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Abstract. Old achievements and more recent results in a solution of problem of the position
and spin in relativistic quantum mechanics are considered. It is definitively shown that quantum-
mechanical counterparts of the classical position and spin variables are the position and spin
operators in the Foldy-Wouthuysen representation (but not in the Dirac one). The probabilistic
interpretation is valid only for Foldy-Wouthuysen wave functions.

1. Introduction
A very important problem of relativistic quantum mechanics (QM) is a determination of the
position and spin operators. A transition to relativistic QM leads to a dependence of these
fundamental operators on a representation. Pryce [1] has shown the nontriviality of forms of
the position and spin operators for a spin-1/2 particle and has obtained some possible forms.
In the manifold of positive-energy wave functions in the Dirac representation, Newton and
Wigner [2] have determined localized eigenfunctions and the position operator having commuting
components. Foldy and Wouthuysen have shown [3] its equivalence to the radius vector operator
in the Foldy-Wouthuysen (FW) representation. It has been established [3] that quantum-
mechanical counterparts of the classical variables of the radius vector (position), momentum,
angular momentum, and spin of a Dirac particle are the operators x, p, L = x × p, and
s = ~Σ/2 in the Foldy-Wouthuysen (FW) representation. These conclusions which are also
based on the results obtained by Pryce [1] and Newton and Wigner [2] have been confirmed in
a lot of publications.

Unfortunately, these achievements were not reflected in textbooks and were missed by many
researchers. The short analysis of the problem has been given in Ref. [4]. In the present work,
we reproduce well-known (but sometimes forgotten) arguments in favor of a definite connection
between classical variables and corresponding operators which shows the special role of the FW
representation. We also put forward some new arguments given by a contemporary development
of theory of the FW transformation.

Our analysis is based on Refs. [4, 5]. We use the system of units ~ = 1, c = 1 but include
~ and c explicitly when this inclusion clarifies the problem. The square and curly brackets,
[. . . , . . .] and {. . . , . . .}, denote commutators and Poisson brackets, respectively. The standard
denotations of Dirac matrices are applied (see, e.g., Ref. [6]).
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2. Connection between fundamental classical variables and operators of relativistic
quantum mechanics
One of great achievements of QM in the last century was a determination of a definitive
connection between fundamental classical variables and operators of relativistic QM. For a
Dirac particle, this connection is nontrivial because it corrupts the connection between energy,
momentum, and velocity. The consideration was based on the Poincaré group (inhomogeneous
Lorentz group [1]). This group is formed by ten independent fundamental quantities Pµ =
(H,P ), Jµν (µ, ν = 0, 1, 2, 3) defining the four-momentum and the total angular momentum
and characteristic for the dynamical system [1, 7, 8, 9]. The antisymmetric tensor Jµν is defined
by the two vectors, J and K. The fundamental quantities are the generators of the infinitesimal
space translations P = (Pi), the generator of the infinitesimal time translation H, the generators
of infinitesimal rotations J = (Ji), and the generators of infinitesimal Lorentz transformations
(boosts) K = (Ki) (i = 1, 2, 3) [1, 7, 8, 9, 10, 11, 12, 13]. These ten generators satisfy the
following Poisson brackets [1, 7, 8, 9, 10, 11, 12]:

{Pi, Pj} = 0, {Pi, H} = 0, {Ji, H} = 0, {Ji, Jj} = eijkJk, {Ji, Pj} = eijkPk,
{Ji,Kj} = eijkKk, {Ki, H} = Pi, {Ki,Kj} = −eijkJk, {Ki, Pj} = δijH.

(1)

Counterparts of these generators in QM are ten corresponding operators. A connection
between the classical and quantum mechanics manifests itself in the fact that the commutators
of these operators are equal to the corresponding Poisson brackets multiplied by the imaginary
unit i. For a free particle, Eq. (1) describes the Lie algebra of classical motion which leads to
the ten-dimensional Poincaré algebra. The only additional equation which should be satisfied
defines the orbital and spin parts of the total angular momentum:

J = L+ S, L ≡ Q× P . (2)

There is some latitude in the definition of the position, orbital angular momentum (OAM), and
spin. An exhaustive list of appropriate definitions has been presented in Ref. [1].

A consideration of the particle position variables Qi brings the following Poisson brackets
[1, 8, 9]:

{Qi, Pj} = δij , {Qi, Jj} = eijkQk, {Qi,Kj} = 1
2 (Qj{Qi, H}+ {Qi, H}Qj)− tδij . (3)

It follows from Eqs. (1) – (3) that

{Li, Pj} = eijkPk, {Si, Pj} = 0. (4)

Equations (1) – (4) should be satisfied for any correct definition of fundamental variables.
However, these equations do not uniquely define the fundamental variables and different sets of
the variables Q,L,S can be used [1]. The Poisson brackets for the conventional particle position
are equal to zero:

{Qi, Qj} = 0. (5)

The property (5) is equivalent to the commutativity of operators of the particle position
components and is not trivial (see Ref. [1, 9]). Other sets of fundamental variables violating
Eq. (5) can also be used [1]. Equations (1) – (5) describe a classical Hamiltonian system.

Equations (1) – (5) allow one to obtain the following Poisson brackets [1, 9, 14]

{Qi, Lj} = eijkQk, {Qi, Sj} = 0, {Pi, Sj} = 0, {Li, Lj} = eijkLk, {Si, Sj} = eijkSk.
(6)

Evidently,
{Li, Sj} = 0. (7)
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The main variables of a free spinning particle in CM are specified by Eqs. (2) and

H =
√
m2 + P 2, K = QH − S × P

m+H
− tP (8)

(see also Refs. [11, 12] and Eq. (A.23) in Ref. [15]). In Refs. [9, 10, 15, 13], the last term in
the relation for P has been missed. The Poisson brackets (6) and (7) show that the variable
Q defined by Eq. (5) does not depend on the spin and is the same for spinning and spinless
particles with equal Q,P , and H. For a particle ensemble, the variable Q defines the position
of the center of charge. A violation of the condition (5) leads to a dependence of Q on the spin.

The well-known deep connection between the Poisson brackets in classical mechanics (CM)
and the commutators in QM remains valid in any representation. The commutation relations
for free spinning Dirac fermions allow one to establish definitive forms of operators in the Dirac
and FW representations corresponding to basic classical variables.

In CM, the position vector satisfying Eq. (5) is the radius vector R. For a free Dirac
particle, the most straightforward way for a determination of the position and spin operators in
any representation is the use of the FW representation as a starting point. The reason is a deep
similarity between the classical Hamiltonian (8) (which is spin-independent for a free particle)
and the corresponding FW Hamiltonian [3]

HFW = β
√
m2 + p2, p ≡ −i~ ∂

∂r
. (9)

The lower spinor of the FW wave function ΨFW is equal to zero if the total particle energy is
positive. The Hamiltonian (9) results from the FW transformation of the Dirac Hamiltonian

HD = βm+α · p. (10)

The remaining operators read

j = l+ s, l ≡ q × p, K =
1

2
(qH+Hq)− s× p

m+H
− tp, (11)

where q is the position operator.
The operators being counterparts of fundamental classical variables should satisfy the

relations [cf. Eqs. (1) – (7)]

[pi, pj ] = 0, [pi,H] = 0, [ji,H] = 0, [ji, jj ] = ieijkjk, [ji, pj ] = ieijkpk,
[ji,Kj ] = ieijkKk, [Ki,H] = ipi, [Ki,Kj ] = −ieijkjk, [Ki, pj ] = iδijH,

[qi,Kj ] = 1
2 (qj [qi,H] + [qi,H] qj)− itδij , [qi, pj ] = iδij , [qi, jj ] = ieijkqk,

[qi, sj ] = 0, [si, pj ] = 0, [li, sj ] = 0, [li, lj ] = ieijklk, [si, sj ] = ieijksk,

(12)

[qi, qj ] = 0. (13)

Let us first consider the set of operators p,HD, j,K, q, sD, where sD = ~Σ/2 and all these
operators are defined in the Dirac representation (in particular, the position operator is the
Dirac radius vector r). Some of commutators in Eq. (12) which contain K are not satisfied by
these operators. This fact follows from a noncoincidence of the position operator in the Dirac
representation with r which has been shown for the first time in Ref. [1].

A consideration of the set of operators p,HFW , j,K, q, s defined in the FW representation
leads to an opposite conclusion. In this representation, the definition of s is the same (s = ~Σ/2)
and the position operator q is equal to the FW radius vector x. We can check that Eqs. (12),
(13) are now satisfied. Thus, the counterparts of the classical Hamiltonian, the position vector,
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the orbital angular momentum (OAM), and the spin are the operators HFW , x, x×p, and ~Σ/2
defined in the FW representation. The operators p and J are not changed by the transformation
from the Dirac representation to the FW one and the counterpart of the classical variable K is
the FW operator (11) with q = x.

Evidently, the Hamiltonian (9) commutes with the OAM and spin operators.
The counterparts of the fundamental classical variables can be determined in any

representation. In the Dirac representation, they are defined by the transformation of the
corresponding FW operators [3, 9, 11, 12, 13, 14] which is inverse with respect to the FW one.
The Dirac operators of the position (“mean position” [3]) and the spin (“mean spin angular
momentum” [3]) are equal to [1, 3, 16]

q = X = r − Σ× p
2ε(ε+m)

+
iγ

2ε
− i(γ · p)p

2ε2(ε+m)
, (14)

S =
m

2ε
Σ− iγ × p

2ε
+
p(Σ · p)

2ε(ε+m)
, ε =

√
m2 + p2. (15)

The conventional spin operator corresponding to the classical rest-frame spin commutes with
the OAM operator, the Hamiltonian, and the position and momentum operators in any
representation. The validity of the above-mentioned results on the position, spin, and other
fundamental operators in the Dirac and FW representations has been demonstrated by numerous
methods. The Newton-Wigner (NW) method [2] (see also Ref. [17]) occupies a special place
among them. Newton and Wigner have investigated localized states for elementary systems.
They have shown [2] that the operator (14) (NW position operator) is the only position operator
with commuting components in the Dirac theory which has localized eigenfunctions in the
manifold of wave functions describing positive-energy states. The fundamental conclusion that
the NW position operator q and the radius vector in the FW representation x are identical has
been confirmed in many papers [18, 19, 20, 21, 22, 23, 24, 25, 26].

The equivalence of the classical spin S and the FW mean-spin operator has also been proven
in Refs. [18, 24, 25, 26, 27, 28, 29, 30]. A rather important result has been obtained by
Fradkin and Good [30]. They not only have confirmed Eq. (15) for the spin operator in the
Dirac representation but have demonstrated that the result obtained by Foldy and Wouthuysen
remains valid for a Dirac particle in electric and magnetic fields. The FW mean-spin operator
s defines the rest-frame spin [30] and is, certainly, invariant relative to Lorentz boosts.

Dirac particles in (1+1) dimensions have been considered in Refs. [31, 32]. In the FW
representation, wavepackets described by the (1+1)-dimensional Dirac equation also behave
much more like a classical particle than in the Dirac representation [31, 32].

Thus, the correct forms of conventional operators of the position and spin of a free Dirac
particle are defined by Eqs. (14) and (15) in the Dirac representation. In the FW representation,
these operators are equal to the radius vector x and to the spin operator ~Σ/2.

3. Classical limit for a Dirac fermion in external fields
Contemporary relativistic QM presents important additional arguments in favor of the
conclusions made in the previous section. Relativistic methods giving compact relativistic FW
Hamiltonians for any energy [33, 34, 35, 36, 37, 38, 39, 40] allow one to establish a direct
connection between classical and quantum-mechanical Hamiltonians. To find this connection,
it is convenient to pass to the classical limit of relativistic quantum-mechanical equations.
Importantly, this procedure is very simple in the FW representation. When the conditions of the
Wentzel-Kramers-Brillouin approximation are satisfied, the use of this representation reduces
finding the classical limit to the replacement of operators in the Hamiltonian and quantum-
mechanical equations of motion by the respective classical variables [41]. This property leads
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to the conclusion that the quantum-mechanical counterparts of the classical variables are the
corresponding operators in the FW representation.

It Ref. [30], the equation of spin motion has been derived in the Dirac representation
and its classical limit has been obtained. A particle with an anomalous magnetic moment
(AMM) has been considered and the initial Dirac-Pauli equation has been used. In the classical
limit, Fradkin and Good have obtained the equation [30] coinciding with the famous classical
Thomas-Bargmann-Michel-Telegdi one [42, 43]. The presence of the Thomas term shows that
the both equations are derived for the rest-frame spin S but not for the spin in the lab frame
or in the instantaneously accompanying one. The distinction between the rest frame and the
instantaneously accompanying one can be made only for an accelerated particle.

The interaction of a spin-1/2 particle possessing the AMM µ′ and the electric dipole moment
(EDM) d with electromagnetic fields has been described in Ref. [44]. To compare the position
and spin operators with their classical counterparts, the weak-field approximation can be used
and terms in the relativistic FW Hamiltonian [44] proportional to ~2 and defining contact
interactions can be disregarded. For the uniform fields, the gauge Φ = −E · x, A = (B × x)/2
can be applied. In this case, the general Hamiltonian derived in Ref. [44] takes the form [4]

HFW = β
√
m2 +

(
p− e

2B × x
)2 − eE · x+ Ω · s, Ω = ΩMDM + ΩEDM ,

ΩMDM = e
m

[
−β
(
m
ε + a

)
B + β a

ε(ε+m)(p ·B)p+ 1
ε

(
m
ε+m + a

)
p×E

]
,

ΩEDM = − eη
2m

[
βE − β (p·E)p

ε(ε+m) + p×B
ε

]
, s = Σ

2 , ε =
√
m2 + p2,

(16)

where a = (g − 2)/2, g = 4mc(µ0 + µ′)/(e~), and η = 4mcd/(e~) is the “gyroelectric” factor
corresponding to g. The equation of spin motion is given by

ds

dt
=

1

2

dΣ

dt
=

1

2
(ΩMDM + ΩEDM )×Σ. (17)

The operator ΩMDM is in compliance with the operator of the angular velocity of spin rotation
in the Dirac representation obtained in Ref. [30]. The Hamiltonian (16) is similar to the
corresponding classical Hamiltonian. The operator Ω also corresponds to the classical expression
for the angular velocity of spin rotation (see Refs. [45, 46, 47] and references therein).

A consideration of a Dirac particle in gravitational fields and noninertial frames also shows
that the FW position and spin operators are the quantum-mechanical counterparts of the
corresponding classical variables. This statement has been definitively proven in many papers
devoted to this problem [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

The basic role of the FW representation in nonstationary QM has been proven in Ref.
[59]. The classical time-dependent energy corresponds to the time-dependent expectation
value of the energy operator. The latter is the Hamiltonian in the Schrödinger QM and in
the FW representation (but not in the Dirac representation) [59]. The energy expectation

values are defined by [59] E(t) =
∫

Ψ†FW (r, t)HFW (t)ΨFW (r, t)dV . In the Dirac representation,

E(t) =
∫

Ψ†D(r, t)H̃(t)ΨD(r, t)dV , where H̃(t) is the energy operator which defines the energy

expectation values by averaging. Since H̃(t) does not coincide with the Dirac Hamiltonian and
the difference is not small, the Dirac Hamiltonian does not correspond to the classical one in
the nonstationary case [59].

4. Probabilistic interpretation of a wave function
The difference between the position operator (14) and the radius vector r in the Dirac
representation is very important. It is generally accepted that nonrelativistic Schrödinger QM
admits a probabilistic interpretation of the wave function. The classical center-of-charge position
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R corresponds to the Schrödinger position operator (the radius vector x). In the relativistic
case, R is a counterpart of the FW position operator equal to the radius vector operator x.
This property unambiguously follows from our analysis and has been first established in Ref.
[3]. As a result, just the FW wave function being an expansion of the Schrödinger wave function
on the relativistic case admits the probabilistic interpretation. The wave function in the Dirac
representation cannot have such an interpretation [4, 5] because the Dirac radius vector r is not
a counterpart of the classical position.

The assertion that the quantity %D(r) = Ψ†D(r)ΨD(r) is the probability density of the particle
position [60, 61, 62] is therefore incorrect. In fact, the probability density of the particle position

is equal to %(x) = %FW (x) = Ψ†FW (x)ΨFW (x) [4, 5]. This statement has also been made in
Refs. [11, 58] and has been implicitly used in Refs. [63, 64, 65, 66]. In expressions for %D(r)
and %FW (x), the variables r and x are identical. The quantities %D and %FW can significantly
differ [4, 62, 67, 68]. A general connection between the Dirac and FW wave functions at the
exact FW transformation has been obtained in Ref. [68]. In this case, upper spinors in the two
representations differ only by constant factors and lower FW spinors vanish.

Certainly, ΨFW = UFWΨD and Ψ†FWΨFW = (Ψ†DU
−1
FW )(UFWΨD), where the operator

U−1FW in (Ψ†DU
−1
FW ) acts to the left. However, the self-adjointness of operators manifests at

the integration but cannot be used in any fixed point of a domain of definition. Therefore,

Ψ†FWΨFW = (Ψ†DU
−1
FW )(UFWΨD) 6= Ψ†DΨD

and %FW 6= %D. The probabilistic interpretation of the FW wave function allows one to calculate
expectation values of all position-dependent operators, e.g., the mean squared radius and the
quadrupole moment.

5. Summary
We have fulfilled the analysis of problem of the position and spin in Dirac QM. This analysis
unambiguously shows that the quantum-mechanical counterparts of the classical position and
spin are the position and spin operators in the FW representation (but not in the Dirac one).
A consideration of a Dirac fermion in external fields presents important additional arguments
in favor of this conclusion. The probabilistic interpretation is valid only for FW wave functions.
We can conclude that the basic representation in relativistic QM is the FW one because it
provides for a direct similarity between the relativistic quantum-mechanical operators and the
classical variables.

Acknowledgments
This work was supported by the Belarusian Republican Foundation for Fundamental Research
(Grant No. Φ18D-002), by the National Natural Science Foundation of China (Grants No.
11575254 and No. 11805242), and by the National Key Research and Development Program
of China (No. 2016YFE0130800). A. J. S. also acknowledges hospitality and support by the
Institute of Modern Physics of the Chinese Academy of Sciences.

References
[1] Pryce M H L 1948 The mass-centre in the restricted theory of relativity and its connexion with the quantum

theory of elementary particles Proc. R. Soc. London A 195 62
[2] Newton T D and Wigner E P 1949 Localized States for Elementary Systems Rev. Mod. Phys. 21 400
[3] Foldy L L, Wouthuysen S A 1950 On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit

Phys. Rev. 78 29
[4] Silenko A J, Zhang P, and Zou L 2019 Silenko, Zhang, and Zou Reply Phys. Rev. Lett. 122 159302
[5] Silenko A J, Zhang P, and Zou L Position and spin in relativistic quantum mechanics (to be published)



XVIII Workshop on High Energy Spin Physics "DSPIN-2019"

Journal of Physics: Conference Series 1435 (2020) 012027

IOP Publishing

doi:10.1088/1742-6596/1435/1/012027

7

[6] Berestetskii V B, Lifshitz E M, and Pitayevskii L P 1982 Quantum Electrodynamics 2nd ed (Oxford:
Pergamon)

[7] Dirac P A M 1949 Forms of Relativistic Dynamics Rev. Mod. Phys. 21 392
[8] Currie D G, Jordan T F, and Sudarshan E C G 1963 Relativistic Invariance and Hamiltonian Theories of

Interacting Particles Rev. Mod. Phys. 35 350
[9] Jordan T F and Mukunda N 1963 Lorentz-Covariant Position Operators for Spinning Particles Phys. Rev.

132 1842
[10] Bakamjian B and Thomas L H 1953 Relativistic Particle Dynamics. II Phys. Rev. 92 1300
[11] Foldy L L 1956 Synthesis of Covariant Particle Equations Phys. Rev. 102 568
[12] Foldy L L 1961 Relativistic Particle Systems with Interaction Phys. Rev. 122 275
[13] Bacry H 1988 The position operator revisited Ann. Inst. Henri Poincaré A 49 245
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