0(#4), T2 =by, T34 = —bs,
bag = bys = bgs = 0.

Fori =1,...,9,0 = d(C;) implies y; = 0. Then 0 = d’t| = d*1, implies D = 0.

Fori =1,...,4,0 = d(D;) implies §; = 0. Now 0 = d(v; — %(;1 + ¢2)) implies
relations among the 7;;. We obtain:

n=Tw1, 13=-3Tpwy, 15=T511+ Tsawy + T55w5,
1> 2
71 =Thow — Twz + Tyhos + §T51w5,
2
1y = Tywy + Tyzws + Taawy + §T54IU5,

and all other T;; not appearing above are zero. Differentiating the 7;-relations (i =
1,...,4), we obtain the vertical action:

—3z1+ 22

8Tr = —2Tynz1, 6T = ( 5

2
) T\ + §T21v3
721 — 322
0Ty3 = —2Tu3z2, O8Tyy = — Tas + 2Ty3v3

Lemma 4.4 With normalizations as above, we must have Tr1 = Tyz3 = Ts1 = Ts54 =
Ts55 = 0.
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Proof If T»1T43 # 0, then there are at most 5 symmetries. If 751 # 0 and Ty3 = 0,
normalize 751 = 1 and T7; = 0, and write {1 = Zjw;, v3 = V3. We have at
most 6 symmetries, and for 6 the residual structure algebra (generated by z,) must act
vertically trivially. This forces 1 = v3 = 0and Ty = Taa = Ts1 = Ts4 = T55 = 0.
But 0 = d¢; = —2w@| A @y # 0 yields a contradiction. The 743 # 0, To; = 0 case
similarly yields a contradiction. Thus, we conclude that 751 = 743 = 0 and hence
) =13 = 0. From 0 = d1; = dt3, we obtain T5; = T54 = T55 = 0. O

Summary: For multiply transitive type N structures, we have reduced to an 8-
dimensional subbundle of the original Cartan bundle (given the normalizations A = s*
and as = 0).

Curvature coefficients All A, B, C, D are zero, except A5 = 1.
Coframe wy, ..., @s, {1, {2, v3. Relations on other forms:

v

1
= Z(Cl +0), m=n=13=15=0, 71 =Th1© + 1414,

7y = Ty + Taywy.

e Among «;, B, vk, ¢, the only possibly non-trivial forms are 84 = 7, and B3 =
—13.
e All Bianchi identities are satisfied, e.g., 0 = d?vy, ete.
rn 0 0 O
e Structure group 0 rp 00 , Where rirpr3rg = 1, r1r32 = r22r4, ie.,
0O s r3 O
0 0 0 ng
T = iTn = 1007y,
r = #, r3 = r23r42 This induces T41 = :T:;‘ Ty =1 r42T41 =
Tys = r“ 5T =5 lr 7 T4

8(Tyy) = <Z2 3Z'> T11
8(Ty) = — (342) Ty .
8(Tys) = ( 3Z2> Tay
e Let ® be the duality transformation:

w1 <> W4, w)y <> W3, w5 —~ —ws, T] < T4, T <> 13, T5 > —715,

{1 < &, vifixed, vy —vy, vy —vs.

This preserves A and induces (t1, 74) +— (74, 71) and so (T11, Ta1, Taa) +—
(Taa, Tar, T11).

The case analysis based on the relative invariants 771, T41, Ta4 is straightforward.
Table 5 summarizes this classification and Table 6 contains the structure equations
obtained.

Some care is required to deduce any redundancy of parameters appearing in the

structure equations. Consider the case 711 # 0. Normalize 711 = 1, so r46 = ;10
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Table 5 Classification of multiply transitive type N structures

T11 =T =0 T11 #0,T44 =0 Ti1Tas #0
Ty =0 N8 N.7-1 N.6-2
Ty #0 N.7-2 None N.6-1

and & = 381 + Zoyw + Zyswy is forced. Quotienting the structure group by
diag(rp, r2, 12, r2) (since these act trivially), we may WLOG take the diagonal to

be diag (ﬁ 1, r22r42, :4> Let Q be the residual group below.

(1) N.6-1: T4y = 1 and ¢ = Zj1w1 + Z1aws. Then Q = Z,, generated by E =
diag(—1, 1,1, —1).

Tu=Tu, Zpn=-Zj, Ziu=-Zjp (=12).
Let Z>4 = 4a, so +a yield the same structure. We must a(a” + 1) # 0 and

1 — 24 —a2a*> + 1) a* 4@a?—1)
Zi = , Zy=—-—-, T , =
11 P 14 211 44 = @+172 21

Thus, a*> € C\{0, —1} is the essential parameter.

2) N.6-2: Ty4 = 1 and ¢ = —%Zz]lD‘l + Ziswys. Write Zr1 = —4a and
Zig = g. Here, Q = Z; x Z, generated by M; = diag(—1,1,1, —1) and
M, = diag(1, 1, —1, 1). Then:

M,: (a,b)=(—a,—b); My: (a,b)=(a,—b).

Thus, (a?, b*) € C x C is the essential parameter.
B) NT-1: Tyy = Tya = 0, & = 4daw; + 3¢. Here, QO has diagonal

diag(r251r43, 1, r2ra?, r“) with € := r°rs® = +1. Induced action: & = ea.

Thus, a? € C is the essential parameter.

All type N structure equations are given in Table 6.

4.2 Type D Reduction

Normalize A = 6r%s2, ie., A3 = 1,As = As = Ay = A; = 0. Now 0 = d(A;)
implies:

1 1
vy =z, V3= oy, =0 +a3, ap=as5=0. 4.3)

Differentiating the {»>-relation above yields the vertical action on coefficients in oz =
aszjw;j:
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Table 6 Multiply transitive type N structure equations

Model SD  Structure equations Embedding into Cartan bundle
N.8 v dwlz%g“lAwl—%{zAlm V1=%(§1+{2)
dwy =30 Amo+ S0 Awy — V3 ATy v =0
dw3=%§|Aw:5+%§z/\w3+v3/\w4 N=n=13=0u=1=0
doy = -0 Aou+ 30 Aoy
dos =0 Aws5+ O ADs+ @ A D3+ @y Ay
diz =S Am+inAnt+o Aoy
d¢; =0
de, =0
N.7-1 X dw; =0 $ =381 + 4aw
doy =20 Ay —v3 A +a @ Aoy v = +aw
do3 =40 A @3+ 13 A @y + @) A D5 + Sa ) A @3 T = @]
doy =28 Ay +3a @) Awy M=n=13=17=15=0
dos =44 Aws + @) A3+ or Ay +4a @) A s (Parameter: a* € C)
dvz =2 Avz—2a 3 A + @ AT + @] ADa
d¢ =0
N.7-2 v dw) =) A & =-4
doy = {1 Ay —v3 A — T A Ds T = W4
dos = —{| A @3+ v3 A D4 + @4 A @5 T4 = @]
doy = - Ao vi=mw=n=053=1=0
dos = o) A w3+ @) Ay
dv; = - Ay — W A @3 + @ A Dy
d¢) = 2w Aoy
N.6-1 v dw| = aw| Ay &= *@wl - uglzlit;) 4
dwz=7V3Awlfwwlszfw1/\ws
a(3a®* + 1) a* {2:_@1}? B 08‘217:)1)1274
mwz/\zm—mzm/\ws
dw3:v3/\zm;—wwl/\w'3+wl/\w5 )
a(3a? — 1) ’ vi=-a (w‘*'ﬁm)
WW3AW4+W4/\ZU5
dw’4:—@wlAw’4 T = W] + W4
dws = w Ao+ Awy—4a (wl + ({ﬂ“%l)w‘;)/\zzg = + #HM
a?
dvz = 2av3 A (u‘n + mu‘m)
+ @ Awy — W A w3 w=n=13=1=0
at
+w1/\w47w2/\ZU4+mw3/\w4

(Parameter: a> € C\{0, —1})
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Table 6 continued

Model SD Structure equations Embedding into Cartan bundle
N62 v:ia’=b? dw =0 0=%w + Loy
X:z/zzgréb2 dwy = —»3 A +2aw | A@y — by ANy — W4 A D5 §2=%w1+%w4

dos = +vs Ay +aw) Aws —2bws Awy+ @ Aws vlz%wl—i-%zzm
dwy =0 T = W], T4 = W4
dws = o) A3+ oy Ay +2aw Aws+2bwaAnws vy =T =13 =15 =0
dvy = —v3 A (@ + bwy) + @) A @2

(Parameter: (a2, b?) € C x C)
+ w3 N Wy + w1 N D4

daz1 = az1(vi —z1) — t1, daz = —az(vi +21) — b,
dazsz = asz(—v1 +21) — 13, 8azs = azs(v1 + 21) — 14,
dazs = azts4 + asits — asaty — aszty — 2s.

Normalize a3 = 0, so 7; = T;jw ;. We have reduced to the 2-dimensional structure
algebra diag (%‘, v — 5, - — 4, %‘), so all type D structures admit at most seven
symmetries. Using duality and the Gg-map (r, s) — (s, —r), we can assume that B
or B, is nonzero, or B = 0.

For the 7-symmetry case, the 2-dimensional structure algebra must act trivially.

This forces:

e only Cs (necessarily constant) to survive among B, C, D coefficients;
o ar =a4=0(s0ov, =v3 =0);
e all T;; to vanish except 113, T24, T31, T2, T55 (necessarily constants).

From 0 = dvy = d(¢; + &) = d(t1 — Tizw3) = d(1o — Thywy), we obtain

1 1 1
T3 =Ti3=Cs— X Ty = Try = —Cs5 — 7 Tss = (Cs)* + v

Now, 0 = d(B;) = d(C;) = d(Dx) forces B; =0( = 1,4,5,8),and y; = 0, and

(B2, B3, Bs, B7) = (12, T1, —73, 14), (81, 82, 83, 84) = 2C5(B2, B3, Be, B7)-

This yields model D.7. The 2-dimensional structure group is generated by

diag(ri, 2, ﬁ r1) (r1,r2 € C*), along with diag(e!™/4, ¢//4, —ei7/4 ¢i7/%) and
-1 0

Cs +—> —Cs. Thus, (C5)2 € C is the essential parameter.

The 6-symmetry case proceeds similarly, but is very tedious, particularly for the
By # 0 case that leads to model D.6-2. All (multiply transitive) type D structure
equations are given in Table 7. As mentioned earlier, full details of the Cartan analysis
are given in the Maple files accompanying the arXiv submission of this article.

diag <1, [ 0 1i| , 1) 2 Only this last transformation acts non-trivially on Cs, i.e.,

5 The latter two correspond to (r, s) — (r, —s) and (r, s) — (—s, ).
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4.3 Type lll Reduction

Normalize A = rs, i.e., Ay = 7, As = A3 = Ay = A; = 0. Then 0 = d(A))
implies:

1
ap=0a, =0, v =203, v = 5(4“1 + ) —2a4, vz =as.

Differentiating the v;-relations above yields

28a31 = —(3z1 + z2)a31 +t2, 28a3s = —(z1 +3z2)a34 — 13,
28a41 = (22 — z1)asa1 — 11, 28as4 = (21 — 22)a44 — 14.

Normalize a3; = a3z4 = a4 = a4g = 0(s0t; = rp = 13 = t4 = 0). Then
28a45 = —2(z1 + z2)a4s — ts, so normalize a4s = 0, and let 7; = T;; ;. We have
reduced to a 7-dimensional subbundle with:

Sagp = — (3z1+z2)a42
+23 Sas; = (z1-23z2)a51
_ _ (z1+3z22 _
daqz = (—2 )a43 Sasy = (zzzm)as2
— (Z1=22
66132 = — (—511;322> azy’ 8“53 = (2 2+ )6153
Sasy = (‘Zl Zz) as4
(3033 - _ 321-5522) as 2
8&55 =0
8a35 = —2(21 + Zz)a35

However, as indicated in Theorem 3.1, there are no type III structures with 7 symme-
tries.

Now, 0 = d?vy Awys = d>vy Awysimplies Bj = Bs = 0,and 0 = d(B;) = d(Bs)
is equivalent to:

p1 = 6Bra3, Ps = 6Bgas,
and further Bianchi identities imply

ag = —2B3, a43=2B7, asp =—2B4, azx =—2By, a3z = 2B,
as3 =2Bg, ByBg=0.

There is a duality inducing (Bj, Bj14) + (—Bj14, Bj), where j = 1,...,4, so
WLOG, we may assume that one of B, B3, By is nonzero, or B = 0. Similar calcula-
tions show that for multiply transitive structures, we must have B, = B3 = 0 (hence,
Bs = B7 = 0 also). Up to duality, we only have: I11.6-1 (B4 # 0 branch), and I11.6-2
(B = 0 branch). Structure equations are given in Table 8.
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Table 8 Multiply transitive type III structure equations

Model SD Structure equations Embedding into Cartan
bundle
111.6-1 X do| = o Ay O =-—o + 204+
dw2:(—%w1+W4+2§1)Aw2—%w1/\ws U1=§1—%w1+W4
3 3 3
dos = —-w| A3+ —w| A5 — —wr ANy
2 16 4 __3 1
3 V3 = —3@) — g5
—3W3/\W4—ZZU3/\§1+ZW4/\LU5
dzzm:—lwl/\zzm 71 :%w1+%w4
dos = o A w3 + o) Aoy — @] A @5 3
T4 = gw]
+2m4 N w5 — 25 A {
dé'l:%wl/\ﬁ)'4 1)2:‘[2:‘[3:f5=0
111.6-2 X doy = (—2¢ + 2w3) A o {1 =43 — 30

dop = (=44 + 6w3) Ay + %m N w5

v =2@3 — {3

dw’3=%wl/\w'4 U2:O,U3=%w’1—%w’s

dwy = (28 — 2@3) A 4, T = *%HM
dos = (20 +H4m3) AN\os+ o A3+ Ay n=13=15=0

5 3
dfr = gw Aoy = -3l

5 Integration of Structure Equations

In this section, we outline the transition from structure equations found in the previous
section to the corresponding systems of 2nd order PDEs. This is done in three steps:

(D

2

3)

Normalize the algebraic structure of the Lie algebra data defined by the structure
equations. This step consists of identifying the type of the Lie algebra g, the
isotropy subalgebra ¢ and the subspaces E, V C g/¢ corresponding to the two
Legendrian subbundles. We note that both £ + £ and V + € are in fact subalgebras
of g, as we deal only with integrable structures. We also try to find a good basis
in g, adjusting it to the Levi decomposition and the nilradical.

Realize g as a transitive Lie algebra of vector fields on C? in such a way that its
isotropy subalgebra at a certain point is equal exactly to V + €. This guarantees
that the first prolongation of g is transitive on J'(C?, C) and has isotropy ¢ at a
certain point.

Finally, we compute all complete systems of 2nd order PDEs admitting g as its
symmetry and identify those which correspond to E + &. In fact, in all cases but
one (D.6-3, see Example 5.2 below) there is exactly one such system, and this
identification is obtained automatically.

Example 5.1 Consider the structure equations for the model D.7 as given in Table 7.
Simple analysis shows the corresponding Lie algebra g has radical of dimension 1 if
a # +3,and of dimension 4 if a = :I:f—‘. (Note that a and —a yield equivalent models.)

Consider first the case a # %. It is clear that g has a 6-dimensional Levi subalgebra,
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which is isomorphic to sl2(C) x sl (C) (the only complex semisimple Lie algebra in
this dimension). As any action of this Levi subalgebra on the 1-dimensional radical is
trivial, g is isomorphic to s> (C) x sl (C) x C. The corresponding basis change from
the Cartan reduced basis to the adapted Lie algebra basis in given in Table 12.

Next, analyzing the Cartan basis, we see that the isotropy ¢ is 2-dimensional and
abelian. Moreover, its projection to each sl (C)-factor is one-dimensional and diago-
nalizable, while the intersection with each sl (C)-factor is trivial. This implies that ¢
is conjugate to the following subalgebra in g:

¢~ (H —Z, Hy—2Z), *eC\{0},

where Hp, H, are parts of the standard sl (C)-basis {X;, H;, Y;} in each copy of
50> (C), and Z spans the center 3 = C. Also, A = %, and the redundancy a — —a
induces the redundancy A — %

Further, it is easy to check that the projections of both E + € and V + £ to each

slp (C)-factor is two-dimensional. Thus, we can assume that:

V+t=(X1,X2,H — Z, Hy — \Z),
E+t=(Y\,Y2,Hl —Z,H, — \Z).

Let us now realize g as a Lie algebra of vector fields on C=1J O(Cz, C) with the
isotropy subalgebra equal to V + €. Note that h = V 4 € 4 3 is a subalgebra of
codimension 2 in g. However, it is not effective, and the maximal ideal of g contained
in b is exactly 3. So, g/3 can be realized as a Lie algebra of vector fields on C* with
the isotropy b/3. But g/3 is isomorphic to sl (C) x sl (C) with h/3 identified with the
direct product of two subalgebras of upper-triangular matrices. It is easy to see that it
integrates to the global action of PSL,(C) x PSL,(C) on P! x Pl Locally this leads
to the following realization of g/3:

(3y, 2x8y, X208y, By, 2ydy, ¥2dy).
We can always assume that the realization of g is adapted to it. In other words, it
can be obtained from the above one by adding terms of the form f(x, y, u)d, to the
above vector fields and realizing the center Z as a vector field of the form g(x, y, u)d,.

Simple computation shows that we can always adapt the coordinates (x, y, #) such
that Z becomes equal to 9,,, and we get the following realization of g:

(ax, 20, + B, 20 + X0y, Dy 290y + L0, ¥20, + Ly, au>.

Prolonging this Lie algebra of vector fields to /' (C?, C) and checking which com-
plete systems of 2nd order PDEs are invariant with respect to it, we immediately get
that the only such system has the form:

2 2
uir =p°, uip=0, uxp=~iqg".
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Setting now the parameter A to 0 and computing the symmetry algebra of the above
system of PDEs, we obtain exactly the Lie algebra g, its subalgebra ¢ and subspaces
E,V C g/%, that match the exceptional case a = j:% of the Cartan structure equations
in case of D.7.

Example 5.2 Consider now the case D.6-3. We note that in this case the Lie algebra g
defined by the structure equations is semisimple if a # +3 and has a 3-dimensional
abelian ideal otherwise. First, consider the generic case of a # =£3. Then g is iso-
morphic to sl (C) x sl (C). As above, denote by {X;, H;, Y;},i = 1, 2, the standard
bases of these two copies of sl (C). Direct inspection of the Cartan structure equations
shows that ¢ = (H; — H;) and both subalgebras E 4 £ and V + ¢ are three-dimensional
semisimple. But any simple subalgebra of g containing £ has the form:

(X1 +uYs, Xo + uY1, H — Hp), un#0, (5.D

and any two such subalgebras are conjugate to each other by means of inner auto-
morphisms preserving €. Hence, we can assume that V + & corresponds to u = 1,
which is exactly the diagonal of the direct product of sl(C) x sl;(C). Under the
classical isomorphism so(4, C) ~ sl (C) x sl»(C) this subalgebra corresponds to
the standard embedding of s0(3, C) C so(4, C). So, we can realize the Lie algebra
g as a Lie algebra of vector fields corresponding to the action of SO (4, C) on the
three-dimensional complex sphere. In an appropriate coordinate system we get the
following vector fields:

X1 =8y,  Hy=—2xd —2ud,, Y1 = — x?9y — udy — 2xud,
Xy =03y,  Hp=—2ydy —2ud,, Y2 = — y?8y — udy — 2yud,.

Again, prolonging this Lie algebra of vector fields to J ! (C2, C) and computing all
invariant systems of 2nd order PDEs, we obtain the following family of systems:

Vil Vi = pq Vi = pq
un =rp? = un =1 Apg = ) = um = At

2A—1
22+1°

In the limiting case of ¢ = #3 in the structure equations we get g =~ s0(3, C) £ C?
and €4V = C3. This pair corresponds to the group of complex Euclidean transforma-
tions of C3, which preserves the following family of complete systems of 2nd order
PDE:s:

utr = Ap>1—2pq, up=rpg—1)y/1-2pq, un=7rg*y/1-2pq.

If A = 0, this system is flat and has 15-dimensional symmetry algebra. If A # 0, then
we cannormalize itto A = 1 by means of the transformation (x, y, u) — (Ax, Ay, Au).
To distinguish this special case from the generic one, we denote it by D.6-3.

Each such system corresponds to the subalgebra (5.1) with u =
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Example 5.3 Consider the case N.6-2, which involves two parameters. The Lie algebra
g is solvable in this case and has a 4-dimensional abelian nilradical n. Two basis
elements complementary to n act on n by the following two commuting matrices:

20 0 0 1 a 0o -1 0
0 5 1 O 0 22 0 -1
0 1 2 0} -1 0 22 O
1 0 0 b 0 -1 0 a

If parameters a, b of the structure equations satisfy a®> + 4 # 0, b> + 4 # 0, then
both matrices simultaneously diagonalize in a certain basis {N1, N2, N3, N4} of n to
become:

! diag (3b — B2+ 4,36+ V02 + 4,30 + b2 + 4,36 — Vb2 +4),
L diag (30 — Va2 + 4,30 = Va2 +4.3a + Va? + 4,30+ Va> +4).

After rescaling, we can bring them to the form:

1 3b
dla (H_I,M,/J/,M—l)’ M=_+ ,
- 2 2V + 4
3 3
diag(k + 1,6+ 1,6 + 2,k + 2), K=_+—a'
2 2Ja2+4

Denote by Si, S> the corresponding elements in g, which span the complementary
subspace to n. In general, this subspace is not a subalgebra, and [S;, S2] € n. But if
any of these two matrices is invertible (meaning p 7# 0, 1 or k # —1, —2) then we
can always adjust S1, S> by adding elements from n such that we get [ S, S>] = 0. We
note that there are elements u, u» € nsuchthat S; +u; € V+48 S +ur € E+ L.

It is easy to check that the intersection of V + € with n is two-dimensional and can
be made equal to (N1 — N4, N» — N3) after suitable rescaling to basis vectors {N;}.
Hence, in any realization of g as a transitive Lie algebra of vector fields on C? having
V + £ as a stabilizer, n will be a 4-dimensional abelian Lie algebra with 2-dimensional
orbits. In particular, we can always choose a local coordinate system (x, y, #) in such
a way that N3 = 9,, N4 = 0y, and two other basis vectors N1, N, will be of the form
f(x)dy + g(x)0dy,. As 81, Sz act by scalings on any of N;,i =1, ..., 4, itis natural to
assume that they are represented as linear combinations of vector fields x 0y, ydy, ud,.
Using this ansatz, we immediately get the following representation of g:

S1=—(— 1)ydy — nudy,
Sy = —x0x — (k +2)ydy — (k +2)udy,
Ny =x0dy, Np=x0,, N3=20,, Nij=0,.
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Prolonging this Lie algebra of vector fields to J!(C?, C) and computing all invariant
complete systems of 2nd order PDEs, we arrive at the following system:

uyg =q*x*, up =0, uxp=0.

The special values of parameters we omitted on the way can be treated in a similar
way and lead to the following systems of PDEs:

e a?+4=0,b>+4 # 0 (or equivalently, a> + 4 # 0, b> + 4 = 0):
uyp =e¥x*, up =0, upy=0.

e > +4=b+4=0:
uyg =ele*, upp =0, wuy$=0.

e 1= 0,1 (or equivalently, x = —1, —2):

uir =1In(g)x*, w12 =0, wuxpn=0.

More details on restrictions on parameters and realizations of g in terms of vector
fields for these special values of parameters are given in Table 9.
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Appendix: Classification Tables

See Tables 9, 10, 11, 12, 13 and 14
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Table 13 Basis change which reflects redundancy in parameters

Parameters change

Basis change

N.7-1 a— —a,(k > —k —3),

N.6-1 a— —a

N.6-2 a— —a, (k > —k —3),
b— =b,(p—>—pn+1)

D.7 a— —a,(h— 1/2)

D.6-3 a— —a,(A— —\)

(e1, €2, €3, e4, €5, €6) —
(—e1, €2, —e3, e4, €5, —eg)
(e1, €2, €3, €4, €5, €6) —>
(—e1, —ep, —e3, —eq, €5, €6)
(e1, €2, 3, €4, €5, 6) —>
(—ey, ez, —e3, e4, €5, —€6)
(e1, €2, €3, e4, €5, €6) —
(e1, —e2, e3, —eq, e5, —eg)
(e1,e2,e3, €4, €5, €6, €7) —
(e2,e1, e4, €3, 5, €6, —€7)
(e1, €2, 3, €4, €5, 6) —>
(e2, —ey, eq4, —e3, e5, —egp)

Table 14 Duality

Parameters change

Basis change

N.8 (self-dual) (e1,e2,e3,e4,e5,¢e6,€7,€8) =

(e4, €3, €2, €1, —e5, —eg, €8, €7)
N.7-2 (self-dual) (e1,e2,e3,e4, €5, ¢6,€7) —

(e4, €3, €2, €1, —e5, —eg, —e7)
N.6-1 (self-dual) (e1, e, €3, e42, es, eg) —> R

('1(1%1647 “;163, DT el —¢5 —e6)
N.6-2 (a,b) — (b, a), (e1, €2, €3, €4, e5,¢e6) — (eq, €3, €2, €1, —e5, —€q)

(1, k) = (K+2,1—2)

D.7 (self-dual) (e1,e2,e3,e4, €5, ¢6,€7) —

(e3,e4, €1, €2, —es5, —eg, —e7)
D.6-1 (self-dual) (e1, €2, €3, e4, €5, e6) —> (€3, e4, €1, €2, —e5, —eg)
D.6-2 (self-dual) (e1,e2, €3, €4, :‘5, ;6) —

—1(3a—

(e3, — =0 ey 1, - TG ¢ 65 —¢6)
D.6-3 (self-dual) (e1, €2, €3, e4,e5,€6) — (e3,¢e4, €1, €2, —€5, —€6)
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