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COMPLEX ANALYSIS OF FLUORESCENCE INTENSITY 
FLUCTUATIONS OF MOLECULAR COMPOUNDS

M. M. Yatskou,a* V. V. Skakun,a L. Nederveen-Schippers,b  UDC 535.37:547.96
A. Kortholt,b and V. V. Apanasovichc

A method is proposed for the complex analysis of fl uctuations in the fl uorescence intensity of molecular compounds, 
which allows determining the structural composition of protein oligomers. The idea of the method is to analyze 
the photon counting histograms of experimental measurements using principal component analysis to assess the 
presence of oligomeric compounds, and to perform hierarchical cluster analysis, to determine the data classes 
corresponding to various molecular compounds, followed by selecting cluster medoids to determine the oligomeric 
composition of protein complexes. The effi ciency of the analysis algorithms developed within the framework of 
the proposed method was confi rmed on simulated and experimental photon counting histograms of the measured 
fl uorescence intensity fl uctuations of monomeric and dimeric forms of green-fl uorescent protein (GFP).

Keywords: fl uorescence intensity fl uctuation, photon counting histogram, molecular compounds, protein oligomers, 
data mining, principal component analysis, hierarchical cluster analysis, green-fl uorescent protein (GFP).

Introduction. Fluorescence fl uctuation spectroscopy is widely used to study the diffusion of proteins and their 
interactions in living cells [1–3]. In the course of the experiment, the fl uorescence of molecules bound or freely moving 
in a solution or a cell is recorded in a certain small volume (up to 10–18 m3) formed by an extremely focused laser beam. 
Fluctuations in fl uorescence intensity are primarily due to changes in the number and location of molecules in the recorded 
volume, as well as their interaction and the properties of the medium. The oligomeric composition of a protein compound 
can be determined by analyzing the amplitude of fl uctuations in fl uorescence intensity over time (methods for analyzing the 
distribution of fl uorescence intensity — PCH (photon counting histogram) [4] and FIDA (fl uorescence intensity distribution 
analysis) [5]). In the PCH and FIDA methods, a histogram of the number of photocounts (PC) is plotted at a given recording 
time interval to determine the concentration of a protein freely emitting or labeled with a luminescent dye. The recorded 
fl uorescence intensity of the sample is directly proportional to the number of fl uorescent molecules that form the studied 
molecular complex, which makes it possible to estimate the number of molecules inside the protein complex and the size of 
the complex [6, 7].

To analyze the distribution of the number of photocounts, various mathematical models [4–7] and optimization 
methods are usually used, among which the least squares method with Levenberg–Marquardt optimization [8] is used most 
often, which makes it possible to obtain information on the diffusion and structural properties of the studied protein compounds 
in the fi rst approximation. However, the classical iterative algorithms for data analysis have a number of signifi cant limitations. 
They do not allow one to accurately determine the number and type of molecular oligomers, perform a local rather than global 
search for model parameters, and require signifi cant computational costs for data analysis. An alternative approach to solving 
this problem is the use of mining algorithms and large multidimensional data, the essence of which is the simultaneous global 
analysis of the entire data set as a whole [9–12].

In the present work, we propose a method for the complex analysis of fl uorescence intensity fl uctuations and the 
PCHs based on them using intelligent analysis algorithms in order to determine the oligomeric composition of molecular 
compounds.
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Methodology. The developed method is based on the hypothesis of the separability of a set of multidimensional 
experimental data in a certain information space into several populations representing various molecular oligomeric compounds 
[10]. A small measurement volume is considered, in which molecular compounds of the same type prevail in a series of short 
time intervals. A normal distribution of the measured attributes is assumed for molecular compounds of the same type in the 
allocated space. For example, protein monomers can form a cloud or spherical Gaussian cluster of data in a multidimensional 
space based on measurable attributes. If, however, protein oligomers are added to the monomeric forms of the protein, then 
the cloud is extended or divided into two parts along a certain line connecting the centers of the two populations. In the 
extreme case, two clouds or clusters of these monomers and oligomers are expected. Thus, if groups of data are divided into 
clusters in a multidimensional space of attributes, this confi rms the presence of several forms of protein compounds. Tasks 
of this kind are solved using data mining algorithms such as data dimensionality reduction and cluster analysis [10, 13, 14]. 
Dimensionality reduction algorithms allow switching to a low-dimensional space without losing the essence of information 
[15, 16]. Cluster analysis algorithms make it possible to determine clusters of data specifi ed in varying degrees of similarity, 
the number of which may be associated with aggregates of molecular compounds. Thus, applying principal components 
analysis (PCA) will make it possible to carry out such a rotation, as a result of which the axis of the fi rst principal component 
coincides with the diagonal of the data cloud in multidimensional space [17]. Therefore, the relative fraction of the scatter 
attributable to the fi rst principal component for two types of molecular compounds (an elongated ellipsoid or two spherical 
data clouds in a multidimensional space of attributes is expected) should differ signifi cantly from that for a monomer solution 
(one spherical cloud). It should be noted that the scatter diagram of the fi rst two principal components is informative in the 
sense of defi ning the data structure in two-dimensional space.

The idea behind the method of complex analysis is to calculate the PCH based on the recorded fl uorescence intensities 
(it is possible to use other attributes, for example, the autocorrelation function or factorial cumulants of the distribution of 
the number of photocounts [18]), the use of the PCA to assess the presence of oligomeric compounds and hierarchical 
cluster analysis to determine groups of data, corresponding to various molecular compounds, followed by the isolation of 
cluster medoids, PCHs having the smallest average distances to the remaining objects of the corresponding clusters, to assess 
the parameters of the oligomeric composition of protein complexes. Comprehensive analysis requires the availability of 
experimental data for the reference (monomers) and tested (oligomeric forms) samples. The block diagram of the developed 
method is shown in Fig. 1. Consider the main stages of the method.

Calculation of the PCH. We calculate N of the PCH based on the registered sets of fl uorescence intensities Si, 
i = 1, 2, ..., N, and form objects n1, n2, ..., nN, characterized by attributes X1, X2, ..., XK, — histogram channels representing 
the frequencies of occurrence fj of the number of photons l = ( j – 1), j = 1, 2, ..., K, during a certain (short) time interval Δt. 
As a standard or reference sample, we use the experimental data of the monomer solution, and as a test sample — data for 
the oligomeric forms of the protein.

Data Dimensionality Reduction. The PCA method is applied to datasets of reference and test samples. In the 
PCA, such a linear transformation is defi ned, as a result of which the initial data X1, X2, ..., XK are expressed by a set of 
principal components Z1, Z2, ..., ZK, where the fi rst M principal components (M << K) provide the required fraction γ of the 
variance of groups of attributes. In expanded form, the principal component Zj is expressed through the attribute vectors 
X1, X2, ..., XK:

 Zj = а1j X1 + а2j X2 + ... + аKj XK ,  (1)

where аij are the loading parameters of the principal components. The relative proportion of the scatter (%) attributable to the 
principal component Zj is:
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where D(Zj) is the variance of the component Zj. If the relative proportions of the scatter in the reference and the tested 
samples, which fall on the fi rst principal component Z1, are the same, then to assume that there are no oligomers means to 
stop the algorithm. Otherwise, permit the presence of oligomers and continue the algorithm.

Hierarchical Cluster Analysis of the Reference Sample (HCARS). A hierarchical cluster analysis of the histograms 
of the reference sample n1

R, n2
R, ..., nN

R is performed in the space of initial attributes. In this case, it is necessary to specify 
a method for comparing objects to each other (or a measure of similarity, for example, Euclidean, Minkowski, correlation 
distance). In the developed method to eliminate inter-experimental inhomogeneities associated with separate measurements 
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of the reference and test samples, we propose to use the standardized Euclidean distance (invariant to inhomogeneity in the 
data) [10]:
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where xil and xjl are coordinates of objects ni and nj; 2
lσ  is the variance of the attribute Xl. We determine the maximum 

connection distance (or threshold) d1 on the dendrogram, at which the data are combined into one cluster. The maximum 
connection distance d1 is used as a threshold for fi nding the number of oligomer clusters on the dendrogram for the test data.

Hierarchical Cluster Analysis of the Test Sample (HCATS). A hierarchical cluster analysis of the histograms of the 
tested sample T

1 ,n  T
2 ,n  …, T

Nn  is performed in the space of initial attributes. Using the threshold d1 found in the previous 
step of the algorithm, we select data clusters on the dendrogram. Assume that one cluster belongs to monomers, and the 
other(s) — to oligomeric forms.

Determination of Cluster Medoids. Clusters of monomers and oligomers are displayed on the scatter diagram of 
the fi rst two principal components. Datasets are formed by calculating medoids in each cluster to accurately determine the 
parameters of molecular compounds using PCH and FIDA methods.

Materials and Methods. Consider simulated and experimental data. The simulated data make it possible to 
qualitatively assess the performance of the method and explore the limits of application. The experimental data are used to 
confi rm the fundamental possibility of applying the developed approach to solving real problems of experimental research.

Fig. 1. Block diagram of the method (a) and diagram of the results of its main stages (b) 
for studying fl uctuations of the fl uorescence intensity of molecular compounds using 
data mining algorithms.
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A simulation model of the photocount fl ow with a given distribution of the number of photocounts is presented 
in [19]. The number of photons emitted by the molecule during the observation time T is approximated by the Poisson 
distribution with the intensity
 λf = q〈 〉 TB(r) ,  (4)

where q〈 〉  is the brightness, or the average number of photons emitted by one molecule per unit of time; B(r) is the exposure 
profi le function; r(x, y, z) is the radius vector of the molecule. A three-dimensional Gaussian distribution is used as a function 
of the exposure profi le B(r). The number of molecules in solution in a certain volume obeys the Poisson distribution with the 
parameter
 λm = 0mN V〈 〉  ,  (5)

where mN〈 〉  is the average number of molecules of the test sample per unit volume; V0 is the exposure volume. For each 
molecule, the coordinates of the location in the volume V0 (according to the uniform distribution law) and the number of 
emitted photons (according to the Poisson distribution with the intensity λf) are generated. If a mixture of molecules of 
different types is simulated, then it is necessary to perform photon generation cycles for each type of molecule. The generation 
cycle is repeated iteratively until the accumulation of the number of photons, at which a PCH with a given signal-to-noise 
ratio is formed. To take into account the effect of scattering of data or "blurring" of PCH clusters caused by the infl uence of 
various distortions, such as the presence of unremovable impurities that quench or stimulate fl uorescence of molecules, high 
background noise, fl are and degradation of dyes, we use modeling of model parameters that have a normal distribution with 
a given mathematical expectation and standard deviation σ. Variation of σ makes it possible to control the scatter of data or 
the blur of clusters of PCH curves in a multidimensional space of time samples.

The simulated data is an example of an idealized system of two types of molecules: a monomer (M) and a dimer 
(D) of a certain protein (for example, GFP in solution), separately generated PCHs of which are characterized by the average 
number of molecules in the recording volume and their average brightness MN〈 〉  = 2, Mq〈 〉  = 5⋅104 and DN〈 〉  = 1,

Dq〈 〉  = 105. Observation interval is T = 5⋅10–5 s. Modeling was carried out with σ = 0.02 and 0.2 of the absolute values of 
the parameters MN〈 〉 , Mq〈 〉 , DN〈 〉 , and Dq〈 〉 .

Experimental data — well-known monomeric and dimeric forms of the green fl uorescent protein GFP S65T [20] 
— were provided by the Cell Biochemistry Laboratory of the University of Groningen (Netherlands). Reference samples: 
GFP protein in buffered lysis solution (50 mM Tris, 50 mM NaCl, 5 mM DTT, 5 mM MgCl2, 1% PI mix, 1% Triton X-100); 
separate measurements of the monomer (mGFP) and the stable dimer (diGFP, synthesized by liganding the pDM313 vector 
into pDM334 at the SpeI/XBaI binding sites) of GFP protein in lysates of dictyostelium cells. A test sample is a mixture 
of equal proportions of low concentrations ( 1mN〈 〉 < ) of mGFP and diGFP proteins in dictyostelium cell lysate. The 
measurements of the fi rst sample were performed using a Leika TCS fl uorescence confocal inverted microscope equipped 
with a lens immersed in oil (100×, 1.4NA) and a PicoHarp 300 (PicoQuant) photocount counting and recording system. The 
second and third samples were examined using a scanning inverted confocal microscope LSM 710 (Carl Zeiss) equipped with 
a lens immersed in water (100×, 1.2NA) and a Confocor3 measurement system (Carl Zeiss). The fl uorescence of the samples 
was excited at λ = 488 nm and recorded in the λ = 505–610 nm range.

The simulated data make it possible to investigate the applicability of the developed method in the case of different 
separability of data clusters (varied by the parameter σ) corresponding to protein compounds. The data representing the GFP 
protein in the buffer solution and the cell lysate are experimentally confi rmed and make it possible to check the effi ciency of 
the method using examples of real model data. A mixture of monomeric and dimeric forms of the GFP protein is an example 
of a dataset specifi cally containing various forms of protein aggregation. Assuming that molecules of the same type were 
predominantly found in the observation volume, the PCHs of the experimental samples were constructed over a time interval 
of 5⋅10–2 s or less in one measurement of fl uorescence intensity fl uctuations with a duration of 120 s.

The algorithms were implemented in the Matlab mathematical programming environment using the pdist, linkage, 
cluster, and eig functions, which integrate algorithms for hierarchical cluster analysis and PCA [21]. The hierarchical method 
of cluster analysis was used, and the most common method for calculating the distance (standardized Euclidean) and the 
measure of cluster similarity (Ward) were investigated [13]. The data centering procedure is applied in the PCA. To assess 
the error ε of restoring the PCHs of various types of molecules, the ratio of incorrectly determined PCHs to the total number 
of PCHs (in %) was considered.

Results and Discussion. The results of the analysis of the simulated datasets using the algorithms of the integrated 
approach are shown in Fig. 2 and in Table 1. The analysis of the simulated data was carried out separately for monomers 
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Fig. 2. The results of the analysis of the simulated data using the developed method, based 
on the algorithms of the principal component method (data centering is performed) and 
hierarchical cluster analysis (the standardized Euclidean measure of similarity of objects 
and the Ward connection distance for combining clusters are implemented); modeling 
parameters: MN〈 〉  = 2, Mq〈 〉  = 5⋅104 and DN〈 〉  = 1, Dq〈 〉  = 105; a) monomers, 
σ = 0.02; b) dimers, σ = 0.02; c and d) combined sets of monomers and dimers with 
σ = 0.02 and 0.2; 1) photon counting histograms on a logarithmic scale in the space of 
the initial attributes X1, X2, …, XK; 2) dendrograms of photon counting histograms PCHs, 
d is the measure of cluster similarity; 3) photon counting histograms in the space of 
principal components Z1, Z2, …, ZK, fjZ — linearly transformed frequencies of occurrence 
of the number of photons in the coordinates of principal components; 4) histograms of 
photon counts in space of the fi rst two principal components; the dimensionality of the 
axes of the principal components is represented by the linearly transformed frequencies 
of occurrence of the number of photons in the coordinates of components 1 and 2; shades 
of gray indicate monomeric and dimeric forms of proteins.
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and dimers (Fig. 2a and 2b). The relative proportion of the scatter α1 for the fi rst principal component is 54.6 and 58.8% for 
monomers and dimers, and the data clouds in the space of the principal components have a spherical Gaussian shape. The 
threshold value of the similarity measure, at which molecules form a single cluster d1 = 15, is a criterion for determining 
clusters of different molecular shapes. The connection distance of the resulting clusters into one is <2, which indicates a 
signifi cant similarity of the combined clusters.

The application of the algorithms of the developed method to the analysis of the combined set of simulated data makes 
it possible to accurately determine the samples of monomeric and dimeric forms of proteins (error ε = 0), which is confi rmed 
by the high relative fraction of the scatter falling on the fi rst principal component, α1 >98% (for monomers 54.6%), clear 
separability of data into two clusters in the space of the principal components Z1 and Z2 (Fig. 2c), long connection distances 
of the resulting clusters into one (>50), which confi rms the importance of the difference between clusters. It should be noted 
that the method successfully works under the conditions of the considered example of blurring and partial overlapping of data 
clusters (σ = 0.2, ε = 1.5%; Fig. 2d), which is typical for molecular systems such as a mixture of GFP monomers and dimers 
in a cell lysate. Samples of monomeric and dimeric forms of proteins were determined: the relative proportion of scatter α1 = 
99%, the data form two clusters in the space of the principal components Z1 and Z2 (Fig. 2d), the line length of the unifi cation 
of the resulting clusters into one is >30.

In the course of the study, together with the standardized Euclidean distance, three additional measures for 
calculating the similarity between objects, invariant to data heterogeneity, such as Mahalanobis, correlation and Spearman 
were considered [9, 13, 14]. The best results were obtained for the distances of the standardized Euclidean distance and 
Mahalanobis. However, the Mahalanobis measure requires the computation of the covariance matrix of the input data, which 
can be costly in the case of analyzing large datasets (N → ∞, K → ∞).

The results of the analysis of experimental datasets using the algorithms of the integrated approach are shown in 
Fig. 3 and in Table 1. Study of the data for the GFP protein in a buffer solution allows one to determine the threshold value 
of the similarity measure (d1 = 23), at which the monomers form a single cluster, for use in the subsequent analysis of 
protein compounds (Fig. 3a). The connection distance of the resulting clusters into one (<5), the spherical shape of the data 
cloud in the space of the fi rst two principal components (Fig. 3a) and a low relative proportion of the scatter α1 = 50.5% 
(Table 1), which falls on the fi rst principal component, qualitatively confi rm the fundamental principle of the working 
hypothesis proposed in the implemented method. As a result of the analysis of the combined experimental data of mGFP 
and diGFP proteins in cell lysates, the presence of two forms of proteins corresponding to monomeric and dim eric forms 
(Fig. 3b) was confi rmed: α1 = 99.9%, the data form two clusters in the space of the principal components, the connection 
distance of the resulting clusters into one >40. Analysis of the experimental data of a mixture of mGFP and diGFP proteins 
in the cell lysate revealed the presence of two forms of protein oligomers. The relative proportion of the scatter α1, which 
falls on the fi rst principal component of the tested data, at 93.6% signifi cantly exceeds the value of 50.5% obtained for 
monomeric forms of the GFP protein in a buffer solution. The connection distance at which the fi nal cluster is formed is 40 

TABLE 1. Relative Proportion of Scatter (in %) for the First 10 Principal Components Obtained During Analysis of Simulated 
(SD) and Experimental Datasets Using Principal Component Analysis

Components 1 2 3 4 5 6 7 8 9 10

SD, monomers 54.564 29.263 8.134 3.079 2.318 1.120 0.701 0.471 0.166 0.094

SD, dimers 58.775 25.822 9.317 3.410 1.611 0.704 0.195 0.100 0.045 0.014

SD 1* 98.768 0.823 0.206 0.104 0.048 0.027 0.012 0.007 0.003 0.001

SD 2** 98.998 0.812 0.160 0.017 0.008 0.003 0.002 0.001 0.000 0.002

GFP 50.502 16.554 12.656 9.545 6.331 2.674 1.137 0.343 0.150 0.077

mGFP/diGFP 99.869 0.041 0.025 0.018 0.014 0.012 0.007 0.005 0.004 0.003

mGFP/diGFP 
mixture

93.592 4.161 1.360 0.470 0.175 0.104 0.055 0.028 0.023 0.011

  *Monomers/dimers, σ = 0.02;
**Monomers/dimers, σ = 0.2.
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Fig. 3. Results of the analysis of experimental data sets using the developed method, based 
on the algorithms of the principal component analysis (data centering was performed) 
and hierarchical cluster analysis (the Euclidean measure of similarity of objects and the 
Ward connection distance for combining clusters were implemented): a) GFP protein in 
a buffer solution, b) mGFP and diGFP proteins in cell lysates, c) mixture of mGFP and 
diGFP proteins in cell lysates; designations as in Fig. 2.

(Fig. 3c), the data form two clusters in the space of the principal components, at 18 the connection distance of the resulting 
clusters into one signifi cantly exceeds the value of 5 for GFP monomers. The value ≥23 should be taken as the threshold 
value for determining the number of nonmonomeric form clusters. At a connection distance of 23, two clusters formed 
by the majority of mGFP or diGFP molecules can be distinguished on the dendrogram of the tested data (Fig. 3c). Further 
evaluation of the parameters of protein complexes can be carried out in the course of analysis of medoids of the obtained 
PCH clusters using classical algorithms for analyzing fl uorescence spectroscopy data [5, 6]. Note that the monomers of the 
GFP protein form a spherical cluster of data in the space of the fi rst two principal components (Fig. 3a), while an elongated 
ellipsoidal cloud is observed for a mixture of mGFP or diGFP, formed by clusters of monomers and dimers of compounds 
(Fig. 3c).
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Conclusions. A method for the complex analysis of fl uctuations of the fl uorescence intensity of molecular compounds 
is proposed, which makes it possible to determine the structural composition of protein oligomers and complements the 
classical methods of PCH and FIDA analysis. The effi ciency of the algorithms developed within the framework of the 
proposed method was confi rmed during the analysis of simulated and experimental data representing the fl uorescence of 
monomeric and dimeric forms of the GFP protein. The developed method has the following advantages over the classical 
method for analyzing data from fl uorescence fl uctuation spectroscopy: it improves the accuracy of data analysis, since it uses 
the entire data set, rather than individual histograms; provides computational performance due to the high speed of execution 
of procedures of the method of principal components and cluster analysis in comparison with a separate analysis of the full 
set of histograms; provides the ability to visualize data in the space of the fi rst two principal components, which is much more 
informative than a diagram of a complete set of initial histograms.
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