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Abstract: In this paper, we analyze a multi-server queueing system with heterogeneous customers that
arrive according to a marked Markovian arrival process. Customers of two types differ in priorities
and parameters of phase type distribution of their service time. The queue under consideration
can be used to model the processes of information transmission in telecommunication networks in
which often the flow of information is the superposition of several types of flows with correlation
of inter-arrival times within each flow and cross-correlation. We define the process of information
transmission as the multi-dimensional Markov chain, derive the generator of this chain and compute its
stationary distribution. Expressions for computation of various performance measures of the system,
including the probabilities of loss of customers of different types, are presented. Output flow from
the system is characterized. The presented numerical results confirm the high importance of account
of correlation in the arrival process. The values of important performance measures for the systems
with the correlated arrival process are essentially different from the corresponding values for the
systems with the stationary Poisson arrival process. Measurements in many real world systems
show poor approximation of real flows by such an arrival process. However, this process is still
popular among the telecommunication engineers due to the evident existing gap between the needs of
adequately modeling the real life systems and the current state of the theory of algorithmic methods
of queueing theory.

Keywords: multi-server queueing system; heterogeneous customers; marked Markovian arrival
process; priorities; loss probabilities

1. Introduction

One of the essential sections of the queuing theory is the theory of priority systems.
In such systems, customers of different classes are assigned different categories of importance and
service is carried out in accordance with a priority scheme. More important customers have an
advantage in access to service compared to less important ones. Priority queueing models arise in
many real world applications. In particular, the considered in this paper priority queueing model can
be effectively used in various applications in telecommunication networks, where traffic prioritization
is required, e.g., when using the IEEE 1588 synchronization protocol in cellular networks, DVB-T2
video transmission for synchronizing TV transmitters, in unmanned vehicle systems, in telemedicine
applications, etc., it is necessary to ensure the guaranteed delivering of the highest priority packets.
Similar models are used for voice and data transmission in multiprocessor switching nodes to ensure
priority of voice traffic. The model has applications in other areas, including scheduling computations
in multiprocessor systems, operation of medical institutions, etc. Various priority schemes are used
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in hospital emergency departments during sorting incoming patients according to the severity o,
e.g.f the injury or disease, see, e.g., [1]. In the case of unreliable systems, a priority customer may
be considered as equipment failure. Priority can be also set to maximize a company’s profit or
increase system utilization. For instance, an online store the manager can set a high priority for
customers of big spenders in order to prevent their departure to other online resources, see [2]. In some
telecommunication networks, the priority of a customer is determined by its owner through a Service
Level Agreement (SLA), whereby certain customers have chosen to pay more so as to get high-priority
access to some high-demand resource.

Another set of potential applications of the priority queueing model like considered in our paper
is described in [3] as applications in customer service centers, see [4], airport security checkpoints [5],
hospital emergency rooms [6], cloud computing systems [7] or processor management in certain
computer operating systems [8].

There is an extensive literature on priority queues. An overview of early research works on priority
queueing models can be found in monographs [9–13] and references therein. Mostly of these works
focused on the queueing models with stationary Poisson inputs. However, the area of application of
these models is currently being greatly narrowed, since flows in modern telecommunication networks
do not possess memoryless property of stationary Poisson flow. They are, as a rule, correlated and
heterogeneous. In the case of homogeneous customers, a good mathematical model of such flows
well known in the literature as a Markovian arrival process (MAP), see, e.g., [14–16]. A MAP is the
significant generalization of the stationary Poisson process to the case of correlated bursty traffic.
Queuing systems with a MAP and priorities are discussed in the papers [17–26].

Markovian arrival processes are a suitable class of stochastic processes to represent correlated
traffic in case when all customers are of the same type and only the sequence of inter-arrival times
is of interest. However, systems with correlated flows of heterogeneous customers are also of great
interest to applications. Such flows are well modeled by a marked Markovian arrival process (MMAP),
see [27]. Using of a MMAP allows to represent flows where inter-arrival times are correlated across
customer classes and to achieve models of greater accuracy. However, very few results are known about
priority queue with MMAP. We can only refer to the papers [1,25,26,28]. In [28] MMAP/MAP/1
queue with preemptive priorities is analysed, the moments of queue size is derived. The article [1]
deals with a multi-server queue with a MMAP, preemptive priorities and priority upgrade. For this
system, the authors found a condition for the existence of a stationary regime and the bounds for
the lengths of the queues. The problem of concrete computation of the stationary distribution of the
system states is not touched in that paper. This problem is considered in the recent papers [25,26].
However, those papers deal with single server priority queues. In [25], possibility of increase of the
non-preemptive priority during customer stay in the buffer is analysed. In [26], the discipline of
flexible providing of non-preemptive priorities is under study.

In this paper, we consider a priority MMAP/PH1,2/N/N queueing system with two types
of customers. As it is pointed out above, although analysis of such multi-server systems is very
important for practice, these systems did not get a proper portion of attention of queueing theorists.
e.g., the authors of [3] note that “Despite the large number of systems that can be viewed as instances of
a priority queue with multiple servers, the literature devoted to their theoretical analysis appears rather
moderate as the inherent complexity of these queues hinders their analysis”. It is also mentioned in [3]
that “To the best of our knowledge, few exact results exist in the case of priority queues with multiple
servers even under the simplest assumption of exponentially distributed service times”. In paper [3],
the authors analyze the model similar to the considered in our paper with two essential differences:
(i) Several priority classes are suggested in [3] while we consider the case of two classes, (ii) arrival flow
is assumed be the renewal with phase type distribution of mutually independent inter-arrival times
while we assume that the inter-arrival times can be dependent. One more advantages of our paper
consists of the fact that we provide exact analysis of the model while only the accurate approximate
solution is proposed in [3].
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In this paper, we make some step to provide the analysis of a multi-server priority system.
We assume that customers of one of the types have the preemptive priority. The service times of
customers of both types have phase type distribution (PH) with different parameters. Exact description
of the model is given in Section 2. The most important performance measures of the considered system
are probabilities of loss of customers of different types. To calculate these probabilities, we, first,
described the process of the system operation by a multi-dimensional Markov chain. This description
is given in Section 3. The explicit form of the generator of this Markov is given in that section along
with the short explanation of the form of the blocks of this generator. In Section 4, we briefly note how
to compute stationary distribution of this Markov chain. We do not go into details of computations
and give just an advice how to compute this distribution. It is worth to mention that although the state
space of the Markov chain is finite, in situation when the number of servers N and (or) state spaces of
the underlying processes of arrival and service process are large, computation of this distribution is
far from the trivial. Using the stationary distribution been calculated, in Section 4 we also derive loss
probabilities associated with the system and a number of other characteristics. Numerical results are
provided in Section 5.

2. Model Description

We consider an N -server queueing system without a buffer. Customers of two types arrive to
the system according to a MMAP. The arrivals in the MMAP is directed by the underlying process
νt, t ≥ 0, which is an irreducible continuous time Markov chain with the state space {0, 1, ..., W}. In case
of two types of customers, the MMAP is completely defined by the state space of underlying process
and (W + 1)× (W + 1) matrices Dk, k = 0, 1, 2, or their generating function D(z) = D0 + D1z + D2z2.
The entries of the matrix Dk give the rate of transitions of the process νt, t ≥ 0, which are accompanied
by generating a customer of type k, k = 1, 2. Non-diagonal entries of the matrix D0 describe the
rate of transitions of the process νt, t ≥ 0, which are not accompanied by generating a customer.
Diagonal entries of the matrix D0 are negative and such that the matrix D(1) = D0 + D1 + D2 is an
infinitesimal generator of the chain νt, t ≥ 0. The fundamental rate of arrivals of type-k customers
is calculated as λk = θ Dke, k = 1, 2, where θ is a row vector of the steady state probabilities of the
underlying process νt. The vector θ is the unique solution to the system θD(1) = 0, θe = 1. Here and
in the sequal e is a column vector consisting of 1’s, and 0 is a row vector consisting of 0’s. The total
fundamental rate of arrivals is λ = λ1 + λ2. The variance of inter-arrival times of customers of type k
is calculated as

v(k) =
2θ(−D0 − Dk̄)

−1e
λk

−
(

1
λk

)2

, k̄ 6= k, k, k̄ = 1, 2.

The coefficient of correlation of lengths of two successive inter-arrival times of k-type of customers
is calculated as

ck =

[
θ(D0 + Dk̄)

−1

λk
Dk(D0 + Dk̄)

−1e−
(

1
λk

)2]
(v(k))−1, k̄ 6= k, k, k̄ = 1, 2.

More details about a MMAP can be found in [27].
The service time of the k-type customer has PH type distribution with irreducible representation

(βk, Sk). Here βk is a row vector of size Mk, and Sk is a square matrix of size Mk. Thus, the specified

service time is interpreted as the time during which an underlying Markov chain m(k)
t , t ≥ 0, with state

space {1, . . . , Mk, Mk + 1} will reach the only absorbing state Mk + 1. The transition rates of the
chain m(k)

t , t ≥ 0, within the space of transient states {1, . . . , Mk} are defined by the sub-generator Sk,

and the rates of transitions to the absorbing state are defined by the vector S(k)
0 = −Ske. At the time

the service starts, the state of the process m(k)
t , t ≥ 0, is selected from the state space {1, . . . , Mk}

according to the probability row vector βk. The service rate are calculated as µk = −(βkS−1
k e)−1.

More information about the PH type distribution can be found, e.g., in [17,29].
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We assume that customers of type 1 have the preemptive priority. If a priority customer arrives
to the system when all servers are busy and there are servers occupied with non-priority customers,
then the arriving priority customer crowds out one of these customers (which is lost) and takes his/her
place on the server. If all servers are occupied with priority customers, then an arriving priority
customer is lost. If a non-priority customer arrives at the system when all server are busy, he/she
leaves the system forever.

3. Process of the System States

Let at the time t,

• nt be the number of busy servers , nt = 0, N;
• rt be the number of servers serving type 1 customers, rt = 0, nt;
• νt be the state of the underlying process νt = 0, W;

• m(j,k)
t be the state of underlying process of service on jth server servicing type k customer,

m(j,1)
t = 1, rt, m(j,2)

t = 1, nt − rt. We assume the following dynamical enumeration of the busy
servers. The servers, which provide service to customers of type 2, are located after servers
serving customers of type 1. In addition, we assume that the servers serving customers of the
k-th type are numbered in the order of their occupation, i.e. the server that starts the service is
numbered by the maximum number among all servers engaged in servicing customers of this
type. When some server finishes the service, the corresponding renumbering of servers occurs.

The operation of the queue under consideration is described by the Markov chain

ξt = {nt, rt, νt, m(1,1)
t , m(2,1)

t , . . . , m(rt ,1)
t , m(1,2)

t , m(2,2)
t , . . . , m(nt−rt ,2)

t }

with the state space

Ω = {(n, r, ν, m(j,1), m(l,2)), n = 0, N, r = 0, n, ν = 0, W, m(j,1) = 1, M1, j = 1, r,

m(l,1) = 1, M2, l = 1, n− r}.

It can be calculated that cardinality of the set Ω is equal to K = (W + 1)(1 +
N
∑

n=1

n
∑

l=0
Ml

1Mn−l
2 ).

Introduce the following notation:
en is a column vector of size n, consisting of 1’s;
I (O) is an identity (zero) matrix of appropriate dimension. When needed we will identify the

dimension of this matrix with suffix;
diag {Al , l = 1, L } is a diagonal matrix with diagonal blocks Al ;
diag−{Al , l = 0, L} is a sub-diagonal matrix with the sub-diagonal blocks Al ;
diag+{Al , l = 0, L} is an over-diagonal matrix with the over-diagonal blocks Al ;
⊗ and ⊕ are the symbols of the Kronecker product and sum of matrices, see [30];
A⊗l = A⊗ . . .⊗ A︸ ︷︷ ︸

l

, l ≥ 1, A⊗0 = 1;

A⊕l =
l−1
∑

m=0
Inm ⊗ A⊗ Inl−m−1 , l ≥ 1, for the matrix A having n rows;

W̄ = W + 1;
Let us arrange the states of the chain ξt in the lexicographic order and form the matrices

Qn,n′ , n, n′ = 0, N, consisting of the rates of the chain transition from the states corresponding to
the value n of the first component to the states corresponding to the value n′ of this component.
Then the infinitesimal generator of the chain is defined by the following theorem.
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Theorem 1. The infinitesimal generator of the Markov chain ξt has the following block structure:

Q =



Q0,0 Q0,1 O . . . O O
Q1,0 Q1,1 Q1,2 . . . O O
O Q2,1 Q2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . QN−1,N−1 QN−1,N
O O O . . . QN,N−1 QN,N


,

where
Qn,n = diag{D0 ⊕ S⊕r

1 ⊕ S⊕n−r
2 , r = 0, n}, n = 0, N − 1,

QN,N = diag{(D0 + D2))⊕ S⊕r
1 ⊕ S⊕N−r

2 , r = 0, N − 1, D(1)⊕ S⊕N
1 }

+diag+{D1 ⊗ IMr
1
⊗ eM2 β1 ⊗ IMN−r−1

2
, r = 0, N − 1},

Qn,n−1 =

 diag{IW̄ ⊗ IMr
1
⊗ (S(2)

0 )⊕n−r, r = 0, n− 1}
O

W̄Mn
1×W̄

n−2
∑

r=0
Mr

1 Mn−r−1
2

| IW̄ ⊗ (S(1)
0 )⊕n


+diag−{IW̄ ⊗ (S(1)

0 )⊕r ⊗ IMn−r
2

r = 1, n}, n = 1, N,

Qn,n+1 =

(
diag{D2 ⊗ IMr

1
⊗ IMn−r

2
β2, r = 0, n} | O

W̄
n
∑

r=0
Mr

1 Mn−r
2 ×W̄Mn+1

1

)

+


O

W̄
n−1
∑

r=0
Mr

1 Mn−r
2 ×W̄

n+1
∑

r=0
Mr

1 Mn−r+1
2

O
W̄Mn

1×W̄
n
∑

r=0
Mr

1 Mn−r+1
2

|D1 ⊗ IMn
1
⊗ β1


+

(
diag+{D1 ⊗ IMr

1
⊗ β1 ⊗ IMn−r

2
, r = 0, n− 1} | O

W̄
n
∑

r=0
Mr

1 Mn−r
2 ×W̄Mn+1

1

)
,

n = 1, N − 1.

Proof. The tri-block diagonal form of the generator is easily explained by the evident fact that
the customers arrive to the considered system and depart from this system only one-by-one.
Therefore, all blocks Qn,n′ of the generator are equal to zero matrices if |n − n′| > 1. Before to
immediately prove the expressions for the nonzero blocks of the generator, let us rewrite some
blocks in the less compact but more transparent for explanations form:

QN,N =



D̄⊕ S⊕N
2 D1 ⊗ eM2 β1 ⊗ IMN−1

2
O . . . O

O D̄⊕ S1 ⊕ S⊕N−1
2 D1 ⊗ IM1 ⊗ eM2 β1 ⊗ IMN−2

2
. . . O

O O D̄⊕ S⊕2
1 ⊕ S⊕N−2

2 . . . O
...

...
...

...
...

O O O . . . D1 ⊗ IMN−1
1
⊗ eM2 β1

O O O . . . D(1)⊕ S⊕N
1


,

where D̄ = D0 + D1,
Qn,n−1 =
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

IW̄ ⊗ (S(2)
0 )⊕n O O . . . O

IW̄ ⊗ S(1)
0 ⊗ IMn−1

2
IW̄M1

⊗ (S(2)
0 )⊕n−1 O . . . O

O IW̄ ⊗ (S(1)
0 )⊕2 ⊗ IMn−2

2
IW̄M2

1
⊗ (S(2)

0 )⊕n−2 . . . O
...

...
...

...
...

O O O . . . IW̄Mn−1
1
⊗ S(2)

0

O O O . . . IW̄ ⊗ (S(1)
0 )⊕n


,

n = 1, N,

Qn,n+1 =

D2 ⊗ IMn
2
⊗ β2 D1 ⊗ β1 ⊗ IMn

2
O . . . O

O D2 ⊗ IM1 Mn−1
2
⊗ β2 D1 ⊗ IM1 ⊗ β1 ⊗ IMn−1

2
. . . O

O O D2 ⊗ IM2
1 Mn−2

2
⊗ β2 . . . O

...
...

...
...

...
O O O . . . D1 ⊗ IMn

1
⊗ β1


,

n = 0, N − 1.

Now, to prove the presented forms of the non-zero blocks Qn,n′ of the generator, we analyze
transitions of the Markov chain ξt, t ≥ 0, during the infinitesimal length interval.

These blocks for various values of n and n′ have the following meaning:

• The non-diagonal entries of the blocks Qn,n, n = 0, N, define the transition rates of the chain
ξt, t ≥ 0, which do not lead to the change in the number n of busy servers. The diagonal entries
of the blocks Qn,n define the departure rates of the chain ξt, t ≥ 0, from the corresponding states.
If n < N and the number of priority customers in the service is r, transitions, which do not lead
to the change of the number n of busy servers, occur either when the underlying process of the
MMAP makes an idle transition (i.e., a transition without generation of any customers) or a
phase of service time of one of r priority customers is changed or a phase of service time of one of
n− r non-priority customers is changed. The corresponding transition rates are described by the
matrix D0 ⊕ S⊕r

1 ⊕ S⊕n−r
2 , r = 0, n, n = 0, N − 1. It is worth to mention here that the operations

of the Kronecker product and sum of matrices are very useful for description of transition
rates or transition probabilities of the multi-dimensional random processes with independent
Markovian components.

In the case n = N and r < N the number of busy servers and the number of priority customers in
the service do not change when MMAP makes an idle transition or a non-priority customer arrives
(this customer is lost). The corresponding transition rates are described by the matrix (D0 + D2)⊕
S⊕r

1 ⊕ S⊕N−r
2 . If in this case a priority customer arrives, he/she pushes a non-priority customer from

the service (which is lost) and takes his/her place on the server. In this case the number of priority
customers in the service becomes equal to r + 1. The corresponding transition rates are described by the
matrix D1 ⊗ IMr

1
⊗ eM2 β1 ⊗ IMN−r

2
. If at an arrival time all servers are occupied by priority customers,

i.e., r = N, an arriving customer, regardless of its priority, is lost. The corresponding transition rates
are described by the matrix D(1)⊕ S⊕N

1 .

• The blocks Qn,n−1, n = 1, N, define the transition rates of the chain ξt, t ≥ 0, which lead to a
decrease in the number of busy servers from n to n− 1. If the number of priority customers in
the service is equal to r, such a transition occurs when the service of one of priority customers
ends (the corresponding transition rates of the chain ξt, t ≥ 0, are described by the matrix IW̄ ⊗
(S(1)

0 )⊕r ⊗ IMn−r
2

) or when the service of one of non- priority customers ends (the corresponding

transition rates are described by the matrix IW̄ ⊗ IMr
1
⊗ (S(2)

0 )⊕n−r ).
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• The blocks Qn,n+1, n = 0, N − 1, define the transition rates of the chain ξt, t ≥ 0, which lead
to an increase in the number of busy servers from n to n + 1. Such an increase occurs if a
non-priority customer arrives (the corresponding transition rates are defined by the matrix
D2 ⊗ IMr

1
⊗ IMn−r

2
⊗ β2 or a priority customer arrives (the corresponding transition rates are

defined by the matrix D1 ⊗ IMr
1
⊗ β1 ⊗ IMn−r

2
).

This completes the proof of the theorem.

4. Stationary Distribution. Performance Measures

The Markov chain ξt is irreducible and admits the values in a finite state space.
Therefore, a unique stationary distribution of this chain exists for any values of the system parameters.
Let p be the row vector of the steady state (stationary) probabilities of the states of the chain enumerated
in the lexicographic order. It is well known that the vector p is defined as the unique solution of the
Chapman-Kolmogorov (equilibrium or balance) equations

pQ = 0, pe = 1.

This system can be solved by any of the well-known methods for solving the finite system of
linear algebraic equations. However, in the case of a large dimension of this system, the solution of
this system can be not trivial due to existing restrictions on the computer memory and computation
speed. Therefore, for solution of this system it is advisable to use a special stable algorithm proposed
in [31] and based on the idea of substituting this system of equations by an alternative system derived
via consideration of a sequence of specially constructed so called censored Markov chains.

As the result of computations, we obtain the partitioned vector p = (p0, p1, . . . , pN) where pn is
a row vector of steady state probabilities corresponding to the value n of the first component of the
Markov chain, n = 0, N. Having the vectors pn be calculated, we are able to calculate a number of
stationary performance measures of the queue under consideration.

• The distribution of the number of busy servers at an arbitrary time pn = pne, n = 0, N.

• The average number of busy servers Nbusy =
N
∑

n=1
npn.

• The distribution of the number of servers providing service to priority customers

q(1)r =
N

∑
n=r

pnu(r, n− r), r = 0, N, (1)

where u(r, n− r) =


0T

W̄
r−1
∑

l=0
Ml

1 Mn−l
2

eW̄Mr
1 Mn−r

2

0T

W̄
n
∑

l=r+1
Ml

1 Mn−l
2

 .

To make clear Formula (1), we note that, multiplying the vector pn by the vector u(r, n − r),
we select and sum up the entries of the probability vector pn which correspond to the states with
n busy servers of which r servers are busy with priority customers. Summing the results over n,
we obtain the probability q(1)r .

• The average number of servers providing service to priority customers N(1)
busy =

N
∑

r=1
rq(1)r .

• The distribution of the number of servers providing service to non-priority customers

q(2)m =
N

∑
n=m

pnu(n−m, m), m = 0, N. (2)
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Formula (2) is explained similarly to Formula (1).

• The average number of servers providing service to non-priority customers N(2)
busy =

N
∑

m=1
mq(2)m .

Evidently, Nbusy = N(1)
busy + N(2)

busy and this relation can be used for control of accuracy
of computations.

• The probability that a priority customer will be lost

Ploss,1 =
1

λ1
pN

 O
W̄

N−1
∑

r=0
Mr

1 MN−r
2 ×W̄

IW̄ ⊗ eMN
1

D1e. (3)

The brief explanation of Formula (3) can be done as follows. A priority customer will be lost
if at the moment of his/her arrival all servers are occupied with priority customers. The νth

entry of the vector pN

 O
W̄

N−1
∑

r=0
Mr

1 MN−r
2 ×W̄

IW̄ ⊗ eMN
1

 gives the probability that an arbitrary time all

server are busy with priority customers and the underlying process of the MMAP is in the state
ν, ν = 0, W. Multiplying this vector by D1e

λ1
, we obtain the probability that at the moment of the

priority customer arrival all servers are busy. In this case, the priority customers is lost.
• The probability that a non-priority customer will be lost due to lack of free servers at the moment

of his/her arrival

Pinput
loss,2 =

1
λ2

pN


IW̄ ⊗ eM0

1 MN
2

IW̄ ⊗ eM1
1 MN−1

2
...

IW̄ ⊗ eMN
1 M0

2

D2e. (4)

Formula (4) is explained similarly to Formula (3).
• The probability that an arriving priority customer pushes out a non-priority customer from

the server

Pserv
loss,2 =

1
λ1

pN



IW̄ ⊗ eM0
1 MN

2

IW̄ ⊗ eM1
1 MN−1

2
...

IW̄ ⊗ eMN−1
1 M1

2

IW̄ ⊗ 0MN
1 M0

2


D1e. (5)

The brief explanation of Formula (5) is as follows. The probability Pserv
loss,2 is calculated by

considering the situation at the moment of an arrival of a priority customer which meets all
servers busy and at least one server occupied with a non-priority customer.

The νth entry of the vector pN



IW̄ ⊗ eM0
1 MN

2

IW̄ ⊗ eM1
1 MN−1

2
...

IW̄ ⊗ eMN−1
1 M1

2

IW̄ ⊗ 0MN
1 M0

2


gives the probability that at an arbitrary

time all servers are busy, at least one server is occupied with a non-priority customer and the
underlying process of the MMAP is in the state ν, ν = 0, W. Multiplying this vector by D1e

λ1
,

we obtain the probability that at the moment of a priority customer arrival all servers are busy
and at least one server is occupied with a non-priority customer. In this case the priority customer
pushes out a non-priority customer from the server and takes his/her place.
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• The probability that an arbitrary customer arriving to the system will be lost due to the lack of
free servers

Ploss =
λ1Ploss,1 + λ2Pinput

loss,2

λ
. (6)

The numerator in the right hand side of Formula (6) is the rate of lost customers of two types and
the denominator is the total input rate. The probability Ploss is calculated as the ratio of these rates.

5. Numerical Experiments

In this section, we present the results of numerical experiments that allow us to estimate the effect
of the input rate λ and correlation in the MMAP on the system performance measures.

We consider three MMAPs with the same arrival rates of customers of both types but
different coefficients of correlation. These MMAPs are defined by the matrix D0, D1, D2 as follows.
For each MMAP, to get the matrices D1, D2, we first define a certain matrix D and then split it into
the matrices D1, D2 in the proportion D1 = 0.7D, D2 = 0.3D.

The first MMAP is the superposition of two stationary Poisson flows. In this case the matrices
D0, D are defined as follows:

D0 = −6.124137, D = 6.124137.

For this MMAP, the coefficients of variation of inter-arrival times are c(1)var = c(2)var = 1, and the
coefficients of correlation of inter-arrival times are c1 = c2 = 0.

The second MMAP is defined by the matrices

D0 =

(
−8.281261 0

0 −0.268743

)
, D =

(
8.226134 0.055127
0.149638 0.119104

)
.

For this MMAP, the coefficients of variation of inter-arrival times are c(1)var = 1.693996, c(2)var =

3.417903, and the coefficients of correlation of inter-arrival times are c1 = 0.023423, c2 = 0.187824.
The third MMAP is defined by the matrices

D0 =

(
−29.668039 0.003450

0.006900 −0.952137

)
, D =

(
29.323061 0.341527
0.068995 0.876242

)
.

For this MMAP, the coefficients of variation of inter-arrival times are c(1)var = 2.394561, c(2)var =

3.087863, and the coefficients of correlation of inter-arrival times are c1 = 0.205982, c2 = 0.402641.

The number of servers N = 8.
The service time of a priority customer has Erlang distribution defined by the vector β1 =(

1 0
)

and the matrix S1 =

(
−40 40

0 −40

)
. The service time of a non-priority customer has

Erlang distribution defined by the vector β1 =
(

1 0
)

and the matrix S1 =

(
−10 10

0 −10

)
.

Experiment 1. In the experiment, we investigate the behavior of loss probabilities associated with
the system under consideration. We consider the probabilities Ploss,1, Pinput

loss,2 and Pserv
loss,2 as functions of

the input rate λ and coefficients of correlation c1 and c2.
Figure 1 depicts the dependence of the probability that a priority customer will be lost, Ploss,1,

on the input rate λ and coefficients of correlation c1 and c2.
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Figure 1. The dependence of the probability Ploss,1 on the input rate λ for the marked Markovian
arrival processes (MMAPs) with different coefficients of correlation.

As expected, the value of Ploss,1 increases with increasing λ. Under the same value of λ, this
probability is essentially greater for the larger coefficients of correlation in the MMAP. This effect
is easily explained intuitively. The positive correlation in the arrival process causes fluctuation of
the instantaneous arrival rate. Periods of time when customers arrive frequently (and likely a lot of
customers is lost due to the business of all servers) alternate with the periods when customers arrive
rarely (and likely starvation of the servers occurs).

Figure 2 shows the dependence of the probability of losing non-priority customers due to
occupancy of all servers, Pinput

loss,2 , on the input rate λ and coefficients of correlation c1 and c2.

Figure 2. The dependence of the probability Pinput
loss,2 on the input rate λ for the MMAPs with different

coefficients of correlation.
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Comparing the Figures 1 and 2, we see that the behavior of the curves is similar, but with the
same λ, the probability Pinput

loss,2 is greater than the probability Ploss,1. This is because priority customers
are blocked only when all servers are occupied with priority customers, while non-priority customers
are blocked if all servers are busy with any customers, priority and non-priority.

Figure 3 shows the dependence of the probability that an arriving priority customer will push out
a non-priority customer from the server, Pserv

loss,2, on the input rate λ and coefficients of correlation c1

and c2.

Figure 3. The dependence of the probability Pserv
loss,2 on the input rate λ for the MMAPs with different

coefficients of correlation.

It is seen from the figure that the curves for different MMAPs first increase, and then decrease.
The reason for this behavior of the curves lies in the following. When the input rate is relatively small,
an arriving priority customer often finds at least one free server and it does not have a need to push
out the non-priority customer from the service. As the input rate increases, the system becomes
more crowded, and priority customers are forced to push out a non-priority customer to get service.
Therefore, the probability Pserv

loss,2 increases and reaches maximum at some point λmax. The further
decreasing of this probability is explained by the fact that with λ increasing the most servers become
busy with priority customers. Then the number of non-priority customers in the service decreases
(they are mostly lost upon arrival to the system) and the probability that a priority customer removes a
non-priority customer from the service decreases.

Experiment 2. In this experiment, we investigate the mean number of servers providing service to
the priority and non-priority customers as functions of the input rate λ and coefficients of correlation
c1 and c2.

Figure 4 shows the dependence of the mean number of servers providing service to priority
customers, Nbusy,1, on the input rate λ and coefficients of correlation c1 and c2.
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Figure 4. Dependence of the mean number Nbusy,1 of servers providing service to priority customers
on the input rate λ for the MMAPs with different coefficients of correlation.

It is expectable, that the value of Nbusy,1 increases with λ increasing. More interesting is that,
for the same values of λ, the mean number of servers servicing priority customers decreases with
increasing correlation in the input flow. Such a relation between the values of Nbusy,1 for MMAPs with
different correlations is explained by the mentioned above fact that, with less correlation, customers
arrive more uniformly, which guarantees more uniform occupation of servers and an increase in the
mean number of occupied servers.

Figure 5 depicts the mean number of servers providing service to non-priority customers, Nbusy,2,
as a function of the input rate λ and coefficients of correlation c1 and c2.

Figure 5. Dependence of the mean number Nbusy,2 of servers providing service to non-priority
customers on the input rate λ for the MMAPs with different coefficients of correlation.
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It is seen from the figure, that the curves for different MMAPs first increase, and then decrease.
Such a behavior of the curves can be explained by the mechanism of occupation of servers by
non-priority customers: when the input rate is relatively small, an arriving non-priority customer often
finds at least one free server and occupies it. This customer has a good chance of not being pushed out
of service by a priority customer. Therefore, in a certain area, the mean number of servers servicing
non-priority customers increases with λ increasing. When the input rate increases further, the system
becomes more loaded, and priority customers push out non-priority customers from the servers.
Thus, most servers become busy with priority customers and the mean number of servers servicing
non-priority customer decreases.

6. Output Flow

Quite often, service to customers is provided not by one set of servers but by the series of such sets.
This implies the necessity to consider not a separate queueing system, but a tandem or a network
of queues. In such a case, it is very important to investigate the output flow from each system.
The output flow from the considered queueing system is characterized as follows.

The output flow from the system under consideration is a MMAP. The underlying process of
this MMAP is the Markov chain ξt which describes the operation of the system, i.e.,

ξt = {nt, rt, νt, m(1,1)
t , m(2,1)

t , . . . , m(rt ,1)
t , m(1,2)

t , m(2,2)
t , . . . , m(nt−rt ,2)

t }, t ≥ 0.

Let us enumerate the states of the chain ξt in the lexicographic order. Then the output flow is
defined by the following theorem.

Theorem 2. The output flow from the system under study is a MMAP that is defined by the matrix D(output)
0 ,

D(output)
1 , D(output)

2 , which are calculated by the formulas

D(output)
0 =



Q0,0 Q0,1 O . . . O O
O Q1,1 Q1,2 . . . O O
O O Q2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . QN−1,N−1 QN−1,N
O O O . . . O QN,N


,

where the matrices Qn,n, n = 0, N, Qn,n+1, n = 0, N − 1, are defined in Theorem 1,

D(output)
1 = diag−{S (n)0,1 , n = 1, N},

where

S (n)0,1 =



O O . . . O
IW̄ ⊗ S(1)

0 ⊗ IMn−1
2

O . . . O

O IW̄ ⊗ (S(1)
0 )⊕2 ⊗ IMn−2

2
. . . O

...
...

. . .
...

O O . . . IW̄ ⊗ (S(1)
0 )⊕n


,

D(output)
2 = diag−{S (n)0,2 , n = 1, N},

where
S (n)0,2 =
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

IW̄ ⊗ (S(2)
0 )⊕n O O . . . O

O IW̄M1
⊗ (S(2)

0 )⊕n−1 O . . . O

O O IW̄M2
1
⊗ (S(2)

0 )⊕n−2 . . . O
...

...
...

. . .
...

O O O . . . IW̄Mn−1
1
⊗ S(2)

0

O O O . . . O


.

Proof. The underlying process ξt of the output MMAP makes idle transitions when:
(i) The underlying process νt of the input MMAP makes transitions without a customer arrival or

the phase of service processes m(k)
t , k = 1, 2, changes in the set of transient states. If the number

of busy servers is n, the rates of corresponding transitions are described by the block Qn,n of
the matrix D(output)

0 .
(ii) The process νt makes a transition accompanied by arrival a customer of type 1 or 2. If the

number of busy servers is n, the rates of corresponding transition are described by the block Qn,n+1 of

the matrix D(output)
0 .

The underlying process ξt of the output MMAP makes transitions, which are accompanied by
generation of type k customer, when one of servers servicing type k customer finishes the service,
k = 1, 2. If the number of servers servicing type k customer is n, the rates of corresponding transitions
are described by the block S (n)0,k of the matrix D(output)

k , k = 1, 2.

Corollary 1. The output rate of type-k customers is computed by

µk = pD(output)
k e, k = 1, 2,

where p is the solution of the Chapman-Kolmogorov equations derived above.

The loss probability of type-k customers is computed by

Ploss,k = 1− µk
λk

, k = 1, 2.

The loss probability of type-2 customer loss due pushing out of service is computed by

Ppush
loss,2 = Ploss,2 − Pinput

loss,2 .

7. Conclusions

In this paper, we investigated the multi-server priority queueing system with correlated flow of
two types of customers. Such kind of systems practically is not investigated in the existing literature.
The type of a customer defines its priority and distribution of the required service time. The system is
analysed under quite general assumptions about the arrival and service processes. We calculated the
stationary distribution of system states and the main performance measures including the probability of
losses due to the lack of free servers at an arrival moment and due to forcing out of service a non-priority
customer with priority ones. We conducted numerical experiments that showed the influence of the
mean arrival rate and the effect of correlation in the input flow on the system performance measures.
It is evidently seen that the use of the superposition of the stationary Poisson processes as a model
of arrival flow leads to the significantly redundant optimism in prediction of the values of the main
performance indicators of the system. This is unacceptable in real life applications and justifies the
necessity of the provided mathematical analysis of the system.

The used methodology of analysis (primarily the methodology for constructing the structured
generator of multi-dimensional Markov chain) looks to be suitable for extension to the systems with
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more than two priority classes. The results seem to be also extendable to the systems with finite or
infinite buffers. The results can be used to model modern telecommunication networks where the flows
of information may be essentially heterogeneous with respect to the required bandwidth, importance
for the system and tolerance to the losses and (or) delay and jitter.
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