
ar
X

iv
:2

00
3.

04
71

7v
1 

 [
qu

an
t-

ph
] 

 8
 M

ar
 2

02
0

Paraxial wave function and Gouy phase for a relativistic electron

in a uniform magnetic field

Liping Zou1,∗ Pengming Zhang2,† and Alexander J. Silenko1,3,4‡

1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2School of Physics and Astronomy,

Sun Yat-sen University, Zhuhai 519082, China

3Bogoliubov Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research, Dubna 141980, Russia and

4Research Institute for Nuclear Problems,

Belarusian State University, Minsk 220030, Belarus

(Dated: March 11, 2020)

Abstract

A connection between relativistic quantum mechanics in the Foldy-Wouthuysen representation

and the paraxial equations is established for a Dirac particle in external fields. The paraxial form

of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.

The obtained wave function contains the Gouy phase and significantly approaches to the paraxial

wave function for a free electron.
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The prediction [1] and discovery [2] of twisted (vortex) electrons in a free space conditions

an importance of a detailed quantum-mechanical description of such particles. For this

purpose, the paraxial equation is mostly applied. The approach based on the paraxial

equation is widely used in optics for studying twisted and untwisted structured light beams

[3–7]. The connection of this approach with traditional approaches of relativistic quantum

mechanics (QM) is considered, e.g., in Refs. [8–10].

In contemporary studies of twisted electrons, an important place is occupied by their

interactions with a magnetic field [11–24]. A similarity between the wave function for a free

twisted electron and the Landau wave function for an electron in a uniform magnetic field

is evident and was much discussed (see Refs. [9, 11, 25, 26]). However, approaches used in

the two cases substantially differ. The Landau solution [27–29] has been obtained in the

framework of nonrelativistic Schrödinger-Pauli QM. The free twisted electron is described

by the paraxial equation. The connection between the relativistic QM and the paraxial

equation has been analyzed in Refs. [8, 30]. To establish this connection, it is convenient

to use the Foldy-Wouthuysen (FW) representation [31]. In this representation, relativistic

QM takes the form equivalent to nonrelativistic Schrödinger QM. The Hamiltonian and all

operators in the FW representation are even, i.e., block diagonal (diagonal in two spinors).

Relations between the operators in this representation are similar to those between the

respective classical quantities. The form of quantum-mechanical operators for relativistic

particles in external fields is the same as in the nonrelativistic quantum theory. In particular,

the operators of the position and momentum are equal to r and p = −i~∇, respectively

[31–37].

The exact relativistic Hamiltonian in the FW representation describing the Dirac electron

in the uniform magnetic field B = Bez is defined by [34, 38–40]

i
∂ΨFW

∂t
= HFWΨFW , HFW = β

√
m2 + π2 − eΣ ·B, (1)

where π = p − eA is the kinetic momentum and β and Σ are the Dirac matrices. This

Hamiltonian acts on the bispinor ΨFW =





ΦFW

0



. In the present study, we use the system

of units ~ = 1, c = 1. We include ~ and c explicitly when this inclusion clarifies the problem.

Since eigenfunctions of the FW Hamiltonian (1) are also eigenfunctions of the operator

π2, they are defined by the nonrelativistic Landau solution [38–40]. The eigenfunctions
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are more complicated when the Dirac representation is used [13, 14, 41–44]. Certainly, the

energy eigenvalues do not depend on a representation and are given by [13, 14, 34, 38–44]

E =
√

m2 + p2z + (2n+ 1 + |ℓ|+ ℓ+ 2sz)|e|B, (2)

where n = 0, 1, 2, . . . is the radial quantum number and ℓ is an eigenvalue of the orbital

angular momentum (OAM) operator projected on the z axis, ℓ = lz = (r × p)z. In the

considered case, Aφ = Br/2, Ar = Az = 0, e = −|e|. The relativistic approach (unlike the

nonrelativistic one) demonstrates that the Landau levels are not equidistant for any field

strength [22]. Amazingly, eigenfunctions (more precisely, upper spinors) of the relativistic

FW Hamiltonian are defined by the nonrelativistic Landau solution (see Refs. [38–40]). In

the cylindrical coordinates, these eigenfunctions are the Laguerre-Gauss beams:

ΦFW = A exp (iℓφ) exp (ipzz),

∫

Φ†
FWΦFW rdrdφ = 1,

A =
Cnℓ

wm

(√
2r

wm

)|ℓ|

L|ℓ|
n

(

2r2

w2
m

)

exp

(

− r2

w2
m

)

η,

Cnℓ =

√

2n!

π(n + |ℓ|)! , wm =
2

√

|e|B
,

(3)

where the real function A defines the amplitude of the beam, and L|ℓ|
n is the generalized La-

guerre polynomial. Since the spin operator in the FW representation, s = ~Σ/2, commutes

with the Hamiltonian (1) and the zero lower spinor of the bispinor ΨFW is disregarded, the

spin function η is an eigenfunction of the Pauli operator σz (cf. Ref. [40]):

σzη
+ = η+, σzη

− = −η−, η+ =





1

0



 , η− =





0

1



 .

It is important that the solution (3) can be obtained from the exact relativistic wave

function in Dirac representation [14] by the use of the connection between the Dirac and

FW wave functions found in Ref. [40].

The electron possesses a small anomalous magnetic moment which is not taken into

account in Eqs. (2), (3). Due to its existence, a consideration of the spin does not lead to

an additional degeneracy of the energy levels. The solution (3) does not contain the Gouy

phase.

The use of the FW representation is necessary to connect relativistic quantum-mechanical

equations and paraxial ones. The latter equations can be introduced when the paraxial
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approximation |p⊥| ≪ p is satisfied. Operators entering these equations are equivalent to

the corresponding operators of Schrödinger QM. Since the FW representation restores the

Schrödinger picture of relativistic QM [31–33, 35–37, 45], one needs to use FW Hamiltonians.

For the considered problem, the Hamiltonian (1) is exact. In other cases, approximate

relativistic FW Hamiltonians can be derived by various methods [34, 35, 46–50].

Similarly to Refs. [8, 10], we can determine a connection between the relativistic quantum-

mechanical equations and paraxial ones for a particle in external fields. In Refs. [8, 10],

particles in a free space have been considered. For stationary states, HFWΨFW = EΨFW .

Let us denote P =
√
E2 −m2 = ~k. Squaring Eq. (1) for the upper spinor and applying

the paraxial approximation for pz > 0 results in (cf. Refs. [8, 10])

P 2 = π2 − eΣ ·B = π2

⊥ + p2z − eΣ ·B,

pz =
√

P 2 − π2
⊥ + eΣ ·B ≈ P − π2

⊥ − eΣ ·B
2P

.
(4)

This transformation leads to the following equation:

(

π2

⊥ − eΣ ·B + 2Ppz
)

ΦFW = 2P 2ΦFW . (5)

An equivalent form of this equation reads
(

π2

⊥ − eΣ ·B − 2ik
∂

∂z

)

ΦFW = 2k2ΦFW , π2

⊥ = −∇2

⊥ + ieB
∂

∂φ
+

e2B2r2

4
,

∇2

⊥ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

(6)

Equation (6) is an approximate form of the general equation (1) when the paraxial approx-

imation is satisfied. The substitution ΦFW = exp (ikz)Ψ brings the corresponding paraxial

equation
(

∇2

⊥ − ieB
∂

∂φ
− e2B2r2

4
+ 2eszB + 2ik

∂

∂z

)

Ψ = 0. (7)

This substitution shifts the squared particle momentum and is equivalent to a shift of the

zero energy level in Schrödinger QM. Within the paraxial approximation, Eq. (7) properly

describes electrons of arbitrary energies in a uniform magnetic field. Therefore, the use of

the FW transformation establishes a connection between relativistic QM and the respective

relativistic paraxial equation. We underline the difference between ΦFW and Ψ.

The Landau solution defines the eigenvalues of the operator describing the transversal

motion:
(

∇2

⊥ − ieB
∂

∂φ
− e2B2r2

4
+ 2eszB

)

ΦFW = − (2n+ 1 + |ℓ|+ ℓ + 2sz) |e|BΦFW . (8)
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The same equation can be written for the paraxial wave function Ψ. This equation allows

us to determine the Gouy phase.

The Landau wave function contains the exponential factor exp [i(pz/~)z]. Taking into

account the connection between ΦFW and Ψ, we obtain that the latter wave function is

proportional to the exponential factor

exp
(

i
pz
~
z
)

exp (−ikz) = exp

(

−i
P − pz

~
z

)

.

Equations (3), (4), and (8) result in the following form of the paraxial wave function:

Ψ = A exp (iℓφ) exp [−iζ(z)],

∫

Ψ†Ψrdrdφ = 1,

ζ = (2n+ 1 + |ℓ|+ ℓ+ 2sz)
|e|B
2k

z = (2n+ 1 + |ℓ|+ ℓ + 2sz)
2z

kw2
m

,
(9)

where ζ is the Gouy phase. Evidently, this wave function satisfies the paraxial equation (7).

Equation (9) shows that the wave eigenfunction of the relativistic electron in the uniform

magnetic field acquires the Gouy phase ζ after the transition to the paraxial equation. This

property increases the similarity between the wave eigenfunctions of the relativistic Landau

electron in the uniform magnetic field and the twisted electron in a free space. In the latter

case, the eigenfunction reads [9–11]

Ψ = A exp (iℓφ) exp

[

i
kr2

2R(z)

]

exp [−iζ(z)],

A =
Cnℓ

w(z)

(√
2r

w(z)

)|ℓ|

L|ℓ|
n

(

2r2

w2(z)

)

exp

(

− r2

w2(z)

)

η,

Cnℓ =

√

2n!

π(n+ |ℓ|)! , w(z) = w0

√

1 +
z2

z2R
, R(z) = z +

z2R
z
,

ζ(z) = (2n+ |ℓ|+ 1) arctan

(

z

zR

)

, zR =
kw2

0

2
,

(10)

where w0 is the minimum beam width, R(z) is the radius of curvature of the wavefront, and

zR is the Rayleigh diffraction length.

An analysis of Eqs. (3), (9), and (10) shows the substantial similarity between the

paraxial wave functions of relativistic Dirac electrons in a uniform magnetic field and a free

space. The former case (Landau solution) characterizes the wave with the infinite radius of

curvature of the wavefront, R(z) → ∞. In this case, zR → ∞, arctan (z/zR) ≈ z/zR, and

the paraxial wave functions becomes equivalent provided that w0 = wm.
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It can be similarly obtained that the paraxial wave function of relativistic positrons

(e = |e|) in a uniform magnetic field has the form (9) where the Gouy phase differs by signs:

ζ = (2n+ 1 + |ℓ| − ℓ− 2sz)
|e|B
2k

z = (2n+ 1 + |ℓ| − ℓ− 2sz)
2z

kw2
m

.

The Landau solution describes a motion of a charged particle in a uniform magnetic field.

This motion is governed by the Lorentz force and a direction of a particle rotation is definite.

A simple analysis shows that physically correct solutions of the related quantum-mechanical

equations correspond to ℓ ≥ 0 for electrons and ℓ ≤ 0 for positrons.

The obtained connection between relativistic QM in the FW representation and the

paraxial equations can be applied to a wide class of problems connected with relativistic

electron (positron, muon) beams in different external fields [51–57] (e.g., crossed magnetic

and electric fields).

In summary, we have presented the first attempt to establish a connection between rel-

ativistic QM in the FW representation and the paraxial equations for a Dirac particle in

external fields. For a relativistic electron in a uniform magnetic field, the paraxial form of the

Landau eigenfunction contains the Gouy phase and amazingly approaches to the paraxial

wave function for a free electron. The Gouy phase does not enter the standard quantum-

mechanical solutions in the Dirac and FW representations. We have demonstrated for the

first time that it appears as a result of a transition from QM in the FW representation (or

Schrödinger-Pauli QM) to the paraxial quantum-mechanical equation.
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