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GLOBAL EXISTENCE OF SOLUTIONS OF INITIAL-BOUNDARY

VALUE PROBLEM FOR NONLOCAL PARABOLIC EQUATION

WITH NONLOCAL BOUNDARY CONDITION

ALEXANDER GLADKOV AND TATIANA KAVITOVA

Abstract. We prove global existence and blow-up of solutions of initial-
boundary value problem for nonlinear nonlocal parabolic equation with non-
linear nonlocal boundary condition. Obtained results depend on the behavior
of variable coefficients for large values of time.

1. Introduction

We consider nonlinear nonlocal parabolic equation

ut = ∆u + a(x, t)ur
∫

Ω

up(y, t) dy − b(x, t)uq, x ∈ Ω, t > 0, (1.1)

with nonlinear nonlocal boundary condition

u(x, t) =

∫

Ω

k(x, y, t)ul(y, t) dy, x ∈ ∂Ω, t > 0, (1.2)

and initial datum
u(x, 0) = u0(x), x ∈ Ω, (1.3)

where r, p, q, l are positive constants, Ω is a bounded domain in R
n for n ≥ 1 with

smooth boundary ∂Ω.
Throughout this paper we suppose that a(x, t), b(x, t), k(x, y, t) and u0(x) sat-

isfy the following conditions:

a(x, t), b(x, t) ∈ Cα
loc(Ω× [0,∞)), 0 < α < 1, a(x, t) ≥ 0, b(x, t) ≥ 0;

k(x, y, t) ∈ C(∂Ω× Ω× [0,∞)), k(x, y, t) ≥ 0;

u0(x) ∈ C(Ω), u0(x) ≥ 0, x ∈ Ω, u0(x) =

∫

Ω

k(x, y, 0)ul0(y) dy, x ∈ ∂Ω.

For global existence and blow-up of solutions for parabolic equations with non-
local boundary conditions we refer to [1, 2, 6], [11]–[18], [21, 23, 24, 30, 32, 33]
and the references therein. Initial-boundary value problems for nonlocal parabolic
equations with nonlocal boundary conditions were considered in many papers also
(see, for example, [4, 7, 9, 10, 26, 27, 34]). In particular, blow-up problem for
nonlocal parabolic equations with boundary condition (1.2) was investigated in
[5, 8, 25, 28, 29, 31, 35, 36]. So, for example, the authors of [5] studied (1.1)–(1.3)
with b(x, t) ≡ 0, a(x, t) ≡ a(x) and k(x, y, t) ≡ k(x, y), and problem (1.1)–(1.3)
with r = 0, a(x, t) ≡ 1, b(x, t) ≡ b > 0 and k(x, y, t) ≡ k(x, y) was considered in
[31]. The authors of [15] studied (1.1)–(1.3) with a(x, t) ≡ 0.
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2 A. GLADKOV AND T. KAVITOVA

The existence of classical local solutions and comparison principle for (1.1)–(1.3)
were proved in [19] and [20].

In this paper we prove global existence and blow-up of solutions of (1.1)–(1.3).
Obtained results depend on the behavior of variable coefficients a(x, t), b(x, t) and
k(x, y, t) as t→ ∞.

This paper is organized as follows. Global existence of solutions for any initial
data and blow-up in finite time of solutions for large initial data are proved in
section 2. In section 3 we present finite time blow-up of all nontrivial solutions as
well as the existence of global solutions for small initial data.

2. Global existence and blow-up of solutions

Let QT = Ω× (0, T ), ST = ∂Ω× (0, T ), ΓT = ST ∪ Ω× {0}, T > 0.

Definition 2.1. We say that a nonnegative function u(x, t) ∈ C2,1(QT )∩C(QT ∪
ΓT ) is a supersolution of (1.1)–(1.3) in QT if

ut ≥ ∆u+ a(x, t)ur
∫

Ω

up(y, t) dy − b(x, t)uq, (x, t) ∈ QT , (2.1)

u(x, t) ≥
∫

Ω

k(x, y, t)ul(y, t) dy, (x, t) ∈ ST , (2.2)

u(x, 0) ≥ u0(x), x ∈ Ω, (2.3)

and u(x, t) ∈ C2,1(QT )∩C(QT ∪ ΓT ) is a subsolution of (1.1)–(1.3) in QT if u ≥ 0
and it satisfies (2.1)–(2.3) in the reverse order. We say that u(x, t) is a solution
of (1.1)–(1.3) in QT if u(x, t) is both a subsolution and a supersolution of (1.1)–(1.3)
in QT .

We will repeatedly use the following comparison principle (see [19], [20]).

Theorem 2.2. Let u(x, t) and u(x, t) be a subsolution and a supersolution of prob-
lem (1.1)–(1.3) in QT , respectively. Suppose that u(x, t) > 0 or u(x, t) > 0 in
QT ∪ ΓT if min(r, p, l) < 1. Then u(x, t) ≥ u(x, t) in QT ∪ ΓT .

To prove global existence of solutions of (1.1)–(1.3) we suppose that

b(x, t) > 0 for x ∈ Ω and t ≥ 0. (2.4)

Theorem 2.3. Let max (r + p, l) ≤ 1 or (2.4) hold and either l ≤ 1, 1 < r+ p < q
or 1 < l < (q + 1)/2, max(r + p, 2p+ 1) < q. Then problem (1.1)–(1.3) has global
solutions for any initial data.

Proof. Let T be any positive constant and

M = max

(
sup
QT

a(x, t), sup
∂Ω×QT

k(x, y, t)

)
. (2.5)

In order to prove global existence of solutions we construct a suitable explicit su-
persolution of (1.1)–(1.3) in QT .

Suppose at first that max(r + p, l) ≤ 1. Let λ1 be the first eigenvalue of the
following problem

∆ϕ(x) + λϕ(x) = 0, x ∈ Ω, ϕ(x) = 0, x ∈ ∂Ω, (2.6)
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and ϕ(x) be the corresponding eigenfunction which is chosen to satisfy that for
some 0 < ε < 1

M

∫

Ω

dy

(ϕ(y) + ε)l
≤ 1.

Then it is easy to check that

v(x, t) =
η exp (µt)

ϕ(x) + ε
(2.7)

is a supersolution of (1.1)–(1.3) in QT if

η ≥ max

(
sup
Ω
u0(x) sup

Ω
(ϕ(x) + ε), 1

)
,

µ ≥ λ1 + sup
Ω

2|∇ϕ(x)|2

(ϕ(x) + ε)
2 +M sup

Ω
(ϕ(x) + ε)1−r

∫

Ω

dy

(ϕ(y) + ε)
p .

By Theorem 2.2 problem (1.1)–(1.3) has global solutions for any initial data.
From (2.4) we conclude that b = inf

QT

b(x, t) > 0. Let l ≤ 1, 1 < r + p < q. Then

v(x, t) in (2.7) is a supersolution of (1.1)–(1.3) in QT if

η ≥ max

(
sup
Ω
u0(x) sup

Ω
(ϕ(x) + ε),

(
M

b
sup
Ω

(ϕ(x) + ε)q−r

∫

Ω

dy

(ϕ(y) + ε)
p

) 1
q−r−p

, 1

)
,

µ ≥ λ1 + sup
Ω

2|∇ϕ(x)|2

(ϕ(x) + ε)2
.

Let 1 < l < (q + 1)/2, max(r + p, 2p+ 1) < q. To construct a supersolution we
use the change of variables in a neighborhood of ∂Ω as in [3]. Let x ∈ ∂Ω and
n̂(x) be the inner unit normal to ∂Ω at the point x. Since ∂Ω is smooth it is well
known that there exists δ > 0 such that the mapping ψ : ∂Ω × [0, δ] → R

n given
by ψ(x, s) = x + sn̂(x) defines new coordinates (x, s) in a neighborhood of ∂Ω in
Ω. A straightforward computation shows that, in these coordinates, ∆ applied to a
function g(x, s) = g(s), which is independent of the variable x, evaluated at a point
(x, s) is given by

∆g(x, s) =
∂2g

∂s2
(x, s)−

n−1∑

j=1

Hj(x)

1− sHj(x)

∂g

∂s
(x, s), (2.8)

where Hj(x) for j = 1, ..., n − 1, denotes the principal curvatures of ∂Ω at x. For
0 ≤ s ≤ δ and small δ we have∣∣∣∣∣∣

n−1∑

j=1

Hj(x)

1− sHj(x)

∣∣∣∣∣∣
≤ c. (2.9)

Let 0 < ε < ω < min(δ, 1), 2/(q − 1) < β < min(1/p, 1/(l − 1)), 0 < γ < β/2,
A ≥ supΩ u0(x). For points in Qδ,T = ∂Ω × [0, δ] × [0, T ] of coordinates (x, s, t)
define

v(x, t) = v((x, s), t) =
[
(s+ ε)−γ − ω−γ

] β
γ

+
+A, (2.10)

where s+ = max(s, 0). For points in QT \ Qδ,T we set v(x, t) = A. We prove that
v(x, t) is a supersolution of (1.1)–(1.3) in QT . It is not difficult to check that

∣∣∣∣
∂v

∂s

∣∣∣∣ ≤ βmin

(
[D(s)]

γ+1
γ
[
(s+ ε)−γ − ω−γ

]β+1
γ

+
, (s+ ε)−(β+1)

)
, (2.11)
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∣∣∣∣
∂2v

∂s2

∣∣∣∣ ≤ β(β+1)min

(
[D(s)]

2(γ+1)
γ

[
(s+ ε)−γ − ω−γ

] β+2
γ

+
, (s+ ε)−(β+2)

)
, (2.12)

where

D(s) =
(s+ ε)−γ

(s+ ε)−γ − ω−γ
.

Then D′(s) > 0 and for any ε > 0

1 ≤ D(s) ≤ 1 + ε, 0 < s ≤ s, (2.13)

where s = [ε/(1 + ε)]1/γω − ε, ε < [ε/(1 + ε)]1/γω. We denote

Lv ≡ vt −∆v − a(x, t)vr
∫

Ω

vp(y, t) dy + b(x, t)vq (2.14)

and

J = sup
0<s<δ

∫

∂Ω

|J(y, s)| dy, (2.15)

where J(y, s) is Jacobian of the change of variables in neighborhood of ∂Ω. We use
the inequality (a+ b)p ≤ 2p(ap + bp), a ≥ 0, b ≥ 0, p > 0 to estimate the integral in
(2.14)
∫

Ω

vp(y, t) dy ≤ 2p
(
Ap|Ω|+

∫ ω−ε

0

∫

∂Ω

J(y, s)
[
(s+ ε)−γ − ω−γ

] βp
γ

+
dy ds

)

≤ 2p
(
Ap|Ω|+ Jω1−βp

1− βp

)
. (2.16)

Here |Ω| is Lebesque measure of Ω. By (2.8)–(2.14), (2.16) we can choose ε small
and A large so that in Qs,T

Lv ≥ b

([
(s+ ε)−γ − ω−γ

]β
γ

+
+A

)q

− β(β + 1) [D(s)]
2(γ+1)

γ
[
(s+ ε)−γ − ω−γ

] β+2
γ

+

−βc [D(s)]
γ+1
γ
[
(s+ ε)−γ − ω−γ

]β+1
γ

+

−2pM

([
(s+ ε)−γ − ω−γ

]β
γ

+
+A

)r (
Ap|Ω|+ Jω1−βp

1− βp

)
≥ 0.

Let s ∈ [s, δ]. From (2.8)–(2.12) we have

|∆v| ≤ β(β + 1)ω−(β+2)

(
1 + ε

ε

) β+2
γ

+ βcω−(β+1)

(
1 + ε

ε

) β+1
γ

and by (2.16) Lv ≥ 0 for large A. Obviously, in QT \Qδ,T

Lv ≥ −2pMAr

(
Ap|Ω|+ Jω1−βp

1− βp

)
+ bAq ≥ 0

for large A.
Now we prove the following inequality

v((x, 0), t) ≥
∫

Ω

k(x, y, t)vl(y, t) dy, (x, t) ∈ ST (2.17)

for a suitable choice of ε. To do this we use the change of variables in neighborhood
of ∂Ω. Estimating the integral I in the right hand side of (2.17), we get

I ≤ 2lMJ

∫ ω−ε

0

[
(s+ ε)−γ − ω−γ

]βl
γ

+
ds+ 2lMAl|Ω| ≤ 2lMJC(ε) + 2lMAl|Ω|,
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where

C(ε) =





ε−(βl−1)/(βl − 1), βl > 1,

ω1−βl/(1− βl), βl < 1,

− ln ε, βl = 1.

On the other hand, we have

v((x, 0), t) =
[
ε−γ − ω−γ

]β
γ

+
+A.

Hence, (2.17) holds for small values of ε and by Theorem 2.2 u(x, t) ≤ v(x, t) in
QT . �

To prove finite time blow-up result we need lower bound for solutions of (1.1)–
(1.3) with large initial data.

Lemma 2.4. Let u(x, t) be a solution of (1.1)–(1.3) in QT . For any Ω0 ⊂⊂ Ω1 ⊂⊂
Ω and any positive constant C there exists positive constant c1 such that if u0(x) ≥
c1 in Ω1, then

u(x, t) ≥ C in Ω0 × [0, T ]. (2.18)

Proof. Let y(x, t) be a solution of the following problem




yt = ∆y, x ∈ Ω1, 0 < t < T,

y(x, t) = 0, x ∈ ∂Ω1, 0 < t < T,

y(x, 0) = χ(x), x ∈ Ω1,

(2.19)

where χ(x) ∈ C∞
0 (Ω1), χ(x) = 1 in Ω0 and 0 ≤ χ(x) ≤ 1. By strong maximum

principle

inf
Ω0×(0,T )

y(x, t) > 0. (2.20)

Suppose that q ≥ 1. We put m = max
(
supQT

u(x, t), supQT
b(x, t)

)
and define

function v(x, t) = exp (ρt)u(x, t). For ρ ≥ mq we have in QT

vt−∆v = exp (ρt)

(
ρu+ a(x, t)ur

∫

Ω

up(y, t) dy − b(x, t)uq
)

≥ v(ρ−b(x, t)uq−1) ≥ 0.

We assume u0(x) ≥ c1χ(x) in Ω1, where constant c1 will be chosen below. Then
by comparison principle for (2.19) we get v(x, t) ≥ c1y(x, t) in Ω1 × [0, T ]. Taking

into account (2.20), we have (2.18) if c1 = C exp (ρT )
(
infΩ0×(0,T ) y(x, t)

)−1
.

Let q < 1. We set w(x, t) = exp (mt)(u(x, t) + 1). Since uq ≤ u+ 1, we conclude
that

wt −∆w = exp (mt)

(
m(u+ 1) + a(x, t)ur

∫

Ω

up(y, t) dy − b(x, t)uq
)

≥ 0

in QT . Arguing as in previous case, we obtain

u(x, t) ≥ c1 exp (−mt)y(x, t)− 1 Ω1 × [0, T ].

Choosing c1 = (C + 1) exp (mT )
(
infΩ0×(0,T ) y(x, t)

)−1
, we have (2.18). �

Now we prove that problem (1.1)–(1.3) has finite time blow-up solutions if either
l > max (1, (q + 1)/2) and

k(x, y, t) ≥ k0 > 0, x ∈ ∂Ω, y ∈ Ω, 0 < t < t0, (2.21)
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for some positive constants k0 and t0 or r + p > max(q, 1) and

a(x, t) ≥ a0 > 0, x ∈ Ω, 0 < t < t1, (2.22)

for some positive constants a0 and t1.

Theorem 2.5. There exist finite time blow-up solutions of (1.1)–(1.3) if either
l > max (1, (q + 1)/2) and (2.21) holds or r + p > max(q, 1) and (2.22) holds.

Proof. We suppose at first that l > max (1, (q + 1)/2) and (2.21) holds. Let us
consider the following problem





ut = ∆u− b(x, t)uq, x ∈ Ω, t > 0,
u(x, t) =

∫
Ω
k(x, y, t)ul(y, t) dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.
(2.23)

As it is proved in [15], problem (2.23) has positive finite time blow-up solutions.
We note that any solution of (2.23) is a subsolution of (1.1)–(1.3). Applying The-
orem 2.2, we prove the theorem.

Now we assume that r+ p > max(q, 1) and (2.22) holds. We put b = sup
Qt1

b(x, t).

Let r ≥ q > 1. We denote

J(t) = exp (λ1t)

∫

Ω

u(x, t)ϕ(x) dx, (2.24)

where ϕ(x) is the solution of (2.6) satisfying
∫

Ω

ϕ(x) dx = 1. (2.25)

Then using (1.1), (2.6), Green’s identity and the inequality

∂ϕ(x)

∂n
≤ 0, x ∈ ∂Ω, (2.26)

where ν is unit outward normal on ∂Ω, we get for t < t1

J ′(t) ≥ exp (λ1t)

∫

Ω

(
a(x, t)ur

∫

Ω

up(y, t) dy − b(x, t)uq
)
ϕ(x) dx

≥ exp (λ1t)

(
a0

∫

Ω

up(y, t) dy

∫

Ω

ur(x, t)ϕ(x) dx− b

∫

Ω

uq(x, t)ϕ(x) dx

)
.

(2.27)

By Lemma 2.4

a0

∫

Ω

up(y, t) dy

[∫

Ω

uq(x, t)ϕ(x) dx

] r−q
q

− b ≥ c2 > 0 (2.28)

for t < t1 and large initial data. Taking into account (2.27), (2.28), Hölder’s and
Jensen’s inequalities, we have for t < t1

J ′(t) ≥ exp (λ1t)

∫

Ω

uq(x, t)ϕ(x) dx

(
a0

∫

Ω

up(y, t) dy

[∫

Ω

uq(x, t)ϕ(x) dx

] r−q
q

− b

)

≥ c2 exp [λ1(1− q)t]Jq(t).

Hence, J(t) blows up in finite time T (T < t1) for large initial data.
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Let r > 1 ≥ q. By Lemma 2.4
∫

Ω

up(y, t) dy ≥ c3 > 0 (2.29)

for t < t1 and large initial data. Then using (2.27), (2.29), uq ≤ u+1 and Jensen’s
inequalities, we obtain for t < t1

J ′(t) ≥ a0c3 exp [λ1(1 − r)t]Jr(t)− bJ(t)− b exp (λ1t)

and again J(t) blows up in finite time T (T < t1) for large initial data.
Let r < q. Without loss of generality, we may assume that Ω contains the origin.

We introduce designations

G =
{
(x, t) : 0 ≤ t < T1, |x| ≤ A

√
T − t

}
(T1 < T ), Gτ = G∩{t = τ} (0 < τ < T1)

and consider the auxiliary problem




ut = ∆u+ a(x, t)ur
∫
Gt
up(y, t) dy − b(x, t)uq, (x, t) ∈ G,

u(x, t) = 0, |x| = A
√
T − t, 0 < t < T1,

u(x, 0) = A2 − |x|2/T, |x| < A
√
T ,

(2.30)

where A > 0 will be determined below and T < min{1, t1} we choose in such a

way that points x with |x| ≤ A
√
T belong to Ω. Let u(x, t) be a positive in G

solution of (1.1)–(1.3) such that u0(x) ≥
(
A2 − |x|2/T

)
+
. Obviously, u(x, t) is a

supersolution of (2.30). We construct a subsolution of (2.30) in the following form

u(x, t) = (T − t)−γV

( |x|√
T − t

)
, (2.31)

where V (ξ) =
(
A2 − ξ2

)
+
, ξ = |x|/

√
T − t and γ > 0 will be chosen below. It is

easy to see u(0, t) → ∞ as t→ T1 and T1 → T. We show that

Λu ≤ 0 (2.32)

in G, where

Λu ≡ ut −∆u− a(x, t)ur
∫

Gt

up(y, t) dy + b(x, t)uq.

Note that∫

Gt

V p(ξ) dx = (T − t)
n
2

∫

|z|≤A

(A2 − |z|2)p+ dz = C(A)(T − t)
n
2 . (2.33)

By (2.33) we obtain

Λu ≤ γ(T − t)−γ−1V (ξ)− (T − t)−γ−1ξ2 + 2n(T − t)−γ−1

− a0C(A)(T − t)
n
2 −γ(r+p)V r(ξ) + b(T − t)−γqV q(ξ) (2.34)

for points of G. Further we distinguish the two zones 0 ≤ ξ < θA and θA ≤ ξ < A,
where θ ∈ (0, 1) will be chosen below.

For θA ≤ ξ < A we have

V (ξ) ≤ (1− θ2)A2. (2.35)

From (2.34), (2.35) it follows that

Λu ≤
(
γ(1− θ2)A2 − θ2A2 + 2n

)
(T − t)−γ−1 − a0C(A)(T − t)

n
2 −γ(r+p)V r(ξ)

+ b(T − t)−γqV q(ξ). (2.36)
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We put

A = 3
√
n, θ2 =

γ + 1/2

γ + 1
(2.37)

and estimate the first term on the right hand side of (2.36)

(
γ(1− θ2)A2 − θ2A2 + 2n

)
(T − t)−γ−1 = −5n

2
(T − t)−γ−1 < 0. (2.38)

By (2.35)

a0C(A)(T − t)
n
2 −γ(r+p)V r(ξ) ≥ b(T − t)−γqV q(ξ) (2.39)

for small values of T and γ > n/[2(r + p − q)]. From (2.36), (2.38), (2.39) it
follows (2.32) for ξ ∈ [θA,A).

For 0 ≤ ξ < θA we have

V (ξ) ≥ (1− θ2)A2 =
9n

2(γ + 1)
.

Then by (2.34) inequality (2.32) still holds for 0 ≤ ξ < θA if T is small and

γ > max

(
n

2(r + p− q)
,

n+ 2

2(r + p− 1)

)
.

Applying comparison principle for (2.30), we obtain u(x, t) ≥ u(x, t) in G. Hence,
u(x, t) blows up in finite time.

In the case q ≤ r ≤ 1 we have γq < γ + 1. Then the function in (2.31) satisfies
(2.32) for 0 ≤ ξ < A. Indeed, by virtue of (2.36)–(2.38) we have

Λu ≤
(
−5n

2
(T − t)−γ−1 + b(T − t)−γqV q(ξ)

)
− a0C(A)(T − t)

n
2 −γ(r+p)V r(ξ) ≤ 0

for θA ≤ ξ < A and small values of T. For 0 ≤ ξ < θA inequality (2.32) holds
if γ > (n + 2)/[2(r + p − 1)] and T is small. Arguing as in the previous case, we
complete the proof. �

3. Blow-up of all nontrivial solutions and global existence of
solutions for small initial data

In this section we find conditions which guarantee blow-up in finite time of all
nontrivial solutions and prove global existence of solutions for small initial data.

First we show that for q < min(r + p, 1) under some conditions problem (1.1)–
(1.3) has nontrivial global solutions for any a(x, t) and k(x, y, t). Suppose that

inf
Ω
b(x, 0) > 0. (3.1)

Theorem 3.1. Let (3.1) hold and either q < min(r + p, 1), l > 1 or r ≥ q,
(q + 1)/2 < l ≤ 1. Then problem (1.1)–(1.3) has global solutions for small initial
data.

Proof. We put b0 = inf
QT

b(x, t) and choose T so that b0 > 0.

Suppose that q < min(r + p, 1), l > 1. A straightforward computation shows
that for small β, ε and u0(x)

g(t) = β[T − t]
1

1−q

+ + ε



NONLOCAL PARABOLIC EQUATION WITH NONLOCAL BOUNDARY CONDITION 9

is a supersolution of (1.1)–(1.3) inQT . Applying Theorem 2.2, we have u(x, t) ≤ g(t)
in QT . Passing to the limit as ε→ 0, we obtain

u(x, t) ≤ β[T − t]
1

1−q

+ , (x, t) ∈ QT .

Now we put u(x, t) ≡ 0 for t ≥ T.
For r ≥ q, (q + 1)/2 < l ≤ 1 to construct a supersolution we use the change of

variables as in Theorem 2.3. For points of Qδ,t0 define

v(x, t) = v((x, s), t) = (δ − s− t)γ+ + ε,

where δ > 0, ε > 0, t0 < min(δ, T ), 2/(1 − q) < γ < 1/(1 − l) for l < 1 and
2/(1 − q) < γ for l = 1. In Qt0 \ Qδ,t0 we put v(x, t) = ε. Then v(x, t) is a
supersolution of (1.1)–(1.3) in Qt0 if u0(x) ≤ (δ−s)γ+. Indeed, by (2.5), (2.8), (2.9),
(2.14)–(2.16) for small δ and ε we have Lv ≥ 0 in Qt0 \Qδ,t0 and

Lv ≥ −γ(δ − s− t)γ−1
+ − γ(γ − 1)(δ − s− t)γ−2

+ − γc(δ − s− t)γ−1
+

−2pM
(
(δ − s− t)γ+ + ε

)r (
δγp+1J + εp|Ω|

)
+ b0

(
(δ − s− t)γ+ + ε

)q ≥ 0 in Qδ,t0 .

Estimating the integral I in right hand side of (2.17), we obtain

I ≤M

(∫

Ω

(δ − s− t)
γl
+ dy + |Ω|εl

)
≤M

(
J
(δ − t)γl+1

+

γl+ 1
+ |Ω|εl

)
.

On the other hand, we have v((x, 0), t) = (δ − t)γ+ + ε and (2.17) holds for

δ <

(
γl+ 1

2MJ

) 1
γ(l−1)+1

, ε <

{
(δ − t0)

γ

2M |Ω|

} 1
l

.

By Theorem 2.2 u(x, t) ≤ v(x, t) in Qt0 and passing to the limit as t0 → δ and
ε→ 0, we deduce

u(x, t) ≤ (δ − s− t)γ+ in Qδ.

We put u(x, t) ≡ 0 for t ≥ δ and complete the proof. �

Now suppose that q = 1. We set

a(t) = sup
Ω
a(x, t), a(t) = inf

Ω
a(x, t), b(t) = sup

Ω
b(x, t), b(t) = inf

Ω
b(x, t), k(t) = inf

∂Ω×Ω
k(x, y, t).

(3.2)
Problem (1.1)–(1.3) has global solutions for small initial data if q = 1, min(r+p, l) >
1 and

∫ ∞

0

a(t) exp

[
−(r + p− 1)

(
σt+

∫ t

0

b(τ) dτ

)]
dt <∞, σ < λ1, (3.3)

∫

Ω

k(x, y, t) dy ≤ K exp

[
(l − 1)

(
γt+

∫ t

0

b(τ) dτ

)]
, x ∈ ∂Ω, t > 0, K > 0, γ < λ1

(3.4)
and conversely (1.1)–(1.3) has no global nontrivial solutions if either q = 1,min(r, p) ≥
1 and ∫ ∞

0

a(t) exp

[
−(r + p− 1)

(
λ1t+

∫ t

0

b(τ) dτ

)]
dt = ∞, (3.5)

or q = 1, l > 1 and
∫ ∞

0

k(t) exp

[
−(l − 1)

(
λ1t+

∫ t

0

b(τ) dτ

)]
dt = ∞. (3.6)
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Theorem 3.2. Let q = 1, min(r+ p, l) > 1 and (3.3), (3.4) hold. Then there exist
global solutions of (1.1)–(1.3) for small initial data. If either q = 1, min(r, p) ≥ 1
and (3.5) holds or q = 1, l > 1 and (3.6) holds, then any nontrivial solution
of (1.1)–(1.3) blows up in finite time.

Proof. Assume that T is any positive constant, q = 1, min(r + p, l) > 1 and (3.3),

(3.4) hold. We choose λ̃ in such a way that

max(σ, γ) < λ̃ < λ1.

Let Ω̃ be bounded domain in R
n with smooth boundary such that Ω ⊂⊂ Ω̃ and λ̃

be the first eigenvalue of (2.6) in Ω̃. Then correspondent eigenfunction ϕ̃(x) satisfies

supΩ̃ ϕ̃(x)

infΩ ϕ̃(x)
< d

for some d > 0. Choosing

0 < ε ≤
(
Kdl

)− 1
l−1 , sup

Ω̃

ϕ̃(x) = dε,

we have inf
∂Ω
ϕ̃(x) > ε. We put N = sup

Ω
ϕ̃r−1(x)

∫
Ω ϕ̃

p(y) dy and

f(t) = exp (−λ̃t)
(
B − (r + p− 1)N

∫ t

0

a(τ) exp

[
−(r + p− 1)

(
λ̃τ +

∫ τ

0

b(s) ds

)]
dτ

)− 1
r+p−1

,

where

B = 1 + (r + p− 1)N

∫ ∞

0

a(τ) exp

[
−(r + p− 1)

(
λ̃τ +

∫ τ

0

b(s) ds

)]
dτ.

It is easy to check that

v(x, t) = ϕ̃(x)f(t) exp


−

t∫

0

b(τ) dτ




is a supersolution of (1.1)–(1.3) in QT for u0(x) ≤ B− 1
r+p−1 ϕ̃(x). By Theorem 2.2

there exist global solutions of (1.1)–(1.3).
Now suppose that q = 1, min(r, p) ≥ 1 and (3.5) holds. Multiplying (1.1) by

ϕ(x) exp(λ1t), where ϕ(x) is defined in (2.6) and (2.25), and integrating the ob-
tained equation over Ω, from (2.24), (2.26), Green’s identity and Jensen’s inequality,
we obtain

J ′(t) ≥ [sup
Ω
ϕ(x)]−1a(t) exp[λ1(1− r − p)t]Jr+p(t)− b(t)J(t).

Now (3.5) guarantees blow-up of J(t) in finite time. The case q = 1, l > 1 is treated
similarly. �

Remark 3.3. The conclusion of Theorem 3.2 is not true if σ > λ1 in (3.3), or γ = λ1
in (3.4), or λ1 is replaced by a smaller value in (3.5) or (3.6).

Further we consider the case q > 1. To prove blow-up of all nontrivial solutions
we need universal lower bound for solutions of (1.1)–(1.3). Assume that

b(x, t) ≤ ε(t) exp[λ1(q − 1)t], x ∈ Ω, t > 0, (3.7)
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where

ε(t) ∈ C([0,∞)), ε(t) ≥ 0,

∫ ∞

0

ε(t) dt <∞. (3.8)

Lemma 3.4. Let u(x, t) be a solution of (1.1)–(1.3) in QT , q > 1, u0(x) 6≡ 0 and
(3.7), (3.8) hold. Then for any t0 ∈ (0, T ) there exists d > 0, which does not depend
on T, such that

u(x, t) ≥ dϕ(x) exp(−λ1t), x ∈ Ω, t ∈ (t0, T ), (3.9)

where ϕ(x) is defined in (2.6) and (2.25).

Proof. For T0 ∈ (0, T ) denote m0 = max

(
sup
QT0

u(x, t), sup
QT0

b(x, t)

)
. Let v(x, t) be a

solution of the problem




vt = ∆v − b(x, t)vq , (x, t) ∈ QT0 ,
v(x, t) = 0, (x, t) ∈ ST0 ,
v(x, 0) = v0(x), x ∈ Ω,

(3.10)

where v0(x) ∈ C∞
0 (Ω), 0 ≤ v0(x) ≤ u0(x) and v0(x) 6≡ 0. Obviously, u(x, t) is a

supersolution of (3.10). By comparison principle for (3.10) we obtain

u(x, t) ≥ v(x, t), (x, t) ∈ QT0 . (3.11)

We put h(x, t) = exp(µt)v(x, t), where µ ≥ mq
0. Then in QT0

ht −∆h ≥ exp(µt)v(µ − b(x, t)vq−1) ≥ 0.

Since h(x, 0) = v0(x) and v0(x) is nontrivial nonnegative function in Ω, by strong
maximum principle

h(x, t) > 0, (x, t) ∈ QT0 . (3.12)

By virtue of Theorem 3.6 in [22]

max
∂Ω

∂h(x, t0)

∂n
< 0, (3.13)

where t0 ∈ (0, T0). From (3.12) and (3.13) it follows that

v(x, t) > 0 in QT0 and max
∂Ω

∂v(x, t0)

∂n
< 0.

Then there exists positive constant d0 such that

v(x, t0) ≥ d0ϕ(x) exp(−λ1t0), x ∈ Ω. (3.14)

By (3.11) and (3.14)

u(x, t0) ≥ d0ϕ(x) exp(−λ1t0), x ∈ Ω.

A straightforward computation shows that for large f0

u(x, t) = ϕ(x) exp (−λ1t)
{
f0 + (q − 1)[sup

Ω
ϕ(x)]q−1

∫ t

t0

ε(τ)dτ

}− 1
q−1

is a subsolution of (3.10) in QT0 \Qt0 with initial datum v(x, t0) = u(x, t0). Appli-
cation of comparison principle for (3.10) completes the proof. �
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Next we assume that∫

Ω

k(x, y, t) dy ≤ A exp (σt), x ∈ ∂Ω, t > 0, A > 0, σ < λ1(l − 1) (3.15)

and

b(x, t) ≥ Ba(x, t) exp (−ωt), x ∈ Ω, t > 0, B > 0, ω < λ1(r + p− q) (3.16)

or b(x, t) satisfies (3.7), (3.8), where

lim
t→∞

ε(t) = 0, (3.17)

and

k(x, y, t) ≥ D exp [λ1(l − 1)t], x ∈ ∂Ω, y ∈ Ω, D > 0 (3.18)

for large values of t.

Theorem 3.5. If l > 1, 1 < q < r + p and (3.15), (3.16) hold, then there exist
global solutions of (1.1)–(1.3) for small initial data. If l ≥ q > 1 and (3.7), (3.8),
(3.17), (3.18) hold, then any nontrivial solution of (1.1)–(1.3) blows up in finite
time.

Proof. Let l > 1, 1 < q < r + p and (3.15), (3.16) hold. We choose λ̃1 in the
following way

max (ω/(r + p− q), σ/(l − 1)) < λ̃1 < λ1.

Let Ω̃ be bounded domain in R
n with smooth boundary such that Ω ⊂⊂ Ω̃ and

λ̃1 be the first eigenvalue of (2.6) in Ω̃. The correspondent eigenfunction ϕ̃(x) is
chosen to satisfy that supΩ̃ ϕ̃(x) = 1. Obviously, infΩ ϕ̃(x) > d for some d > 0.

Then v(x, t) = β exp (−λ̃1t)ϕ̃(x) is a supersolution of (1.1)–(1.3) in QT for any
T > 0 if

β ≤ min

((
B

supΩ ϕ̃
r−q(x)

∫
Ω
ϕ̃p(y) dy

) 1
r+p−q

,

(
d

A

) 1
l−1

)
, u0(x) ≤ βϕ̃(x).

By Theorem 2.2 there exist global solutions of (1.1)–(1.3).
Let u(x, t) be nontrivial global solution of (1.1)–(1.3), l ≥ q > 1 and (3.7), (3.8),

(3.17), (3.18) hold. Then by (1.2), (3.9) and (3.18) there exist positive constants t1
and d1 such that

u(x, t) ≥ d1 exp(−λ1t), x ∈ ∂Ω, t ≥ t1. (3.19)

Let us consider auxiliary problem




vt = ∆v − b(x, t)vq, x ∈ Ω, t > t2,
v(x, t) = u(x, t), x ∈ ∂Ω, t > t2,
v(x, t2) = u(x, t2), x ∈ Ω,

(3.20)

where t2 ≥ t1. Using (3.7), (3.17), (3.19), we check that u(x, t) = d2 exp(−λ1t) is a
subsolution of (3.20) under suitable choice of t2 and d2 > 0. Comparison principle
for (3.20) gives

u(x, t) ≥ d2 exp(−λ1t), x ∈ Ω, t ≥ t2. (3.21)

Let ϕ(x) satify (2.6) and (2.25). Multiplying (1.1) by ϕ(x) exp(λ1t), integrating
over Ω and using ∫

∂Ω

∂ϕ(x)

∂n
ds = −λ1,
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Green’s identity, Jensen’s inequality and (2.24), (2.26), (3.7), (3.17)–(3.19), (3.21),
we obtain

J ′(t) ≥
∫

Ω

(
λ1[sup

Ω
ϕ(x)]−1D exp[λ1lt]u

l−q − ε(t) exp[λ1qt]

)
uqϕ(x)dx ≥ d3J

q(t)

for some d3 > 0 and large values of t > 0. Integrating differential inequality, we
prove the theorem. �

Remark 3.6. Theorem 3.5 does not hold if σ = λ1(l− 1) in (3.15) or λ1 is replaced
by a smaller value in (3.18). Furthermore, we can not ε(t) replace by any positive
constant in (3.7). Indeed, let a(x, t) ≡ 0, b(x, t) = b exp[λ1(q − 1)t], k(x, y, t) =
k exp [λ1(l − 1)t], where b and k are positive constants. Then

u(x, t) =

{
λ1
b

} 1
q−1

exp(−λ1t)

is a supersolution of (1.1)–(1.3) if min(q, l) > 1,

k ≤ 1

|Ω|

{
b

λ1

} l−1
q−1

and u0(x) ≤
{
λ1
b

} 1
q−1

.

By Theorem 2.2 there exist global solutions of (1.1)–(1.3).

To prove blow-up of all nontrivial solutions of (1.1)–(1.3) for max(r, p) ≥ q > 1
we assume that

a(t) = γ(t) exp [λ1(r + p− q)t] b(t), (3.22)∫ ∞

0

a(t) exp [−λ1(r + p− 1)t] dt = ∞, (3.23)

where limt→∞ γ(t) = ∞, a(t) and b(t) are defined in (3.2).

Theorem 3.7. Let max(r, p) ≥ q > 1 and (3.7), (3.8), (3.22), (3.23) hold. Then
any nontrivial solution of (1.1)–(1.3) blows up in finite time.

Proof. Denote

I(t) =

∫

Ω

{
1

2
a(t)ur(x, t)

∫

Ω

up(y, t) dy − b(t)uq(x, t)

}
ϕ(x) dx, (3.24)

where ϕ(x) is defined in (2.6) and (2.25). Suppose at first that p ≥ q. By (3.9),
(3.22), (3.24) and Hölder’s inequality it follows

I(t) ≥
∫

Ω

{
1

2
a(t)ur[sup

Ω
ϕ(x)]−1

∫

Ω

up(y, t)ϕ(y) dy − b(t)uq
}
ϕ(x) dx

≥ b(t)

[∫

Ω

upϕdx

] q
p

{
dr

2
[sup

Ω
ϕ(x)]−1γ(t) exp [λ1(p− q)t]

∫

Ω

ϕr+1 dx

[∫

Ω

upϕdy

] p−q
p

− 1

}

≥ b(t)

[∫

Ω

upϕdx

] q
p

{
dr+p−q

2
[sup

Ω
ϕ(x)]−1γ(t)

∫

Ω

ϕr+1 dx

[∫

Ω

ϕp+1 dy

] p−q
p

− 1

}
≥ 0

(3.25)
for large values of t. Using Hölder’s inequality again and (2.27), (3.9), (3.25), we
obtain

J ′(t) ≥ exp(λ1t)

∫

Ω

{
a(t)ur[sup

Ω
ϕ(x)]−1

∫

Ω

up(y, t)ϕ(y) dy − b(t)uq
}
ϕ(x) dx
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≥ 1

2
[sup

Ω
ϕ(x)]−1 exp(λ1t)a(t)

∫

Ω

ur(x, t)ϕ(x) dx

∫

Ω

up(y, t)ϕ(y) dy

≥ dr

2
[sup

Ω
ϕ(x)]−1

∫

Ω

ϕr+1 dx exp [−λ1(r + p− 1)t] a(t)Jp(t) (3.26)

for large values of t. By (3.23), (3.26) J(t) blows up in finite time.
Suppose that r ≥ q. Arguing as in previous case, we obtain

J ′(t) ≥ dp

2

∫

Ω

ϕp dx exp [−λ1(r + p− 1)t] a(t)Jr(t) (3.27)

for large values of t and J(t) blows up in finite time again. �

Remark 3.8. Theorem 3.7 does not hold if γ(t) is a bounded function in (3.22).
Indeed, suppose that p ≥ 1, r ≥ q > 1, a(x, t) ≡ a(t), b(x, t) ≡ b(t) and k(x, y, t) ≡
0. Let ϕ(x) be defined in (2.6) and (2.25). Then u(x, t) = βϕ(x) exp(−λ1t) is
a supersolution of (1.1)–(1.3) for u0(x) ≤ βϕ(x), x ∈ Ω and small β > 0. By
Theorem 2.2 there exist global solutions of (1.1)–(1.3).

Remark 3.9. We note here an importance of divergence of the integral in (3.23) for
blow-up of all nontrivial solutions of (1.1)–(1.3). Suppose that a(x, t) ≡ a(t) and
k(x, y, t) ≡ 0. Let ϕ(x) be the solution of (2.6) with supΩ ϕ(x) = 1 and f(t) be a
solution of the following differential equation

f ′(t) + λ1f(t)− |Ω|a(t)f r+p(t) = 0.

Since the integral in (3.23) converges, f(t) exists for any t ≥ 0 if f(0) is small
enough. Then u(x, t) = ϕ(x)f(t) is a supersolution of (1.1)–(1.3) with u0(x) ≤
ϕ(x)f(0). By Theorem 2.2 there exist global solutions of (1.1)–(1.3).

Remark 3.10. Theorem 3.7 is not true if λ1 is replaced by a larger value in (3.7).
Indeed, let σ > 0. We put

a(x, t) =
λ1(q − 1) + σ

(q − 1)|Ω| exp

[
(r + p− 1)

(
λ1 +

σ

q − 1

)
t

]
,

b(x, t) = 2

(
λ1 +

σ

q − 1

)
exp{[λ1(q − 1) + σ]t},

k(x, y, t) =
1

|Ω| exp
[
(l − 1)

(
λ1 +

σ

q − 1

)
t

]
.

It is easy to see that

u(x, t) = exp

[
−
(
λ1 +

σ

q − 1

)
t

]

is the solution of (1.1)–(1.3) with u0(x) ≡ 1, x ∈ Ω.

Remark 3.11. From Theorem 3.7 it follows that Theorem 3.5 does not hold for
ω > λ1(r + p− q) in (3.16).
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