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a b s t r a c t 

In the recent literature stance, purely nonlocal theory of elasticity is recognized to lead to ill-posed prob- 

lems. Yet, we show that, for a beam, a meaningful energy bounded solution of the purely nonlocal theory 

may still be defined as the limit solution of the two-phase nonlocal theory. For this, we consider the 

problem of free vibrations of a flexural beam under the two-phase theory of nonlocal elasticity with an 

exponential kernel, in the presence of rotational inertia. After recasting the integro-differential governing 

equation and the boundary conditions into purely differential form, a singularly perturbed problem is met 

that is associated with a pair of end boundary layers. A multi-parametric asymptotic solution in terms 

of size-effect and local fraction is presented for the eigenfrequencies as well as for the eigenforms for a 

variety of boundary conditions. It is found that, for simply supported end, the weakest boundary layer is 

formed and, surprisingly, rotational inertia affects the eigenfrequencies only in the classical sense. Con- 

versely, clamped and free end conditions bring a strong boundary layer and eigenfrequencies are heavily 

affected by rotational inertia, even for the lowest mode, in a manner opposite to that brought by nonlo- 

cality. Remarkably, all asymptotic solutions admit a well defined and energy bounded limit as the local 

fraction vanishes and the purely nonlocal model is retrieved. Therefore, we may define this limiting case 

as the proper solution of the purely nonlocal model for a beam. Finally, numerical results support the 

accuracy of the proposed asymptotic approach. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The classical linear theory of elasticity suffers from the well

nown defect of not encompassing an internal length scale, which

eature gives rise to self-similar predictions. Yet, any real mate-

ial possesses an internal microstructure and some characteristic

ength thereof. Consequently, classical elasticity may be assumed

s a suitable model inasmuch as the physical phenomena of in-

erest occur at a scale much greater than the internal characteris-

ic length of the material. Failure to meet this condition is effec-

ively demonstrated by, for instance, the singular stress field at the

ip of a crack and by the non-dispersive nature of wave propaga-

ion. Extensions of classical elasticity have been proposed, in the

orm of generalized continuum mechanics (GCM), in an attempt

o remediate these shortfalls. An excellent historical overview of

CM, together with extensive bibliographic details, may be found

n ( Maugin, 2011 ). Among GCM theories, we mention the theory
∗ Corresponding author. 

E-mail addresses: mikhasev@bsu.by (G. Mikhasev), andrea.nobili@unimore.it (A. 

obili). 

n  

f  

(  

ttps://doi.org/10.1016/j.ijsolstr.2019.10.022 

020-7683/© 2019 Elsevier Ltd. All rights reserved. 
f micro-polar elasticity ( Cosserat and Cosserat, 1909; Dai., 2003;

ietraszkiewicz and Eremeyev, 2009 ), the couple-stress and strain-

radient elasticity theories ( Yang et al., 2002; Nobili et al., 2019 )

nd the nonlocal theory of elasticity ( Eringen, 1984 ). In particu-

ar, following ( Eringen, 1984 ), ”linear theory of nonlocal elasticity,

hich has been proposed independently by various authors [... ],

ncorporates important features of lattice dynamics and yet it con-

ains classical elasticity in the long wave length limit”. Nonlocal

lasticity is based on the idea that the stress state at a point is a

onvolution over the whole body of an attenuation function (some-

imes named kernel or nonlocal modulus) with the strain field

 Wang et al., 2016 ). Although several attenuation functions may be

onsidered, they need to comply with some important properties

hich warrant that (a) classical elasticity is reverted to in the limit

f zero length scale and that (b) normalization is satisfied ( Eringen,

983; Koutsoumaris et al., 2017 ). As an example, Helmholtz and

i-Helmoltz kernels have been widely used in 1-D problems, their

ame stemming from the differential operators they are Green’s

unction of ( Eringen, 2002; Koutsoumaris and Eptaimeros, 2018 ). In

 Eptaimeros et al., 2016 ), a variational argument is adopted to de-

https://doi.org/10.1016/j.ijsolstr.2019.10.022
http://www.ScienceDirect.com
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duce the governing equations for a purely nonlocal Euler-Bernoulli

beam, whose eigenfrequencies are numerically investigated. 

Since nonlocal elasticity naturally leads to integro-differential

equations whose solution is most often impractical, an equiv-

alent differential nonlocal model (EDNM) was developed in

Eringen (1983) . In such differential form, nonlocal elasticity has

been extensively applied to study elastodynamics of beams and

shells as described in the recent review ( Eltaher et al., 2016 ) and

with special emphasis on the application to nanostructures ( Rafii-

abar et al., 2016 ). Generally, EDNM leads to interesting mechanical

effects, such as increased deflections and decreased buckling loads

and natural frequencies (softening effect), when compared to clas-

sical elasticity. However, a number of pathological results have also

emerged, which are often referred to as paradoxes ( Lu et al., 2006;

Fernández-Sáez et al., 2016; Koutsoumaris and Eptaimeros, 2018 ).

For instance, for a cantilever beam under point loading, nonlocal-

ity brings no effect ( Peddieson et al., 2003; Wang and Liew, 2007;

Challamel and Wang, 2008; Koutsoumaris et al., 2017 ). It should be

remarked that many studies based on the EDNM employ boundary

conditions in terms of macroscopic stresses, i.e. in classical form,

and therefore they disregard the important effect of the boundary

through nonlocality. Although this approach may be still adopted

for long structures or in the case of localized deformations oc-

curring away from the boundaries ( Mikhasev, 2014; Mikhasev and

Botogova, 2016 ), it is generally inaccurate. 

Very recently, Romano et al. (2017) claimed that Eringen’s

purely nonlocal model (PNLM) leads to ill-posed problems for

the differential form of the model is consistent inasmuch as an

extra pair of boundary conditions, termed constitutive, is satis-

fied (see also Mahmoud, 2017 ). In ( Eringen, 1984 , Eq. (6.4)) and

in ( Altan, 1989 ), a two-phase nonlocal model (TPNL) was intro-

duced, within the context of 3D elasticity, which combines, ac-

cording to the theory of mixtures, purely nonlocal elasticity with

classical elasticity, by means of the volume fractions ξ 1 and ξ2 =
1 − ξ1 . This model is immune from the inconsistencies of the

PNLM and it has been adopted to solve the problem of static

bending ( Wang et al., 2016 ) and buckling ( Zhu et al., 2017 ) of

Euler-Bernoulli (E-B) beams. Static axial deformation of a beam

is considered in ( Pisano and Fuschi, 2003; Zhu and Dai, 2012 ),

while semi-analytical solutions for the combined action of axial

and flexural static loadings is given in ( Meng et al., 2018 ). Axial

and flexural free vibrations of beams have also been considered in

( Mikhasev et al., 2018 ) and in ( Fernández-Sáez and Zaera, 2017 ).

In these works, either the TPNM is solved numerically or it is

reduced, by adopting the solution presented in ( Polyanin and

Manzhirov, 1998 ), to an equivalent higher-order purely differen-

tial model with a pair of extra boundary conditions. Despite this

reduction, the differential model is still difficult to analyse, espe-

cially in the neighbourhood of the PNLM, that is for ξ 1 small.

In this respect, we believe that the asymptotic approach may be

put to great advantage in predicting the mechanical behaviour of

nanoscale structures for a vanishingly small ξ 1 ( Zhu et al., 2017;

Mikhasev et al., 2018 ). 

In this paper, we consider free vibrations of a flexural beam

taking into account rotational inertia (Rayleigh beam), within the

TPNM and having assumed the Helmholtz attenuation function.

The integro-differential model is reduced to purely differential

form with an extra pair of boundary conditions. Spotlight is set

on developing asymptotic solutions valid for small microstructure

and/or little local fraction. These solutions feature a pair of bound-

ary layers located at the beam ends, whose strength depends on

the constraining conditions. Numerical results support the accu-

racy of the expansions. Most remarkably, the asymptotic approach

allows to investigate the behaviour of the solution in the neigh-

bourhood of the PNLM, where the expansions are non-uniform.

Nonetheless, they admit a perfectly meaningful, energy bounded
imit, which may be taken as the solution of the PNLM. We point

ut that the existence of such limit has been observed numerically

n ( Fernández-Sáez et al., 2016 ) for free-free end conditions. 

. Problem formulation 

.1. Governing equations 

For a flexural beam, vertical equilibrium gives 

S 
∂ 2 v 
∂t 2 

= 

∂ ˆ Q 

∂x 
+ 

ˆ q (x ) (1)

hile rotational equilibrium lends 

 

∂ 2 ϕ 

∂t 2 
= −∂ ˆ M 

∂x 
+ 

ˆ Q . (2)

ere, v = v (x, t) is the vertical displacement, ˆ Q and 

ˆ M are the di-

ensional shearing force and the bending moment, respectively, ρ
s the mass density per unit volume, J = ρI is the mass second mo-

ent of inertia per unit length of the beam, that is proportional to

he second moment of area I, S is the cross-sectional area and ˆ q (x )

he vertical applied load. Assuming that the beam is homogeneous

nd prismatic, Eqs. (1) and (2) give 

∂ 2 ˆ M 

∂x 2 
− ρS 

∂ 2 v 
∂t 2 

+ J 
∂ 4 v 

∂ x 2 ∂ t 2 
+ 

ˆ q = 0 , (3)

hat governs transverse vibrations of flexural beams accounting for

otational inertia. In the following, we take ˆ q ≡ 0 . In the mixed

onlocal theory (MNLT) of elasticity, we have ( Fernández-Sáez and

aera, 2017 ) 

ˆ 
 = −EI 

(
ξ1 

∂ 2 v 
∂x 2 

+ ξ2 

∫ L 

0 

K(| x − ˆ x | , κ) 
∂ 2 v 
∂ ̂  x 2 

d ̂  x 

)
, (4)

here EI is the beam flexural rigidity, L the beam length and

(| x − ˆ x | , κ) is the kernel or attenuation function. The kernel is

ositive, symmetric, it rapidly decays away from x and it satisfies

he normalization condition 

 

R 

K(| x − ˆ x | , κ)d ̂

 x = 1 . 

he constitutive Eq. (4) is also obtained from consideration of a

ore general form of kernel discussed in ( Koutsoumaris et al.,

017 ). The nonlocal parameter κ = e 0 a depends on the scale coef-

cient e 0 as well as on the internal length scale a. ξ 1 and ξ 2 take

p the role of volume fractions and they represent, respectively,

he local and the nonlocal phase ratios, such that ξ1 + ξ2 = 1 and

1 ξ 2 ≥ 0. When ξ1 = 0 , Eq. (4) degenerates into the purely nonlo-

al model (PNLM), while, in contrast, the case ξ1 = 1 corresponds

o classical local elasticity. 

In what follows, we consider the Helmholtz kernel 

(| x − ˆ x | , κ) = 

1 

2 κ
exp 

(
−| x − ˆ x | 

κ

)
, (5)

hich is frequently used for 1D problems (indeed, it is named spe-

ial kernel in Romano et al., 2017 ). We note that for the Helmholtz

ernel the following transformations are valid 

d 

d s 

∫ 1 

0 

e −
| s − ˆ s | 

ε y ( ̂  s ) d ̂  s = 

1 

ε 

[
e 

s 
ε 

∫ 1 

s 

e −
ˆ s 
ε y ( ̂  s )d ̂

 s − e −
s 
ε 

∫ s 

0 

e 
ˆ s 
ε y ( ̂  s )d ̂

 s 

]
, 

(6)

nd 

d 

2 

d s 2 

∫ 1 

e −
| s − ˆ s | 

ε y ( ̂  s )d ̂

 s = 

1 

ε 2 

∫ 1 

e −
| s − ˆ s | 

ε y ( ̂  s )d ̂

 s − 2 

ε 
y (s ) . (7)
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n particular, Eq. (7) corresponds to ( Romano et al., 2017 ),

q. (6) and it may be rewritten as 

 1 

0 

[
ε 2 

d 

2 K(| s − ˆ s | , ε) 

d s 2 
− K(| s − ˆ s | , ε) + δ(| s − ˆ s | ) 

]
y ( ̂  s )d ̂

 s = 0 , 

hereupon K(| s − ˆ s | , ε) is the Green’s function of the singularly

erturbed operator H ε = 1 − ε 2 d 2 

d s 2 
. It is trivial matter to prove im-

ulsivity, i.e. lim ε→ 0 K(| s − ˆ s | , ε) = δ(s − ˆ s ) , where δ( s ) is Dirac’s

elta function. Furthermore, we observe that Eq. (6) , evaluated at

he beam ends s = 0 , 1 and for ξ = 0 , lends the constitutive bound-

ry conditions ( Romano et al., 2017 ), Eq. (5) 

d 

ˆ M 

d s 
(0) = ε −1 ˆ M (0) , and 

d 

ˆ M 

d s 
(1) = −ε −1 ˆ M (1) . 

hus, the constitutive boundary conditions are really the expres-

ion, on the domain boundary, of a general feature of the solution

hat is related to the integral operator (4) . 

Introducing the dimensionless axial co-ordinate s = x/L and un-

er the assumption of time-harmonic motion, we write 

v , ˆ M , ˆ Q 

}
= 

{ 

w (s ) , 
EI 

L 
M(s ) , 

EI 

L 2 
Q(s ) 

} 

exp (ıωt) , 

here ı is the imaginary unit. Upon multiplying throughout by

 

4 / EI , Eq. (3) may be turned in dimensionless form 

1 
d 

4 w 

d s 4 
+ 

(
λ4 θ − ε −2 ξ2 

)d 

2 w 

d s 2 

+ 

ξ2 

2 ε 3 

∫ 1 

0 

exp 

(
−| ̂  s − s | 

ε 

)
d 

2 w ( ̂  s ) 

d ̂

 s 2 
d ̂

 s − λ4 w = 0 . (8) 

ere, use have been made of Eqs. (4) and (5) and we have let the

imensionless ratios 

= 

J 

ρSL 2 
= 

(
r A 
L 

)2 

, λ4 = 

ρSL 4 ω 

2 

EI 
, (9)

ogether with the microstructure parameter 

 = 

κ

L 
� 1 . 

ere r A is the radius of gyration. Clearly, θ plays the role of an

spect ratio squared and ε is a scale effect . Assuming w ∈ C 6 [0,

], twice differentiating Eq. (8) , making use of Eq. (7) and then

ubtracting the original Eq. (8) , we get the governing equation in

urely differential form 

 

2 ξ
d 

6 w 

d s 6 
−

(
1 − ε 2 θλ4 

)d 

4 w 

d s 4 
− λ4 

(
ε 2 + θ

)d 

2 w 

d s 2 
+ λ4 w = 0 , (10)

here, hereinafter, we adopt the shorthand ξ = ξ1 . Eq. (10) is a

ingularly perturbed ODE ( Kevorkian and Cole, 1996 ), with respect

o the small parameter ε 
√ 

ξ . 

.2. Boundary conditions 

Eq. (10) is supplemented by suitable boundary conditions (BCs)

t the ends. For clamped ends (C-C conditions), we have two pairs

f kinematical conditions 

 (0) = w 

′ (0) = 0 , (11a)

 (1) = w 

′ (1) = 0 . (11b)

For simply supported (S-S) ends 

 (0) = 0 , M(0) = ξw 

′′ (0) + M 0 = 0 , (12a)

 (1) = 0 , M(1) = ξw 

′′ (1) + M 1 = 0 , (12b)
aving let 

 0 = 

1 − ξ

2 ε 

∫ 1 

0 

e −
ˆ s 
ε w 

′′ ( ̂  s )d ̂

 s , M 1 = 

1 − ξ

2 ε 
e −

1 
ε 

∫ 1 

0 

e 
ˆ s 
ε w 

′′ ( ̂  s )d ̂

 s . 

(13) 

or free-free (F-F) ends, one has 

(0) = 0 , Q(0) = ξw 

′′′ (0) + θλ4 w 

′ (0) + ε −1 M 0 = 0 , (14a)

(1) = 0 , Q(1) = ξw 

′′′ (1) + θλ4 w 

′ (1) − ε −1 M 1 = 0 . (14b)

The nonlocal end bending moments (13) may be rewritten in

ifferential form with the help of the original integro-differential

q. (8) : 

 0 = −ε 2 ξw 

i v (0) + 

[
1 − ξ − ε 2 θλ4 

]
w 

′′ (0) + ε 2 λ4 w (0) , (15a)

 1 = −ε 2 ξw 

i v (1) + 

[
1 − ξ − ε 2 θλ4 

]
w 

′′ (1) + ε 2 λ4 w (1) . (15b)

Consequently, the BCs may be recast in differential form

hrough 

(0) = w 

′′ (0) + ε 2 N 0 , (16a)

(1) = w 

′′ (1) + ε 2 N 1 , (16b)

(0) = ξw 

′′′ (0) + θλ4 w 

′ (1) + ε −1 M 0 , (16c)

(1) = ξw 

′′′ (1) + θλ4 w 

′ (1) − ε −1 M 1 , (16d)

here, making use of the connections ( 6,7 ), we have 

 0 = ε −2 
(
ξ2 w 

′′ (0) − M 0 

)
= −ξw 

i v (0) − θλ4 w 

′′ (0) + λ4 w (0) , 

(17a) 

 1 = ε −2 
(
ξ2 w 

′′ (1) − M 1 

)
= −ξw 

i v (1) − θλ4 w 

′′ (1) + λ4 w (1) . 

(17b) 

Besides, to rule out spurious solutions which may have ap-

eared owing to double differentiation, we introduce a pair of ad-

itional BCs. Indeed, evaluating at the beam ends the original gov-

rning Eq. (8) , differentiated once with respect to s , one arrives

t 

 

3 ξw 

v (0) − ε 2 ξw 

i v (0) −
(
1 − ξ − ε 2 θλ4 

)[
εw 

′′′ (0) − w 

′′ (0) 
]

− ε 3 λ4 w 

′ (0) + ε 2 λ4 w (0) = 0 , (18a) 

 

3 ξw 

v (1) + ε 2 ξw 

i v (1) −
(
1 − ξ − ε 2 θλ4 

)[
εw 

′′′ (1) + w 

′′ (1) 
]

− ε 3 λ4 w 

′ (1) − ε 2 λ4 w (1) = 0 . (18b) 

Dropping rotational inertia, the additional boundary condi-

ions (18) coincide with the constitutive boundary conditions re-

ently obtained by (Fernández-Sáez and Zaera, 2017, Eqs. (59) and

60)) , provided that we replace our ε and λ4 with their h and λw 

,

espectively. However, it should be remarked that in Fernández-

áez and Zaera (2017) the original integro-differential problem is

educed to the equivalent differential form extending to dynam-

cs the original argument developed in ( Wang et al., 2016 ) for

tatics. Such argument takes advantage of a result presented in

 Polyanin and Manzhirov, 2008 ), which really applies to inhomoge-

eous integral equations with a given right-hand side. In the case

f dynamics, however, this right-hand side is a problem unknown,

or it is really an acceleration term, and therefore the applicability

f the reduction formula is questionable. 
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3. Exact solution of the boundary-value problems 

The general solution of the ODE (10) is 

w (s ) = 

6 ∑ 

j=1 

c j exp 

(
b j s 

)
, 

where the constants b j are the roots of the characteristic polyno-

mial in ζ

ε 2 ξζ 6 −
(
1 − ε 2 θλ4 

)
ζ 4 −

(
ε 2 + θ

)
λ4 ζ 2 + λ4 = 0 . (19)

As detailed in ( Smirnov, 1964; Nobili and Lanzoni, 2010 ), this

bi-cubic may be turned in canonical form by the substitution

Z = ζ 2 − Z 0 , it being Z 0 = (1 − ε 2 θλ4 ) / (3 ε 2 ξ ) . Hence, Eq. (19) be-

comes 

Z 3 − pZ − q = 0 , 

where 

p = 

(
ξε 2 

)−1 

[ (
λ4 θε 2 − 1 

)2 

3 ξε 2 
+ λ4 

(
θ + ε 2 

)] 

> 0 , 

q = −
(
ξε 2 

)−1 

[ 

λ4 + 

λ4 
(
θ + ε 2 

)(
λ4 θε 2 − 1 

)
3 ξε 2 

+ 

2 

(
λ4 θε 2 − 1 

)3 

27 ξ 2 ε 4 

] 

. 

This polynomial possesses three real roots provided that 


 = 

q 2 

4 

− p 3 

27 

< 0 

and indeed, for ε 
√ 

ξ � 1 , we get, to leading order, 


 = −λ4 4 + θ2 λ4 

108(ξε 2 ) 4 
. 

Besides, we have, at leading order, 

q = 

2 

27(ξε 2 ) 3 

and q > 0, whereupon out of the three real roots, two, say Z 3 < Z 2 ,

are negative and one, say Z 1 , is positive. Upon reverting to the orig-

inal variable ζ , we see that ζ 2 
3 < 0 < ζ 2 

2 < ζ 2 
1 . Indeed, we get the

leading order solutions (the sign is immaterial) 

ζ1 = 

1 

ε 
√ 

ξ
, ζ2 = α, ζ3 = ıβ, 

with 

α = λ

√ 

−1 

2 

θλ2 + 

√ 

1 + 

θ2 λ4 

4 

, (20a)

β = λ

√ 

1 

2 

θλ2 + 

√ 

1 + 

θ2 λ4 

4 

, (20b)

whence ζ 1,2 convey an exponential solution, while ζ 3 is related to

an oscillatory contribution. It is worth noticing that ζ 1 blows up

as (ε 
√ 

ξ ) → 0 , that is for a vanishingly small scale effect or in the

purely nonlocal situation. Indeed, this very root accounts for the

edge effect in this problem and it describes a boundary layer. 

We observe that, in general, the frequency equation for the ODE

(10) , subject to suitable boundary conditions, appears in transcen-

dental form 

F (λ; ξ , ε) = 0 , 

wherein λ is the sought-for eigenvalue. The numerical solution

of this equation is not straightforward matter, especially for very

small values of the local fraction ξ , see e.g., Fernández-Sáez and

Zaera (2017) and Wang et al. (2016) where plots are given for
> 0.1 and ξ > 0.05, respectively. Indeed, when looking for the nu-

erical roots of (19) , we observe, after ( Smirnov, 1964 ), that the

ransformation to canonical form lends a considerable numerical

dvantage over Cardano’s formulas, in that it provides purely real

olutions. Conversely, Cardano’s formulas are likely to introduce a

ery small spurious imaginary component, which is most likely

he cause of the numerical difficulty encountered in the literature

hen dealing with small ξ . 

To estimate the eigenvalue λ for any ξ and, in particular, in the

imiting case of the PNLM (that occurs as ξ → 0), we consider an

symptotic expansion in the small parameter ε. 

. Asymptotic solution of the boundary-value problems 

Following a standard asymptotic argument ( Kevorkian and Cole,

996; Mikhasev et al., 2018 ) and similarly to the extraction of the

dge effect in shells ( Gol’denveizer, 1961; Kaplunov and Nobili,

017 ), we seek a solution of the eigenvalue problem through su-

erposition of a solution, w 

( m ) , valid in the interior of the beam

the so-called outer solution), with a pair of boundary layers, w 

(e ) 
1 

nd w 

(e ) 
2 

, fading off away from the left and from the right beam

nd, respectively, 

 (s, ε) = w 

(m ) (s ) + ε γ1 w 

(e ) 
1 

(s, ε) + ε γ2 w 

(e ) 
2 

(s, ε) , (21)

here γ 1,2 > 0 and we have the order relations 

∂w 

(m ) 

∂s 
∼ w 

(m ) , 
∂w 

(e ) 
i 

∂s 
∼ ε −ς w 

(e ) 
i 

as ε → 0 . 

he parameter ς is named the index of variation of the edge effect

ntegrals , while γ 1,2 are the indices of intensity of the edge effect in-

egrals near the left and right ends, respectively. The indices γ 1,2 

epend on the boundary conditions and should be specified for

ach end. 

.1. Boundary layer 

To derive an equation describing the behaviour of the solution

n the vicinity of the ends (boundary layer), we zoom in by as-

uming s = ε ς σ and 1 − s = ε ς σ, respectively for the left and for

he right end. For either case, one obtains the distinguished limit

 = 1 and Eq. (10) is rewritten as 

d 

6 w 

(e ) 
i 

d σ 6 
−

(
1 − ε 2 θλ4 

)d 

4 w 

(e ) 
i 

d σ 4 
− ε 2 λ4 

(
θ + ε 2 

)d 

2 w 

(e ) 
i 

d σ 2 

+ ε 4 λ4 w 

(e ) 
i 

= 0 , (22)

hose solution is sought in the form of an asymptotic series in the

mall parameter ε � 1 

 

(e ) 
i 

= w 

(e ) 
i 0 

+ εw 

(e ) 
i 1 

+ ε 2 w 

(e ) 
i 2 

+ . . . , i = 1 , 2 . (23)

ubstitution of (23) into (22) lends a sequence of differential equa-

ions in the unknowns w 

(e ) 
i j 

(σ ) , i = 1 , 2 ; j = 0 , 1 , 2 , . . . . Here, we

imply give the first two terms of the expansion in the original

ariable s 

 

(e ) 
1 

(s, ε) = a 10 e 
− s 

ε 
√ 

ξ + εe 
− s 

ε 
√ 

ξ

[ 

a 11 + a 10 
θλ4 (1 − ξ ) 

2 

√ 

ξ
s 

] 

+ O 

(
ε 2 e 

− s 

ε 
√ 

ξ

)
, 

 

(e ) 
2 

(s, ε) = a 20 e 
− 1 −s 

ε 
√ 

ξ + εe 
− 1 −s 

ε 
√ 

ξ

[ 

a 21 + a 20 
θλ4 (1 − ξ ) 

2 

√ 

ξ
(1 − s ) 

] 

+ O 

(
ε 2 e 

− 1 −s 

ε 
√ 

ξ

)
, (24)

here a i j (i = 1 , 2 ; j = 0 , 1 , 2 , . . . ) are constants that will be deter-

ined in the following from the boundary conditions. 
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.2. The outer solution 

The displacement w 

( m ) as well as the eigenvalue λ are sought

n the form of an asymptotic series 

 

(m ) = w 0 + εw 1 + ε 2 w 2 + . . . , 

λ = λ0 + ελ1 + ε 2 λ2 + . . . . (25) 

he leading term in the series corresponds to the solution of the

lassical local problem and λ0 is the classical eigenvalue. Substi-

uting (25) into the governing Eq. (10) and equating coefficients of

ike powers of ε leads to the sequence of differential equations: 

k 
 

j=0 

L j w k − j = 0 , k = 0 , 1 , 2 , . . . , (26)

here 

 0 z = 

d 4 z 

d s 4 
+ θλ4 

0 

d 2 z 

d s 2 
− λ4 

0 z, L 1 z = −4 λ3 
0 λ1 D z, D z = z − θ

d 2 z 

d s 2 
, 

 2 z = −ξ
d 6 z 

d s 6 
− θλ4 

0 

d 4 z 

d s 4 
+ λ4 

0 

d 2 z 

d s 2 
− 2 λ2 

0 

(
3 λ2 

1 + 2 λ0 λ2 

)
D z, 

 3 z = −4 θλ3 
0 λ1 

d 4 z 

d s 4 
+ 4 λ3 

0 λ1 
d 2 z 

d s 4 
− 4 λ0 

(
λ2 

0 λ3 + λ3 
1 + 2 λ0 λ1 λ2 

)
D z, . . . 

At leading order, one finds the homogeneous forth order ODE 

 0 w 0 = 0 , (27) 

hose general solution 

 0 (s ) = c 01 sin (βs ) + c 02 cos (βs ) + c 03 e 
−αs + c 04 e 

α(s −1) , (28)

epends on the constants, c 0 i , i ∈ {1, 2, 3, 4}, to be determined

hrough the boundary conditions. However, the ODE (27) is sub-

ect to six boundary conditions and the problem is to determine

hich of these correspond to the outer solution and which pertain

o the boundary layer ( Kevorkian and Cole, 1996 ). The procedure of

plitting the boundary conditions also gives the indices of intensity

f the boundary layer, γ 1 , γ 2 , as well as the constants c 0 k , a ij . For

his, one needs to insert the expansions (21), (24) and (25) into

he boundary conditions and equate coefficients of like powers of

, while imposing the following requirements: 

• in the leading approximation, every end condition should be

homogeneous and coincide with those of the classical local

theory; 

• the k th-order approximation generates two equations cou-

pling the constants a i (k −1) with the previous order approxi-

mation w k −1 (s ) evaluated at the boundaries. 

.3. Beam with simply supported ends 

Let both beam ends be simply supported (S-S conditions),

s given by the boundary conditions (12) rewritten in differen-

ial form through Eqs. (16a) and (16b) , together with the addi-

ional constraints (18) . Substituting the expansions (21), (24) and

25) into these conditions, we determine the strength of either

oundary layer: γ1 = γ2 = 3 . 

At leading order, we arrive at the homogeneous classical bound-

ry conditions 

 0 (0) = w 0 (1) = w 

′′ 
0 (0) = w 

′′ 
0 (1) = 0 , 

hich give c 01 = C, c 02 = c 03 = c 04 = 0 and the classical eigenforms

 0 (s ) = C sin (βs ) , β = πn, n = 1 , 2 , . . . . (29)

n light of the definition (20b) , we find the eigenfrequencies 

0 = λ(n ) 
0 

≡ πn 

[1 + θ (πn ) 2 ] 1 / 4 
, n = 1 , 2 , . . . , (30)
nd, using (9) , the corresponding dimensional frequencies ω 0 =
 

EI 
ρS (λ0 /L ) 2 . 

Moving to first-order terms, we again obtain a set of homoge-

eous boundary conditions 

 1 (0) = w 1 (1) = w 

′′ 
1 (0) = w 

′′ 
1 (1) = 0 , (31)

s well as formulas for the leading amplitude in the boundary layer

24) : 

 10 = −
√ 

ξ
(

1 −
√ 

ξ
)

w 

′′′ 
0 (0) = Cβ3 

√ 

ξ
(

1 −
√ 

ξ
)
, (32a)

 20 = 

√ 

ξ
(

1 −
√ 

ξ
)

w 

′′′ 
0 (1) = C(−1) n +1 β3 

√ 

ξ
(

1 −
√ 

ξ
)
. (32b)

Consideration of the inhomogeneous ODE (26) arising in this

pproximation, alongside the associated homogeneous bound- 

ry conditions (31) , yields the compatibility condition λ1 = 0 ,

hence 

 1 = C 1 sin (βs ) , 

here C 1 is an arbitrary constant. Without loss of generality, one

an assume w 1 ≡ 0, for this amounts to taking C = C 0 + εC 1 + . . . . 

In the second-order approximation, when taking into account

he outcomes of the previous step, we have again a homogeneous

et of boundary conditions 

 2 (0) = w 2 (1) = w 

′′ 
2 (0) = w 

′′ 
2 (1) = 0 , (33)

nd a 11 = a 21 = 0 . The associated differential equation for w 2 

eads 

 0 w 2 = −L 2 w 0 ≡ ξ
d 

6 w 0 

d s 6 
+ θλ4 

0 

d 

4 w 0 

d s 4 

−λ3 
0 ( λ0 + 4 θλ2 ) 

d 

2 w 0 

d s 2 
+ 4 λ3 

0 λ2 w 0 . (34) 

e thus arrive at the inhomogeneous boundary value problem

BVP) “on spectrum”. Upon observing that the homogeneous BVP

 33,34 ) arising at leading order is self-conjugated and therefore

ossesses the solution z(s ) = w 0 (s ) , we deduce the compatibility

ondition 

 1 

0 

w 0 (s ) L 2 w 0 (s )d s = 0 , 

hich readily gives the correction for the eigenvalue: 

2 = −
β2 

[
λ4 

0 

(
1 + θβ2 

)
− ξβ4 

]
4 λ3 

0 

(
1 + θβ2 

) . 

n taking into account this result, Eq. (34) turns homogeneous

nd, without loss of generality, we can assume w 2 ≡ 0. 

Considering the third-order approximation, one obtains the in-

omogeneous boundary conditions 

w 3 (0) = −a 10 = −Cβ3 
√ 

ξ
(

1 −
√ 

ξ
)
, 

w 3 (1) = −a 20 = C(−1) n β3 
√ 

ξ
(

1 −
√ 

ξ
)
, 

 

′′ 
3 (0) = θλ4 

0 a 10 = Cθλ4 
0 β

3 
√ 

ξ
(

1 −
√ 

ξ
)
, 

 

′′ 
3 (1) = θλ4 

0 a 20 = (−1) n +1 Cθλ4 
0 β

3 
√ 

ξ
(

1 −
√ 

ξ
)

(35) 

or the inhomogeneous ODE 

 0 w 3 = −L 3 w 0 ≡ 4 λ3 
0 λ3 D w 0 . (36)

he compatibility condition for the BVP (35) and (36) works out 

− w 

′′ 
3 (1) w 

′ 
0 (1) + w 

′′ 
3 (0) w 

′ 
0 (0) − w 3 (1) w 

′′′ 
0 (1) + w 3 (0) w 

′′′ 
0 (0) 
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0 0 

 

+ θλ4 
0 

[
w 3 (0) w 

′ 
0 (0) − w 3 (1) w 

′ 
0 (1) 

]
+ 4 λ3 

0 λ3 

∫ 1 

0 

(
w 0 − θw 

′′ 
0 

)
w 0 d s = 0 , 

whence we get the next correction term for the eigenvalue 

λ3 = 

β6 
√ 

ξ
(

1 −
√ 

ξ
)

λ3 
0 

(
1 + θβ2 

) . (37)

The eigenform correction w 3 , satisfying the boundary conditions

(35) , is given by the sum of a particular solution w 3 p of Eq. (36) ,

with the homogeneous solution w 3 o . The former reads 

w 3 p (s ) = C 3 p s cos (βs ) , 

where 

 3 p = 2 Cλ3 
0 λ3 

1 + θβ2 

β
(
α2 + β2 

) = 2 C 
β5 

α2 + β2 

√ 

ξ
(

1 −
√ 

ξ
)
. 

Consequently, making use of (37) , we get 

w 3 (s ) = Cβ3 
√ 

ξ
(

1 −
√ 

ξ
)
{ c 32 cos (βs ) + c 33 exp ( −αs ) 

+ c 34 exp [ α(s − 1) ] − 2 c 32 s cos (βs ) } , 
with the constants 

c 32 = −β2 / 
(
α2 + β2 

)
, 

c 33 = 

1 
2 
α2 e α(1 − coth α) [ e α + (−1) n ] / 

(
α2 + β2 

)
, 

c 34 = − 1 
2 
α2 e α(1 − coth α) [ (−1) n e α + 1 ] / 

(
α2 + β2 

)
. 

Breaking at this step the asymptotic procedure for seeking the

eigenvalues λk and the associated eigenfunctions w k , we obtain the

asymptotic expansion 

λ = λ0 

[ 
1 − 1 

4 
ε 2 β2 (1 − ξ ) + ε 3 β2 

√ 

ξ
(

1 −
√ 

ξ
)

+ O 

(
ε 4 

)] 
, 

where β and λ0 are determined by Eqs. (29) and (30) , respectively.

Up to an undetermined factor, the associated eigenmode reads 

w (s ) = sin (πns ) + ε 3 (πn ) 3 
√ 

ξ
(

1 −
√ 

ξ
){

c 32 cos (πns ) 

+ c 33 exp (−αs ) + c 34 exp [ α(s − 1)] − 2 c 32 s cos (πns ) 

+ exp 

( 

− s 

ε 
√ 

ξ

) 

+ (−1) n +1 exp 

( 

s − 1 

ε 
√ 

ξ

) }
+ O 

(
ε 4 

)
. (38)

It is of interest to compare the dimensional natural frequency,

ω, determined with the TPNM, with its classical counterpart, ω 0 ,

evaluated within the framework of local elasticity, i.e. for ξ = 1 .

When taking into account the definition (9) , we arrive at the rela-

tion 

ω 

ω 0 

= 

(
λ

λ0 

)2 

= 1 − 1 

2 

ε 2 (πn ) 2 (1 − ξ ) 

+ 2 ε 3 (πn ) 2 
√ 

ξ
(

1 −
√ 

ξ
)

+ O 

(
ε 4 

)
. (39)

Remarkably, this expression is independent of θ and this unex-

pected feature is indeed confirmed by the numerical solution of

the TPNM, see Fig. 5 . Fig. 1 plots the approximation (39) in the

range 0 < ξ < 1 against the numerical solution of the TPNM (given

for ξ > 0.01) for the scale parameter ε = 0 . 01 , 0 . 05 and 0.075. It ap-

pears that the 1-term asymptotic approximation is remarkably ef-

fective for small values of ε. The numerical solution of the TPNM

given in Fig. 1 compares favourably with the corresponding solu-

tion depicted in Fig. 4 of ( Fernández-Sáez et al., 2016 ) that, how-

ever, pertains to the range ξ 1 > 0.1, presumably owing to the nu-

merical difficulties that may arise in the neighbourhood of the

PNLM. 
As a special case of Eq. (39) , one obtains the eigenfrequency

atio corresponding to the PNLM (i.e. for ξ = 0 ) 

ω 

ω 0 

= 1 − 1 

2 

ε 2 (πn ) 2 + O 

(
ε 4 

)
. (40)

.4. Beam with clamped ends 

Consideration of a beam with clamped ends requires enforcing

11) and (18) on Eqs. (21),(24) and (25) . We thus get the strength

f the boundary layer γ1 = γ2 = 2 . In the leading approximation,

ne has the classical boundary conditions 

 0 (0) = w 0 (1) = w 

′ 
0 (0) = w 

′ 
0 (1) = 0 , 

hat give the constants 

c 01 = 2 α( cosh α − cos β) 

c 02 = 2 α sin β − 2 β sinh α, 

c 03 = β( e α − cos β) − α sin β, 

 04 = −e αα sin β + β( e α cos β − 1 ) , (41)

s well as the frequency equation 

1 
2 
θλ2 

0 sin β sinh α + cos β cosh α − 1 = 0 . (42)

n particular, if θ = 0 , one arrives at the classical frequency equa-

ion, cosh λ0 cos λ0 = 1 , valid for a Bernoulli–Euler beam, the cor-

esponding eigenmode being 

 0 (s ) = C 

[
U (λ0 s ) − U (λ0 ) 

V (λ0 ) 
V (λ0 s ) 

]
, 

here S ( x ), T ( x ), U ( x ), V ( x ) are the well-known Krylov–Duncan

unctions ( Karnovsky and Lebed, 2010 , § 14.4.3) 

S(x ) = 

1 
2 ( cosh x + cos x ) , T (x ) = 

1 
2 ( sinh x + sin x ) , 

(x ) = 

1 
2 ( cosh x − cos x ) , V (x ) = 

1 
2 ( sinh x − sin x ) . 

esides, we get 

 10 = 

√ 

ξ
(

1 −
√ 

ξ
)

w 

′′ 
0 (0) , (43a)

 20 = 

√ 

ξ
(

1 −
√ 

ξ
)

w 

′′ 
0 (1) . (43b)

In the first-order approximation, one has the inhomogeneous

DE (26) 

 0 w 1 = 4 λ3 
0 λ1 D w 0 , (44)

nd the procedure of splitting the boundary conditions gives 

 1 (0) = w 1 (1) = 0 , (45a)

 

′ 
1 (0) = 

(
1 −

√ 

ξ
)

w 

′′ 
0 (0) , (45b)

 

′ 
1 (1) = −

(
1 −

√ 

ξ
)

w 

′′ 
0 (1) . (45c)

The compatibility conditions for the BVP (44) and (45) reads 

 

′ 
1 (1) w 

′′ 
0 (1) − w 

′ 
1 (0) w 

′′ 
0 (0) − w 1 (1) w 

′′′ 
0 (1) + w 1 (0) w 

′′′ 
0 (0) 

− 4 λ3 
0 λ1 

∫ 1 

0 

D w 0 (s ) w 0 (s )d s = 0 , 

hence, accounting for Eq. (45) , one obtains the correction 

1 = −λ0 

(
1 −

√ 

ξ
){

[ w 

′′ 
0 (0)] 2 + [ w 

′′ 
0 (1)] 2 

}
4 

∫ 1 
[ w 

′′ (s )] 2 d s 
, (46)
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Fig. 1. 1st (left) and 2nd (right) eigenfrequencies ω for a S-S beam (solid, black), with ε = 0 . 01 , 0.05 and 0.075, superposed onto the 1-term (dashed, red) and the 2-term 

(dotted, blue) asymptotic approximation, normalized with respect to the classical local frequency ω 0 , Eq. (39) . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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here part-integration has been used at the denominator. Now, we

an write the problem solution 

 1 (s ) = c 11 sin (βs ) + c 12 cos (βs ) + c 13 e 
−αs + c 14 e 

α(s −1) + w 1 p (s ) , 

(47) 

here 

 1 p (s ) = 2 

λ3 
0 λ1 

α2 + β2 
s 

{
1 + θβ2 

β
[ −c 01 cos (βs ) + c 02 sin (βs ) ] 

+ 

1 − θα2 

α

[
c 03 e 

−αs − c 04 e 
α(s −1) 

]}
(48) 

s the particular solution of Eq. (44) with the coefficients c 0 j being

iven by Eq. (41) . In the special case of no rotational inertia, θ = 0 ,

q. (46) may be reduced to the very simple expression 

1 = −2 λ0 

(
1 −

√ 

ξ
)
, 

nd Eq. (48) gives 

 1 p (s ) = 

λ1 

λ0 

sw 

′ 
0 (s ) = −2 C(1 −

√ 

ξ ) λ0 

× s 

[
T (λ0 s ) − U(λ0 ) 

V (λ0 ) 
U(λ0 s ) 

]
. 

imilarly, Eq. (47) becomes 

 1 (s ) = C 

(
1 −

√ 

ξ
)
λ0 

[
T (λ0 s ) − T (λ0 ) 

V (λ0 ) 
V (λ0 s ) 

]
+ w 1 p (s ) . 

Breaking the asymptotic procedure at this step, we can write

own the approximate formula for the nonlocal-to-local frequency

atio 

ω 

ω 0 

= 1 − 1 
2 
ε 
(

1 −
√ 

ξ
)[

w 

′′ 
0 (0) 

]2 + 

[
w 

′′ 
0 (1) 

]2 

∫ 1 
0 

[
w 

′′ 
0 
(s ) 

]2 
d s 

+ O 

(
ε 2 

)
, (49)

hat, in the absence of rotary inertia, reduces to 

ω 

ω 0 

= 1 − 4 ε 
(

1 −
√ 

ξ
)

+ O 

(
ε 2 

)
. (50)

ig. 2 plots the approximated ratio (50) onto the numerical solu-

ion of the TPNM and shows that the 1-term correction provides

xcellent agreement for the fundamental mode. It is also clear from

q. (50) that, as in the S-S situation, a perfectly reasonable limit is

etrieved for the PNLM, i.e. for ξ → 0. 

The asymptotic expansion for the eigenmode reads 

 = w 0 + εw 1 + O 

(
ε 2 

)
, (51)

here w 0 and w 1 belong to the outer solution and they are given

y (28) , with coefficients (41) , and by Eq. (47) , respectively. We ob-

erve that the boundary layer terms are O ( ε2 ) and therefore they
o not appear explicitly in (51) . To incorporate them consistently,

ne needs to consider the successive approximation term, ɛ 2 w 2 , for

he outer solution. 

.5. Beam with clamped and simply supported ends 

To fix ideas, let the left beam end be clamped and the right

imply supported. The correspondent boundary conditions are

iven by (11a), (12b) and the pair of additional conditions (18) . In

his case, we arrive at γ1 = 2 and γ2 = 3 for the left and for the

ight boundary layer, respectively. 

At leading order, one has the classical boundary conditions 

 0 (0) = w 

′ 
0 (0) = w 0 (1) = w 

′′ 
0 (1) = 0 , 

hence we get the constants in the general solution (28) 

 01 = −2 λ2 
0 

(
α2 β−2 cosh α + cos β

)
, (52a) 

 02 = 2 

(
λ2 

0 sin β + α2 sinh α
)
, (52b) 

 03 = −λ2 
0 sin β − β2 cos β − e αα2 , (52c) 

 04 = e α
(
β2 cos β − λ2 

0 sin β
)

+ α2 , (52d)

ogether with Eq. (43a) . The eigenvalues λ0 = λ(n ) 
0 

are found from

he transcendental equation 

cosh α sin β − β cos β sinh α = 0 , 

hat, when θ = 0 , boils down to 

 (λ0 ) U(λ0 ) = S(λ0 ) V (λ0 ) . 

he last equation amounts to the well known classical equation

anh λ0 = tan λ0 , while the correspondent eigenmodes are given by

 0 (s ) = C 

[
U(λ0 s ) − S(λ0 ) 

T (λ0 ) 
V (λ0 s ) 

]
. (53)

he first-order approximation yields 

 1 (0) = 0 , w 

′ 
1 (0) = 

(
1 −

√ 

ξ
)

w 

′′ 
0 (0) , w 1 (1) = w 

′′ 
1 (1) = 0 , 

(54) 

nd a 10 and a 20 are defined by Eqs. (43a) and (32b) 

a 10 = Cλ2 
0 

√ 

ξ
(

1 −
√ 

ξ
)
, 

 20 = Cλ3 
0 

√ 

ξ (1 −
√ 

ξ ) 

[
V (λ0 ) − S 2 (λ0 ) 

T (λ0 ) 

]
. (55) 
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Fig. 2. 1st (left) and 2nd (right) eigenfrequencies ω for a C-C beam (solid, black) in the absence of rotatory inertia, θ = 0 , and with ε = 0 . 01 , 0.05 and 0.075, superposed 

onto the 1-term (dotted, blue) asymptotic approximation, normalized with respect to the classical local frequency ω 0 , Eq. (50) . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. 1st (left) and 2nd (right) eigenfrequencies ω for a C-S beam (solid, black) in the absence of rotatory inertia, θ = 0 , and with ε = 0 . 01 , 0.05 and 0.075, superposed 

onto the 1-term (dotted, blue) asymptotic approximation, normalized with respect to the classical local frequency ω 0 , Eq. (59) . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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The inhomogeneous Eq. (44) , subject to the boundary condi-

tions (54) , possesses a solution provided that compatibility is sat-

isfied, whereby we get the first eigenfrequency correction 

λ1 = −λ0 

(
1 −

√ 

ξ
)

[ w 

′′ 
0 (0)] 2 

4 

∫ 1 
0 [ w 

′′ 
0 
(s )] 2 d s 

. (56)

The solution of the BVP (44) and (54) has the form (47) as for the

C-C case, yet with different coefficients. Indeed, in the special case

θ = 0 , Eq. (56) simplifies to 

λ1 = −λ0 (1 −
√ 

ξ ) , 

and the particular solution becomes 

w 1 p (s ) = 

λ1 

λ0 

s w 

′ 
0 (s ) = Cλ1 s 

[
T (λ0 s ) − S(λ0 ) 

T (λ0 ) 
U(λ0 s ) 

]
, 

whence 

w 1 (s ) = Cλ0 (1 −
√ 

ξ ) 

[
T (λ0 s ) − S(λ0 ) U(λ0 ) 

T (λ0 ) V (λ0 ) 
V (λ0 s ) 

]
+ w 1 p (s ) 

= Cλ0 (1 −
√ 

ξ ) [ (1 − s ) T (λ0 s ) 

+ 

S(λ0 ) 

T (λ0 ) 

(
sU (λ0 s ) − U (λ0 ) 

V (λ0 ) 
V (λ0 s ) 

)]
. (57)

Finally, we arrive at the following asymptotic expansion for the

frequency ratio 

ω 

ω 0 

= 1 − 1 
2 
ε 
(

1 −
√ 

ξ
)

[ w 

′′ 
0 (0)] 2 ∫ 1 

0 [ w 

′′ 
0 
(s )] 2 d s 

+ O 

(
ε 2 

)
(58)

that, in the case θ = 0 , reduces to 

ω 

ω 0 

= 1 − 2 ε 
(

1 −
√ 

ξ
)

+ O 

(
ε 2 

)
. (59)

Eq. (59) is plotted in Fig. 3 alongside the numerical solution of

the TPNM. Although the accuracy of the expansion is restricted to
mall values of ε, we still appreciate a limit as the TPNM tends to

he PNLM. 

.6. Cantilever beam 

For a cantilever beam we have, at leading order, 

 0 (0) = w 

′ 
0 (0) = w 

′′ 
0 (1) = w 

′′′ 
0 (1) + θλ4 

0 w 

′ 
0 (1) = 0 , 

nd the constants in the general solution (28) are given by Eq. (52) ,

.e. they are the same as in the C-S case. The secular equation now

eads 

1 + 

1 
2 
θ2 λ4 

0 

)
cosh α cos β − 1 

2 
θλ2 

0 sinh α sin β + 1 = 0 , 

hat, in the special case of vanishing rotational inertia, reduces to 

 

2 (λ0 ) − T (λ0 ) V (λ0 ) = 0 . 

his formula coincides with the classical result cosh λ0 cos λ0 + 1 =
 and the corresponding eigenforms are still given by Eq. (53) . 

In the first-order approximation, one arrives at the following

oundary conditions 

w 1 (0) = 0 , w 

′ 
1 (0) = 

(
1 −

√ 

ξ
)

w 

′′ 
0 (0) , 

 

′′ 
1 (1) = 0 , w 

′′′ 
1 (1) + λ4 

0 θw 

′ 
1 (1) = −4 λ3 

0 λ1 θw 

′ 
0 (1) . (60)

ogether with the right boundary layer amplitude 

 20 = 

√ 

ξ
(

1 −
√ 

ξ
)[

w 

′′ 
1 (1) + w 

′′′ 
0 (1) 

]
, 

he left being given by Eq. (43a) . The compatibility condi-

ion for the inhomogeneous BVP (44) and (60) is still given

y Eq. (56) and, as a consequence, the eigenfrequency ratio

58) and the corresponding eigenmode correction are once again

etrieved. Fig. 4 compares the normalized eigenfrequency ω / ω 0 

s numerically evaluated for the TPNM with the 1-term expan-

ion (59) and shows good accuracy. Besides, the numerical so-

ution curve matches the corresponding result given in Fig. 5 of

 Fernández-Sáez et al., 2016 ). 
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Fig. 4. 1st (left) and 2nd (right) eigenfrequencies ω for a cantilever beam (solid, black) in the absence of rotatory inertia, θ = 0 , and with ε = 0 . 01 , 0.05 and 0.075, super- 

posed onto the 1-term (dotted, blue) asymptotic approximation, normalized with respect to the classical local model frequency ω 0 , according to Eq. (59) . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Eigenfrequency ω for modes 1, 2 and 4 for a S-S beam, normalized over the 

classical frequency ω 0 , for θ = 0 , 1 / 100 and 1/10, as a function of the local model 

fraction ξ . As it occurs for the asymptotic expansion (39) , the frequency ratio is 

unaffected by rotational inertia and curves overlap. 
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. Purely nonlocal model 

From the previous analysis, it clearly appears that the situ-

tion ξ → 0 lends a perfectly admissible eigenfrequency which,

herefore, can be assumed as the proper solution to the PNLM.

e now consider what happens to the eigenmodes and for this

e need to investigate the behaviour of the boundary layer term

 ξ (s ) = 

√ 

ξ exp [ −s/ (ε 
√ 

ξ )] , 0 ≤ s ≤ 1, as ξ → 0. Clearly, this is a

ranscendentally small term for s > 0 and B ξ ( s ) → 0 uniformly. Non

niformity arises when we consider s = 0 for then a boundary

ayer appears that may be studied taking the rescaled variable

 

∗ = s/ (ε 
√ 

ξ ) , see ( Kevorkian and Cole, 1996 ). This boundary layer

s vanishingly small as ξ → 0 but not so are its derivatives with

espect to s 

 

′ 
ξ (s ) → 

{
0 , s > 0 , 

−ε −1 , s = 0 , 
and B 

′′ 
ξ (s ) → 

{
0 , s � = 0 , 

+ ∞ , s = 0 , 
. 
ig. 6. Eigenfrequency ratio ω / ω 0 for modes 1 (left panel) and 4 (right) for a C-C beam fo

f the local model fraction ξ . (For interpretation of the references to colour in this figure
his result is the analogue of the steep boundary layer described in

 Zhu and Dai, 2012 ) under static axial deformation. We may now

sk whether this unboundedness in the second derivative leads to

n unbounded bending energy. To answer this we first observe that

 η > 0 , 
∫ η

0 
B ′′ 
ξ
(s )d s → ε −1 uniformly and therefore B ′′ 

ξ
(s ) is propor-

ional to Dirac’s delta function. Indeed, when considering the con-

ribution M ξ of the boundary layer B ξ to the bending moment M

hrough Eq. (4) , we find 

 ξ (0) → (2 ε 2 ) −1 , 

t leading order. If we use this result in, say, the eigenmodes

38) for a S-S beam, we easily see that the boundary condition

(0) = 0 is satisfied at leading order, for the boundary layer can-

els out the contribution of the outer solution. At the same time,

he constitutive BCs are asymptotically satisfied for a vanishingly

mall ξ due to the asymptotic procedure applied above. We then

onclude that, in the limit as ξ → 0, the boundary layer warrants

he fulfilment of all boundary conditions and it brings a finite con-

ribution to the bending energy. From the standpoint of displace-

ents, we get 

 (s ) → w 

(m ) + ε γ1 −1 a 10 R (−s ) + ε γ2 −1 a 20 R (s − 1) , 

here R ( s ) is the ramp function. For a S-S beam, we have γ1 =
2 = 3 and 

 10 = (−1) n +1 a 20 = Cβ3 . 

hence, a finite jump in the rotation and a concentrated couple at

he beam ends is produced. This is perhaps not so surprising, for

olutions in the sense of distributions are to be expected when an

ntegral form of the constitutive equation is adopted. Consequently,

rom a mathematical standpoint, an energy bounded solution of

he PNLM may be consistently defined as the limit of the TPNM,

lthough it is meaningful in the sense of distributions and we may

ant to reject it on physical grounds. 
r θ = 0 (solid, black), θ = 1 / 100 (dashed, blue) and 1/10 (dotted, red), as a function 

 legend, the reader is referred to the web version of this article.) 
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Fig. 7. Eigenfrequency ratio ω / ω 0 for modes 1 (left panel) and 4 (right) for a C-S beam for θ = 0 (solid, black), θ = 1 / 100 (dashed, blue) and 1/10 (dotted, red), as a function 

of the local model fraction ξ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Eigenfrequency ratio ω / ω 0 for modes 1 (left panel) and 4 (right) for a C-F beam for θ = 0 (solid, black), θ = 1 / 100 (dashed, blue) and 1/10 (dotted, red), as a function 

of the local model fraction ξ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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6. Influence of rotational inertia 

We now consider the effect of including rotational inertia when

considering the solution of the TPNM. For a S-S beam, Fig. 5 plots

the eigenfrequency ratio ω / ω 0 for mode numbers n = 1 , 2 and 4,

with θ = 0 , 1/100 and 1/10. It appears that, for the S-S end condi-

tions, rotational inertia is irrelevant for the purpose of determin-

ing the frequency ratio (yet it still affects ω 0 ). For a C-C beam,

Fig. 6 plots the eigenfrequency ratio ω / ω 0 for mode numbers n = 1

and 4, with θ = 0 , 1/100 and 1/10. This time, rotational inertia

plays an important role in the direction of contrasting the soften-

ing effect induced by the nonlocal fraction. Indeed, this hardening

effect is already well manifest in the fundamental mode and, as ex-

pected, it becomes stronger for higher modes. Besides, encompass-

ing rotational inertia of the cross-section has a significant bearing

on higher modes, regardless of the actual value of θ . The same

qualitative picture appears in Fig. 7 and in Fig. 8 , respectively for

C-S and C-F beams. It appears that the softening effect is stronger

moving from S-S to C-C, C-F and then to C-S. 

7. Conclusions 

The purely nonlocal theory of beam elasticity has recently at-

tracted considerable attention for the controversial results it con-

veys. Indeed, this model is believed to lead to ill-posed problems,

owing to the appearance of a pair of constitutive boundary condi-

tions which are generally incompatible with the natural boundary

conditions. In this paper, we approach the problem from a different

perspective and carry out an asymptotic analysis of the free vibra-

tions of flexural beams endowed with rotational inertia, within the

two-phase theory of nonlocal elasticity. We show that the nonlo-

cal term contributes with a boundary layer whose strength greatly

varies for different end conditions. In the case of simply supported

beams, the boundary layer is the weakest and we provide a two-

term correction for the classical solution. Remarkably, this situa-

tion is affected by the presence of rotational inertia only in the

classical sense. Conversely, clamped-clamped, clamped-supported
nd clamped-free (i.e. cantilever) conditions bring a much stronger

oundary layer, a for these we provide a single correction term.

umerical results confirm the accuracy of the asymptotic approach

nd show that rotational inertia is very relevant in contrasting the

oftening effect connected to the nonlocal phase. Most interest-

ngly, for any end condition, the asymptotic solution still exists

nd its energy remains bounded in the limit of the purely non-

ocal theory, that is for a vanishingly small local phase. This is in

ontrast to what is anticipated in the literature, see, for instance,

omano et al. (2017) . We are therefore in the position of attaching

 meaning to the purely nonlocal theory, as the limit of the two-

hase theory. In so doing, we encounter a solution that is defined

n the sense of distributions (for the curvature) and that, although

uestionable from a physical standpoint, is mathematically sound.

his result is quite general for it extends to statics and, presum-

bly, to axial vibrations in a rod. 
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