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GLOBAL EXISTENCE OF SOLUTIONS OF INITIAL-BOUNDARY
VALUE PROBLEM FOR NONLOCAL PARABOLIC EQUATION
WITH NONLOCAL BOUNDARY CONDITION

ALEXANDER GLADKOV AND TATIANA KAVITOVA

ABSTRACT. We prove global existence and blow-up of solutions of initial-
boundary value problem for nonlinear nonlocal parabolic equation with non-
linear nonlocal boundary condition. Obtained results depend on the behavior
of variable coefficients for large values of time.

1. INTRODUCTION

We consider nonlinear nonlocal parabolic equation

ur = Au + a(;v,t)ur/ uP(y,t)dy — b(z,t)ul, z € Q, t >0, (1.1)
Q
with nonlinear nonlocal boundary condition
u(z,t) = / E(z,y, t)ul(y,t) dy, x € 09, t > 0, (1.2)
Q

and initial datum

u(z,0) = uo(x), = € Q, (1.3)

where 7, p, ¢, | are positive constants, €2 is a bounded domain in R™ for n > 1 with

smooth boundary 0.

Throughout this paper we suppose that a(x,t), b(x,t), k(z,y,t) and ug(z) sat-
isfy the following conditions:

a(x,t), b(z,t) € CR.(2x [0,00)), 0 < a < 1, a(z,t) >0,

k(z,y,t) € C(09Q x Q1 x [0,00)), k(z,y,t) > 0;

up(z) € C(Q), up(x) >0, 2 € Q, ug(x) = / k(x,y,O)ué(y) dy, x € 99.
Q

b(z,t) > 0;

For global existence and blow-up of solutions for parabolic equations with non-
local boundary conditions we refer to [II, 2, [6], [TI]-[18], [21 23] 24, 30l 32} [33]
and the references therein. Initial-boundary value problems for nonlocal parabolic
equations with nonlocal boundary conditions were considered in many papers also
(see, for example, [4] [7, @, 10| 26 27, [34]). In particular, blow-up problem for
nonlocal parabolic equations with boundary condition ([2]) was investigated in
[5L 8l 251 28] [29] B1L [35] B6]. So, for example, the authors of [5] studied (CI)—(L3)
with b(z,t) = 0, a(z,t) = a(z) and k(z,y,t) = k(z,y), and problem (LI)—(T3)
with r = 0, a(z,t) =1, b(z,t) =b > 0 and k(z,y,t) = k(z,y) was considered in

[31]. The authors of [I5] studied (LI)—(T3)) with a(z,t) = 0.
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The existence of classical local solutions and comparison principle for (CI)—(T3)
were proved in [19] and [20].

In this paper we prove global existence and blow-up of solutions of (LI)—(T3).
Obtained results depend on the behavior of variable coefficients a(z,t), b(x,t) and
k(x,y,t) as t — oc.

This paper is organized as follows. Global existence of solutions for any initial
data and blow-up in finite time of solutions for large initial data are proved in
section 2. In section 3 we present finite time blow-up of all nontrivial solutions as
well as the existence of global solutions for small initial data.

2. GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS
Let Qr = Q x (0,T), Sp = 0Q x (0,T), T = SrUQ x {0}, T > 0.

Definition 2.1. We say that a nonnegative function u(z,t) € C*(Qr)NC(Qr U
I'r) is a supersolution of (LI)-(L3) in Qr if

ug > Au+ a(z, t)u” /Q uP(y,t) dy — bz, t)u?, (z,t) € Qr, (2.1)
u(z,t) > /Qk(x,y,t)ul(y,t) dy, (z,t) € St, (2.2)
u(z,0) > up(x), z € Q, (2.3)

and u(z,t) € C*1(Qr) N C(Qr UT7) is a subsolution of (LI)—(L3) in Qr if u >0
and it satisfies (ZI)-(@3) in the reverse order. We say that u(z,t) is a solution
of (LI)—(@3) in Qr if u(z, t) is both a subsolution and a supersolution of (L.I))—(L3)
in QT'

We will repeatedly use the following comparison principle (see [19], [20]).

Theorem 2.2. Let u(z,t) and u(z,t) be a subsolution and a supersolution of prob-
lem (L1)-(13) in Qr, respectively. Suppose that u(z,t) > 0 or w(z,t) > 0 in
Qr UTr if min(r,p,1) < 1. Then u(x,t) > u(x,t) in Qr U7,

To prove global existence of solutions of (II)—(L3]) we suppose that
b(z,t) >0 for z € Q and ¢ > 0. (2.4)

Theorem 2.3. Let max (r+p,l) <1 or (27)) hold and either | < 1,1 <r+p<gq
orl<l<(g+1)/2, max(r +p,2p+ 1) < q. Then problem (I1)-(1.3) has global
solutions for any initial data.

Proof. Let T be any positive constant and

M = max | supa(z,t), sup k(z,y,t)]. (2.5)
Qr 00X Qr

In order to prove global existence of solutions we construct a suitable explicit su-

persolution of (LI)-(T3)) in Q7.
Suppose at first that max(r 4+ p,l) < 1. Let A\; be the first eigenvalue of the
following problem

Ap(z) +Ap(z) =0, 2€Q, @(x)=0, z €0, (2.6)
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and ¢(x) be the corresponding eigenfunction which is chosen to satisfy that for
some 0 <e <1 p

oy
a (e(y) +e)

Then it is easy to check that

oz, t) = nexp (ut) (2.7)
plr) +e
is a supersolution of (LI)-(L3) in Qr if

7 > max <sup uo(z) sup (p(z) + ¢), 1) ,
Q Q

2|Ve(x)? - dy

oy oz T M (p() +e) T/ -

(p(x) +¢)” a (p(y) +e)’

By Theorem 2.2 problem ([CI)—(T3) has global solutions for any initial data.
From ([2:4) we conclude that b = 1anb(x ,0)>0.Let 1 <1,1<7r+p<gq. Then

T

v(x,t) in 7)) is a supersolution of (LI)-(T3)) in Qr if

M g—r dy qfifp
n > max (sgpuo(w) sup (p(z) +¢), (7 Sgp( o(r) +¢) /Q W) 71> 7

2
@ > A1+ sup M
o (o(z)+e¢)

Let 1 <1< (¢+1)/2, max(r + p,2p + 1) < ¢. To construct a supersolution we
use the change of variables in a neighborhood of 9 as in [3]. Let T € 9Q and
n(T) be the inner unit normal to J§2 at the point T. Since 92 is smooth it is well
known that there exists ¢ > 0 such that the mapping ¢ : 9Q x [0,6] — R”™ given
by ¥(T,s) = T + sn(T) defines new coordinates (T, s) in a neighborhood of 9 in
Q. A straightforward computation shows that, in these coordinates, A applied to a
function g(T, s) = g(s), which is independent of the variable T, evaluated at a point
(T, s) is given by

MZM-i—sup

Ag(T,s) = Z - S}; L(z.s) (2.8)

where H;(T) for j =1,...,n — 1, denotes the principal curvatures of 9 at Z. For
0 < s < ¢ and small § we have

Let 0 < ¢ < w < min(d,1), 2/(¢g — 1) < S <min(1/p,1/(I —1)), 0 < v < 8/2,
A > supg up(z). For points in Qs = 90 x [0,6] x [0,T] of coordinates (7, s,t)
define ,

v(z,t) = v((@,s),t) = [(s+e) 7 — w”’]j_ + A, (2.10)
where s = max(s,0). For points in Q7 \ Qs.1 we set v(z,t) = A. We prove that
v(x,t) is a supersolution of (LI)-(T3) in Q7. It is not difficult to check that
v
ds

< B min <[D(s)]”7“ [(s+e)77 - wﬂ? L (s + s)<ﬁ+1>> , (2.11)
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2 2(y+1) B+2

8—512) < B(B+1) min ([D(s)] v (s+e)T —w] FRECE 8)_(ﬂ+2)) , (2.12)

where

-
D(s) = _ s+
(s+e)™ " —w™
Then D’'(s) > 0 and for any € > 0
1<D(s) <1+ 0<s<5, (2.13)

where 5 = [£/(1 +2)]"/ 7w — ¢, e < [E/(1 +&)]'/7w. We denote

Lv=v — Av — a(z, t)vT/ VP (y,t) dy + b(z, t)v? (2.14)
Q
and
J = sup / |J (7, s)| dy, (2.15)
0<5<0 J O

where J (7, s) is Jacobian of the change of variables in neighborhood of 9. We use
the inequality (a +b)? < 2P(aP +bP), a > 0,b > 0,p > 0 to estimate the integral in

w—e& Bp
/vp(y,t)dy < 2F (AP|Q|+/ / J(G,s)[(s+e)7 —w] 7 dyds>
Q 0 o0
jwlﬁp>
< 2P [ AP|Q| + 2.16
(i + T (2.16)

Here || is Lebesque measure of Q. By (Z.8)-(2I4)), (ZI6) we can choose  small
and A large so that in Qs 7

q 2(y+1 B+2
Lv>b <[(s +e) T —w T + A) — BB+ 1) [D(s)] 5 [(s 4 ) —w ] 7
—Be[D(s)] T [(s+2) 7 —w ]
_9P M ([(S +e)77 - w—yﬁr ‘A " (AP|Q| iwl—;;) .
Let s € [3,4d]. From (2.8)-212) we have
B+2 +1

e

|Av| < B(8 + 1)w7(5+2) (i) ’ + Bew~ B+ <£> ’
9

and by (ZI8) Lv > 0 for large A. Obviously, in Q7 \ Qs

Jwi=hp
Lv> —-2PM A" <AP|Q| + ) +0A7>0
1—pp
for large A.
Now we prove the following inequality
o(@0).0 > [ hay 00! (1) dy. (0.0 € S (217)
Q

for a suitable choice of €. To do this we use the change of variables in neighborhood
of 9. Estimating the integral I in the right hand side of [ZI1), we get

— [wTE BL —
I< 2lMJ/ [(s+e)77 —w™]] ds+2'MANQ| <2'MTC(e) + 2'MA'|Q,
0
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where

e”PmD (Bl = 1), BL>1,

Cle) = '/ = B1), I <1,

—Ine, gl = 1.

On the other hand, we have
8
v((x,0),t) = [e77 — w*'qu + A.

Hence, (ZI7) holds for small values of ¢ and by Theorem 22 u(z,t) < v(z,t) in
Qr. O

To prove finite time blow-up result we need lower bound for solutions of (L.II)—
([3) with large initial data.

Lemma 2.4. Let u(x,t) be a solution of (L1)-(L3) in Qr. For any Qo CC Q1 CC
O and any positive constant C' there exists positive constant ¢y such that if uo(z) >
c1 in Qq, then

u(z,t) > C in Qg x [0, 7). (2.18)

Proof. Let y(x,t) be a solution of the following problem
ypu=Ay, z €, 0<t<T,
y(z,t) =0, € 0N, 0 <t <T, (2.19)
y(z,0) = x(z), = € U,

where x(z) € C§°(1), x(z) =1 in ©Qp and 0 < x(x) < 1. By strong maximum
principle

inf ) > 0. 2.20
szoiI%O,T)y(I’)> (2.20)

Suppose that ¢ > 1. We put m = max (supQT u(:b,t),supQT b(x,t)) and define
function v(x,t) = exp (pt)u(x,t). For p > m? we have in Qr

vi—Av = exp (pt) <pu + a(x,t)ur/ uP(y,t) dy — b(x, t)uq> > v(p—b(z,t)u?™t) > 0.
Q

We assume ug(z) > c1x(x) in 4, where constant ¢; will be chosen below. Then
by comparison principle for 2I9) we get v(z,t) > c1y(z,t) in Q x [0,T]. Taking

into account ([Z20), we have 2I8) if c; = Cexp (pT) (info, (0,7 y(x,t))fl .
Let ¢ < 1. We set w(z,t) = exp (mt)(u(x,t) + 1). Since u? < u + 1, we conclude
that

wy — Aw = exp (mt) (m(u +1)+alx, t)uT/ uP(y,t) dy — b(z, t)uq) >0
Q
in Q7. Arguing as in previous case, we obtain
u(zw,t) > cyexp (—mt)y(x,t) —1 Qp x [0,7].
Choosing ¢; = (C + 1) exp (mT) (infgox(O)T) y(z, t))fl , we have (2Z.I8). O

Now we prove that problem (LI)—(L3]) has finite time blow-up solutions if either
I >max(1,(¢+1)/2) and

E(x,y,t) > ko >0, 2€0Q, y€Q, 0<1t< i, (2.21)



6 A. GLADKOV AND T. KAVITOVA

for some positive constants kg and ¢y or r + p > max(q,1) and
a(xz,t) > ap>0, €0, 0<t<ty, (2.22)
for some positive constants ag and ;.

Theorem 2.5. There exist finite time blow-up solutions of (L1)-(IL3) if either
I >max(1,(¢+1)/2) and (Z2Z1) holds or r + p > max(q, 1) and (222) holds.

Proof. We suppose at first that { > max (1, (¢+1)/2) and (22I)) holds. Let us
consider the following problem

Au— (x t)uq,er,t>0,
= [ k(z,y, t)u(y,t) dy, © € 09, t >0, (2.23)
(‘IO)_UO( )aIEQ

As it is proved in [15], problem (Z23) has positive finite time blow-up solutions.
We note that any solution of ([2:23) is a subsolution of (LI)-(3]). Applying The-
orem [2.2] we prove the theorem.

Now we assume that r + p > max(q, 1) and ([Z22)) holds. We put b = sup b(z, t).

Let » > g > 1. We denote o
J(t) = exp (M) /Q (e, () da, (2.24)
where () is the solution of (2.6) satisfying
/Qcp(x) dx = 1. (2.25)
Then using (L)), 26), Green’s identity and the inequality
89;? <0, ze€dQ, (2.26)

where v is unit outward normal on 02, we get for ¢t < t;

J'(t) zexp()\lt)/ﬂ (a(x,t)ur/ﬂup(y, t) dy — b(x, t)u )(p( ) dx
> exp (A1t) (ao/ﬂup(y,t) dy/Q u" (z, / x)
(2.27)
By Lemma 2.4
agp /Q uP(y,t) dy [/Q ul(z, t)p(x) dw} . b>co>0 (2.28)

for ¢ < ¢; and large initial data. Taking into account (Z27T), (Z28), Holder’s and
Jensen’s inequalities, we have for ¢ < ¢;

J'(t) > exp (M\it) /Q ul(z,t)p(x) da <a0 /Q uP(y,t) dy L/Q ul(x, t)p(x) dx} B - 5)

> coexp [A (1 — q)t]JU(¢).
Hence, J(t) blows up in finite time T (T < t1) for large initial data.
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Let r > 1 > ¢q. By Lemma [Z4]

/ uP(y,t)dy > c3 >0 (2.29)
Q

for ¢ < t; and large initial data. Then using (Z27), 229), u? < u+ 1 and Jensen’s
inequalities, we obtain for t < #;
J'(t) > apcz exp (M (1 —7)t]J"(t) — bJ(t) — bexp (Mt)

and again J(¢) blows up in finite time T (T < ¢1) for large initial data.
Let r < q. Without loss of generality, we may assume that {2 contains the origin.
We introduce designations

G= {(x,t):0§t<T1, |z] SA\/T—t} (Th<T), Gr=Gn{t=7} (0<7<TY)
and consider the auxiliary problem
w = Au+ a(z, " [, wP(y,t) dy — bz, Hut, (2,1) € G,
u(z,t) =0, || = AVT —t, 0 <t < Ty, (2.30)
ul(z,0) = A2 — [22/T, |o| < AVT,
where A > 0 will be determined below and T" < min{1,#;} we choose in such a
way that points z with |z| < AVT belong to Q. Let u(z,t) be a positive in G
solution of (LI)-(L3) such that ug(z) > (A* —|z[>/T), . Obviously, u(z,t) is a
supersolution of ([230). We construct a subsolution of ([230) in the following form
- ] )
w(x,t) = (T —t)"V , 2.31
uet) = (=0 (e (21
where V() = (A% = &%), , € = |z[/VT —t and v > 0 will be chosen below. It is
easy to see u(0,t) — oo as t — Ty and T; — T. We show that

Au<0 (2.32)

in GG, where

Au = uy — Au — a(z, t)uT/ uP(y,t) dy + b(x, t)u’.
Gt

Note that
/G VP(E)de = (T — )3 / (A2~ |22 dz = CAYNT — )% (2.33)

|21<A
By ([233) we obtain
Au < AT -7V —(T-t)7 1 +2n(T - )7
— aoC(A)(T — 1) UHPVT(E) +B(T — 1) 7V (¢) (2.34)

for points of G. Further we distinguish the two zones 0 < ¢ < A and A < ¢ < A,
where 6 € (0,1) will be chosen below.
For A < £ < A we have

V() < (1—6%A% (2.35)

From (2.34), 233 it follows that
Au < (Y1 —60%)A% — 02 A%+ 2n) (T — ) 77! — aoC(A)(T — 1) E PV (€)
+ (T — )" IVIE). (2.36)
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We put
+1/2
A=3ym, 0 =11 1= 2.37
v, 0t = T (2.37)
and estimate the first term on the right hand side of (236
(ﬂ1—9%A?—¥A?+2@(T—¢yﬂ”e:—%%T—tyﬁ*1<0. (2.38)
By (2.35)
agC(A)(T — 1) 7T TPVT(€) > B(T — )77V I(§) (2.39)

for small values of T' and v > n/[2(r + p — ¢)]. From 230), 238), (Z39) it
follows ([Z32)) for £ € [0A, A).
For 0 < £ < A we have
9In
2(v+1)
Then by (Z34)) inequality ([Z32)) still holds for 0 < ¢ < A if T is small and

n n+2 )
20r+p—q) 2(r+p-1)/)°
Applying comparison principle for (Z30), we obtain u(x,t) > u(z,t) in G. Hence,
u(z,t) blows up in finite time.

In the case ¢ < r <1 we have v¢ < v+ 1. Then the function in (2.31]) satisfies
232)) for 0 < ¢ < A. Indeed, by virtue of (Z36)—([2.38) we have

A= <‘57n<T =)+ B(T - t)qu@) —agC(A)T =) ETVT(€) <0

V() = (1-61)A% =

7>max(

for A < ¢ < A and small values of T. For 0 < £ < 6A inequality (232]) holds
ifv>(n+2)/[2(r+p—1)] and T is small. Arguing as in the previous case, we
complete the proof. O

3. BLOW-UP OF ALL NONTRIVIAL SOLUTIONS AND GLOBAL EXISTENCE OF
SOLUTIONS FOR SMALL INITIAL DATA

In this section we find conditions which guarantee blow-up in finite time of all
nontrivial solutions and prove global existence of solutions for small initial data.

First we show that for ¢ < min(r + p, 1) under some conditions problem (I)-
(T3) has nontrivial global solutions for any a(z,t) and k(x,y,t). Suppose that

iIngf b(x,0) > 0. (3.1)
Theorem 3.1. Let (31) hold and either ¢ < min(r + p,1), I > 1 or r > g,

(¢g+1)/2 <1 < 1. Then problem (I1)-(I3) has global solutions for small initial
data.

Proof. We put by = glf b(x,t) and choose T so that by > 0.
T

Suppose that ¢ < min(r + p,1), I > 1. A straightforward computation shows
that for small 8, ¢ and ug(z)

g(t) = BIT — )57 +e
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is a supersolution of (LI)—(3) in Q7. Applying Theorem[22] we have u(z,t) < g(t)
in Q7. Passing to the limit as ¢ — 0, we obtain
1

u(x,t) < BT -], (x,t) € Qr.
Now we put u(z,t) =0 for t > T.
For r > ¢, (¢+1)/2 <1 <1 to construct a supersolution we use the change of
variables as in Theorem 23] For points of Qs , define

v(z,t) =v((T,s),t) = (0 —s—t)] +¢,
where 6 > 0, ¢ > 0, to < min(6,T), 2/(1 —¢q) < v < 1/(1 =1) for I < 1 and
2/(1 —q) < v forl = 1. In Q4 \ Qst, we put v(x,t) = €. Then v(z,t) is a
supersolution of (LI)-(L3) in Q, if ug(z) < (§—s)]. Indeed, by 2.3), 2.8), 29),
ZI4)—(2I6) for small § and € we have Lv > 0 in Qy, \ Qs,¢, and
Lo (6= s — 1)1 =y = 1) — 5 — )% — ye(d — 5 — )]~

—2PM (6 —s—t)] +¢e) (7T T +e?|Q]) +bo (6 —s—)] +¢)? > 01in Qs
Estimating the integral I in right hand side of (ZI7), we obtain

I<M /(5 O dy+ 90t ) < M 7(5_t)1l+1+|9|l
< ; S L ay e ) < ”yl—|-1 e l.

On the other hand, we have v((Z,0),t) = (0 —t)] + ¢ and (2I7) holds for

1 1
7[ + 1\ 0-D+1 ((5 _ to)"Y T
< | —= , < —— .
( oM ) } { 2M 19

By Theorem 22 u(x,t) < v(z,t) in Qy, and passing to the limit as tg — § and
€ — 0, we deduce

u(z,t) < (6 —s—1t)] in Qs.
We put u(x,t) =0 for ¢t > ¢ and complete the proof. (]

Now suppose that ¢ = 1. We set

a(t) = supa(x,t),a(t) =inf a(z,t),b(t) = supb(x,t),b(t) = inf b(x, t), k(t) = inf k(z,y,t).
Q Q Q Q o0xQ

(3.2)
Problem ([LI)-(T3) has global solutions for small initial data if ¢ = 1, min(r+p,1) >
1 and

/OOO a(t) exp {—(r +p-1) (Ut + /Otlg(T) dr>] dt < 00, 0 < A, (3.3)

t
/k(;v,y,t)dngexp [(l—l) (7t+/ I_)(T)dT)],xE(?Q,t>O, K>0 v<X\
Q 0

(3.4)
and conversely (II)—(L3) has no global nontrivial solutions if either ¢ = 1, min(r, p) >
1 and

/OOO a(t) exp [—(r +p-—1) (Alt + /Ot b(r) dT)} dt = oo, (3.5)

org=1,1>1 and

/OOO k(t) exp {—(l —-1) (Alt + /Ot b(T) dT)} dt = cc. (3.6)
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Theorem 3.2. Let ¢ =1, min(r +p,1) > 1 and (33), (34) hold. Then there exist
global solutions of (I1)-(1.3) for small initial data. If either ¢ = 1, min(r,p) > 1
and (33) holds or ¢ = 1,1 > 1 and (38) holds, then any nontrivial solution

of (L1)-(I3) blows up in finite time.

Proof. Assume that T is any positive constant, ¢ = 1, min(r 4+ p,{) > 1 and B.3)),
B4) hold. We choose X in such a way that

max(o,7) < A < Ap.

Let Q be bounded domain in R™ with smooth boundary such that Qcc Qand A
be the first eigenvalue of (Z0]) in 2. Then correspondent eigenfunction @(z) satisfies

supg @()

infg @(x) <d

for some d > 0. Choosing

0<e< (Kdl)fﬁ , sup §(z) = de,
Q

we have 1515 @(x) > e. We put N =sup@™*(z) [, #*(y) dy and
Q

0= (= [ e e i [ 0] ) ™

where
B_1+(T+p—1N/ exp[ (r+p—1)<X7’—|—/OTQ(s)ds)]dT.

It is easy to check that
¢
oawt) = Fa)fOexp | - [ b(r)ar
0

is a supersolution of (LI)—(T3) in Qr for ug(x) < Biﬁ@(x) By Theorem [2.2]
there exist global solutions of (II)—(T3]).

Now suppose that ¢ = 1, min(r,p) > 1 and (BE) holds. Multiplying () by
o(x) exp(A1t), where p(x) is defined in (2:6) and (2:25), and integrating the ob-
tained equation over 2, from ([2:24]), (2:26)), Green’s identity and Jensen’s inequality,
we obtain

J'(t) = [sup ()]~ La(t) exp[Ai (1 —r = p)t]J 7P () = b(t)J (2).

Now (B.0) guarantees blow-up of J(¢) in finite time. The case ¢ = 1, I > 1 is treated
similarly. (I

Remark 3.3. The conclusion of Theorem B.2lis not true if ¢ > A7 in B3)), or v = \;
in (B4, or Ay is replaced by a smaller value in (B3] or (B.4).

Further we consider the case ¢ > 1. To prove blow-up of all nontrivial solutions
we need universal lower bound for solutions of (LI)-(L3). Assume that

b(x,t) <e(t)exp[A(qg—1)t], z € Q, t >0, (3.7)
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where

2(t) € C([0, 0)), £(t) > 0, /oo £(t) dt < . (3.8)
0

Lemma 3.4. Let u(z,t) be a solution of (LI1)-(L3) in Qr, ¢ > 1, up(z) £ 0 and
(57), (38) hold. Then for any ty € (0,T) there exists d > 0, which does not depend
on T, such that

u(z,t) > do(z) exp(—=Ait), z € Q, t € (to, T), (3.9)
where o(x) is defined in (2.8) and (223).

Proof. For T € (0,T) denote my = max <sup u(z,t),sup b(x,t)) . Let v(z,t) be a
QT, QT,
solution of the problem

vy = Av = b(z, t)ve, (z,t) € Qs
v(z,t) =0, (x,t) € Sp, (3.10)
v(z,0) = vo(z), v € Q,

where vo(z) € C§°(2), 0 < vo(x) < up(x) and vo(x) # 0. Obviously, u(z,t) is a
supersolution of (BI0). By comparison principle for (B.I0) we obtain

u(z,t) > v(z,t), (z,t) € Q- (3.11)
We put h(z,t) = exp(ut)v(z,t), where p > mf. Then in Qr,

he — Ah > exp(ut)v(p — b(z, t)v?™1) > 0.
Since h(z,0) = vo(x) and vo(z) is nontrivial nonnegative function in Q, by strong
maximum principle
h(z,t) >0, (z,t) € Qm- (3.12)

By virtue of Theorem 3.6 in [22]

Oh(x, o)
where to € (0,Tp). From (812) and BI3) it follows that
vlz,to)

on < 0.

v(z,t) >0 in Qp, and max

Then there exists positive constant dy such that
v(z,t0) > dop(x) exp(—Aito), = € Q. (3.14)
By (3II) and (3I4)
u(z,tg) > dop(x) exp(—Aito), x € Q.
A straightforward computation shows that for large fo
t “a
) = ela)esp (<30) {fo + (1= Diswpe@)r ! [ c(rrar)

is a subsolution of B.I0) in Qr, \ Qy, with initial datum v(x,ty) = u(z,t). Appli-
cation of comparison principle for (BI0) completes the proof. O
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Next we assume that
/ k(z,y,t)dy < Aexp(ot), €9, t >0, A>0, 0 < \(I—1) (3.15)
Q
and
b(x,t) > Ba(x,t)exp (—wt), £ €Q, t >0, B>0, w < M(r+p—q) (3.16)
or b(z,t) satisfies (B.1), (B:8)), where

tl_lglo e(t) =0, (3.17)
and
k(z,y,t) > Dexp[M(l—1)t], € 0Q, yeQ, D >0 (3.18)

for large values of ¢.

Theorem 3.5. Ifl > 1, 1 < g < r+p and (313), (316) hold, then there exist

global solutions of (I1)-(L3) for small initial data. If 1 > g > 1 and (57), (3.8,
(5-17), (318) hold, then any nontrivial solution of (I1)-(IL3) blows up in finite

time.

Proof. Let | > 1, 1 < ¢ < r+p and (315), (3I06) hold. We choose A in the
following way
max (w/(r +p —q),0/(l — 1)) < Ay < A1

Let Q be bounded domain in R with smooth boundary such that (2 CC Q and
A1 be the first eigenvalue of (ZG) in 2. The correspondent eigenfunction @(x) is
chosen to satisfy that supg @(x) = 1. Obviously, infq ¢(x) > d for some d > 0.
Then v(z,t) = Bexp(—At)@(z) is a supersolution of (LI)—~(L3) in Qr for any
T>0if

g min ((supﬂ YA 5 ) ol =,

By Theorem [Z2] there exist global solutions of (LI)—(T3).
Let u(x,t) be nontrivial global solution of (LI)—(T3), ! > ¢ > 1 and @), B3,
@17, (3I8) hold. Then by (L2, (39) and B.I8)) there exist positive constants t;

and d; such that

u(z,t) > dyexp(—Ait), © € I, t > t;. (3.19)
Let us consider auxiliary problem

ve = Av —b(z, t)vl, z € Q, t > to,

v(z,t) = u(z,t), x € 0Q, t > to, (3.20)

v(x, ta) = u(x, ta), x € Q,

where to > t;. Using B.1), BI7), (B819), we check that u(z,t) = daexp(—Ait) is a
subsolution of (320) under suitable choice of t2 and dy > 0. Comparison principle

for 320) gives

u(z,t) > doexp(—Ait), © € Q, t > to. (3.21)
Let ¢(z) satify 20) and 225). Multiplying (LI) by ¢(x)exp(Ait), integrating

over 2 and using
/ Op(z) .o _ A
o0 8TL
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Green’s identity, Jensen’s inequality and (2:24), 2240), B.1), BI0)—-EI19), (21,

we obtain
J'(t) > /Q (M[S?zp ()] " Dexp[Ailtlu' =9 —(t) exp[&qﬂ) ulp(x)dr > dsJi(t)

for some d3 > 0 and large values of ¢ > 0. Integrating differential inequality, we
prove the theorem. O

Remark 3.6. Theorem [3.5] does not hold if o = A\ (I — 1) in B.I3) or A is replaced
by a smaller value in (BI8]). Furthermore, we can not £(t) replace by any positive
constant in F1). Indeed, let a(x,t) = 0, b(x,t) = bexp[Ai(q — 1)t], k(z,y,t) =
kexp[A1(I — 1)t], where b and k are positive constants. Then

u(x,t) = {%}q exp(—A1t)
is a supersolution of (LI)—(T3) if min(q,l) > 1,

1 [ b)*=T M T
< 12 <N _
k_|Q|{)\1} and uo(x)_{b}

By Theorem [Z2] there exist global solutions of (LI)—(T3).

To prove blow-up of all nontrivial solutions of (LI)—(L3]) for max(r,p) > ¢ > 1
we assume that

a(t) =(t)exp [\ (r +p — @)t b(t), (3.22)
/OO alt) exp =M (r +p— 1)t] dt = oo, (3.23)

where limy_, o y(t) = ooo, a(t) and b(t) are defined in ([3:2).
Theorem 3.7. Let max(r,p) > q > 1 and (37), (33), (322), (323) hold. Then

any nontrivial solution of (L1)-(I3) blows up in finite time.
Proof. Denote

! " p —b(t)ul(x x)dx
10 = [ {Gau@o [ wwoa-toeen )o@ 62

where ¢(x) is defined in (Z06) and (Z25). Suppose at first that p > ¢. By (39),
B22), B24) and Holder’s inequality it follows

102 [ {Gaoubuwew™ [ @000 -0} o) do

p—q

P

> b(t) Uﬂ uPp dw]g {%[sgp ()]~ (t) exp M (p — )] /Q o da [/Q uPp dy]

> B [ /Q o dx]% {d”;q fup ()] (1) /Q o d [ /Q i dy} T 1} >0

(3.25)
for large values of ¢. Using Holder’s inequality again and 227), 33), B23), we
obtain

J'(t) > exp(/\lt)/

Q

{mwwsgw(x)]l / u(y, ) (y) dy —B(tnﬂ} () de

2
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> gl (@) expOutlalt) | o (o thpta) d [ wa)e0) dy
d” -1 r+1
> e [ @ drena - D00 (320
Q Q

for large values of ¢. By (8.23), (326) J(¢) blows up in finite time.
Suppose that r > ¢. Arguing as in previous case, we obtain

dp
702G [ @ dven-N+p-Dila® (0 (3.27)
Q
for large values of ¢ and J(¢) blows up in finite time again. O

Remark 3.8. Theorem B.7] does not hold if v(¢) is a bounded function in ([B.22]).
Indeed, suppose that p > 1, r > ¢ > 1, a(x,t) = a(t), b(x,t) = b(t) and k(z,y,t) =
0. Let ¢(z) be defined in [Z6) and 228). Then u(x,t) = By(x)exp(—Ait) is
a supersolution of (I)-([L3) for up(z) < Pfp(x), x € @ and small § > 0. By
Theorem [2.2] there exist global solutions of (LI)—(T3]).

Remark 3.9. We note here an importance of divergence of the integral in (8:23]) for
blow-up of all nontrivial solutions of (LI)—(T3). Suppose that a(z,t) = a(t) and
k(x,y,t) = 0. Let ¢(x) be the solution of [26) with supg ¢(x) = 1 and f(t) be a
solution of the following differential equation

F1(®) + ALf(t) = 1Qla(t) 7 (t) = 0.
Since the integral in (B:223) converges, f(t) exists for any ¢ > 0 if f(0) is small
enough. Then u(z,t) = ¢(z)f(t) is a supersolution of (LI)-(L3) with ug(x) <
©(x) f(0). By Theorem 2.2 there exist global solutions of (LI)—(L3]).

Remark 3.10. Theorem [317is not true if A is replaced by a larger value in B.7).
Indeed, let 0 > 0. We put

a@J%—ﬁ%%%ﬁ%gwpkr+p—n<k+5§7)4,

b, t) =2 (Al n q%) exp{ala — 1) +olt),

k(z,y,t) = ﬁ exp :(l ~1) (Al + qi%) t] .

It is easy to see that

w%ozwp}<h+5204

is the solution of (LI)-(T3) with ug(z) =1, z € Q.

Remark 3.11. From Theorem [B.7 it follows that Theorem does not hold for
w> A (r+p—q) in (3I6).
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