предусмотрена возможность масштабирования по оси У и вывод по горизонтали всего спектра или любой из его 1/2, 1/4, 1/8 частей. Число каналов накопления может быть 1024, 512, 256 или 128.

Алгоритм работы спектрометра показан на рис. 3. Время выполнения программы накопления и вывода на в. к. у. составляет 35 мкс (см. рис. 3, *a*), а при работе с лазерным калибратором удлиняется на 20 мкс (см. рис. 3, *б*).

Для первичной обработки полученных данных написана программа на языке Бэйсик, оценивающая положения линий, ширину, величину эффекта.

Одним из основных вопросов, который интересовал нас при создании я. г. р-спектрометра, был вопрос о надежности ЭВМ. Длительная непрерывная эксплуатация спектрометра показала его высокую помехоустойчивость и безотказность в работе. Опыт применения мессбауэровского спектрометра на основе микро-ЭВМ «Электроника-60М» продемонстрировал значительные преимущества подобных устройств по сравнению с обычными системами, использующими в качестве накопителей информации многоканальные анализаторы.

ЛИТЕРАТУРА

1. Балашов Е. П., Пузанков Д. В. Микропроцессоры и микропроцессорные системы.— М., 1981.

Поступила в редакцию 13.10.83.

Кафедра ядерной физики и мирного использования атомной энергии

УДК 538.21:537.226.1

М. И. ДАНИЛЬКЕВИЧ, А. В. ЛЕОНТЬЕВ, А. СИССЕ

ИЗМЕНЕНИЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ ПРИ МАГНИТНОМ РАЗБАВЛЕНИИ В БИНАРНОЙ СИСТЕМЕ Li — Zn фЕРРИТОВ

Низкочастотные диэлектрические свойства Li—Zn ферритов изучались в работе [1], CBЧ диэлектрические характеристики промышленных материалов на основе литиевого феррита приведены в [2, 3]. Отмечается практический интерес к литиевым ферритам, в которых ионы Fe³⁺ частично замещены ионами Al³⁺, Cr³⁺, Tl³⁺, Zn²⁺ [2—4]. В бинарной системе $(Li_{0,5}Fe_{0,5})_{4-x}Zn_xFe_2O_4$ при изменении x от 0 до 1 происходит, как известно, переход от двухподрешеточного ферримагнетика к скомпенсированному антиферромагнетику, в котором магнитные катионы занимают одну кристаллографическую подрешетку. Переход сопровождается сильным изменением спонтанного магнитного момента m_0 , температуры Кюри Θ и других магнитных свойств. Поведение при этом электронной и ионной диэлектрической проницаемости ε , т. е. основных составляющих высокочастотной ε , пока не исследовалось.

Для получения экспериментальных данных о величинах электронной и ионной составляющих є при замене магнитоактивных ионов Fe^{3+} диамагнитными Zn^{2+} (магнитное разбавление) нами синтезирована бинарная система ($Li_{0,5}^+Fe_{0,5}^{-+})_{1-x}Zn_x^{2+}Fe_2O_4$ при x=0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0 с недостатком Fe_2O_3 по сравнению со стехиометрией в 1 мол.%. Последнее сделано с целью увеличения удельного электросопротивления образцов. Ферриты синтезированы по обычной керамической технологии из углекислого лития и окислов железа и цинка марки ч. д. а. Предварительный обжиг смеси порошков при 800 °C в течение 4 ч и окончательное спекание образцов при 1200 °C в течение 12 ч производились на воздухе. Образцы имели форму цилиндров диаметром 22 мм и высотой 3—4 мм. Металлографический и рентгеновский анализы показали на образование твердых растворов, имеющих структуру шпинели, во всей бинарной системе.

Намагниченность насыщения M_s определена из кривых намагничивания, построенных по результатам баллистических измерений намагниченности в полях от 10² до 10⁴ Гс. Точки Кюри получены из графиков температурной зависимости магнитной проницаемости. Диэлектрическая проницаемость в диапазоне 10^2 — $3 \cdot 10^8$ Гц измерена мостовым методом и с помощью Q-метров. Спектры коэффициента отражения R(v) в диапазоне 400—5000 см⁻¹ записаны с зеркально полированных образцов на спектрометре UR-20.

Магнитные свойства исследуемой системы представлены на рис. 1. Ход изменения m_0 объясняется моделью Нееля, обеднением тетраэдрической подрешетки магнитоактивными ионами. Объяснение абсолютной величины m_0 может быть дано лишь в предположении о неколлинеарности спинов ионов Fe³⁺ в октаэдрической подрешетке [5]. Изменение Θ в зависимости от состава аналогично данным работы [6] и характеризуется изломом хода $\Theta(x)/\Theta(x=0)$ при $x \approx 0.7$, связанным, по-видимому, с началом перехода при этом к одноподрешеточной магнитной структуре.

Электронная составляющая диэлектрической проницаемости $\varepsilon_{\scriptscriptstyle 9,1} = n^2$ вычислялась из измеренного коэффициента отражения

$$n = \frac{1 + \sqrt{R}}{1 - \sqrt{R}}.$$
 (1)

Это соотношение получаем, пренебрегая поглощением в формуле

$$R = \frac{(n-1)^2 + \varkappa^2}{(n+1)^2 + \varkappa^2}.$$
 (2)

Пренебрежение \varkappa^2 правомерно на участке слабой дисперсии *R*. Для исследуемых Li — Zn ферритов она наблюдается в интервале 2000—4000 см⁻¹. Это связано с тем, что выше 2000 см⁻¹ решеточные колебания, характеризующиеся резонансами при частотах 405—435 см⁻¹ и 580—605 см⁻¹ (рис. 2), в отражении уже не участвуют. Здесь оно обусловлено

Рис. 1. Магнитные моменты при насыщении m_0/μ_B и относительные температуры Кюри $\Theta(x)/\Theta(x=0)$ бинарной системы $(\text{Li}_{0,5}\text{Fe}_{0,5})_{1-x}\text{Zn}_x\text{Fe}_2\text{O}_4$ (\bigcirc — литературные данные [6])

Рис. 2. Спектры коэффициента отражения R ферритов системы $(Li_{0,5}Fe_{0,5})_{1-x}Zn_xFe_2O_4$: I - x=0; 2 - x=0,5; 3 - x=1,0

Рнс. 3. Высокочастотная диэлектрическая проницаемость $\varepsilon_{3\kappa c \pi}$ системы $(Li_{0.5}Fe_{0.5})_{1-x}Zn_xFe_2O_4$ и ее составляющие ε_{non} и $\varepsilon_{9\pi}$. Кружочки у кривой $\varepsilon_{9\pi}$ соответствуют значениям, определенным из коэффициента отражения, крестики — вычисленным по расчетной поляризуемости (см. рис. 4)

Рис. 4. Электронная поляризуемость а одной формульной единицы (молекулы) в системе (Li_{0,5}Fe_{0,5})_{1-x}Zn_xFe₂O₄ и ее составляющие. Светлые кружочки в верхней части рисунка — экспериментальные значения а «молекулы», темные — электронная поляризуемость четырех ионов кислорода, вычисленная по формуле (4). Заштрихованные участки — вычисленные поляризуемости катионов Fe³⁺ и Zn²⁺. нейтральных атомов кислорода а40 и электронов $\alpha = 4(am$ валентных Вклад ионов Li+ не показан b_m^2). ввиду малости

только электронной поляризуемостью ионов. Так как интервал 2000— 4000 см⁻¹ еще далек от собственных частот электронов в ионах, то R(v)здесь почти постоянен и величина х мала.

Зависимость от состава $\varepsilon_{3\pi} = n^2$, определенной по формуле (1), представлена на рис. 3. Уменьшение $\varepsilon_{3\pi}$ при замещении комплекса Li_{0,5}Fe³⁺_{0,5} ионами Zn²⁺ мы связываем с уменьшением при этом коли чества обменных магнитных связей в решетке в результате уменьшения числа магнитоактивных ионов Fe³⁺. Количество косвенных обменных связей Fe³⁺ через ионы кислорода O²⁻ пропорционально числу нескомпенсированных по спину электронов катионов. Вычисление величины электронной поляризуемости а ионов через среднее на один катион количество *m* некомпенсированных спинов по эмпирической формуле [7]

 $\alpha = \alpha_0 + am - bm^2 \tag{3}$

дает удовлетворительное объяснение поведения α и n^2 от состава в исследуемой системе (рис. 4), за исключением скачка α при $x \approx 0,7$. При расчете α по формуле (3) значение электронной поляризуемости ионов кислорода α_0 в чисто диамагнитной шпинели принято $1,5 \cdot 10^{-24}$ см³, прирост поляризуемости на один нескомпенсированный спин $a = 0,5 \cdot 10^{-24}$ см³ и $b = 0,05 \cdot 10^{-24}$ см³, как и в [7]. Скачок в ходе $\alpha(x)$ при $x \approx 0,7$ можно связать с резким уменьшением при этом энергии межподрешеточного обменного взаимодействия (формула (6)), о чем можно судить по резкому уменьшению температуры Кюри, начиная с $x \approx 0,7$ (см. рис. 1).

Величины эффективной поляризуемости ионов кислорода α₀₂- в исследуемых ферритах определяли из формулы Лорентц-Лоренца

$$\frac{n^{2}-1}{n^{2}+2} = \frac{4}{3} \pi \sum_{i} N_{i} \alpha_{i} = \frac{4}{3} \pi [(N\alpha)_{Li} + (N\alpha)_{Fe^{3}+} + (N\alpha)_{Zn^{2}+} + N_{O^{2}-}\alpha_{O^{2}-}],$$
(4)

предполагая вклад катионов Li⁺, Fe³⁺, Zn²⁺ аддитивным и вычисляя его по Кирквуду

$$\alpha = \frac{4}{9Za_0} \left(\sum_{j=1}^{Z-1; (2; 3)} \langle r_j^2 \rangle \right)^2,$$
 (5)

 $\langle r_i^2 \rangle$ иона Li⁺ взяты из таблиц Банд и Тржасковской [8], для Fe³⁺ и Zn²⁺ вычислены нами по атомным волновым функциям, приведенным в работе Даутова и Ионова [9]. Вычисленные α катионов составили: Li⁺ — 0,02·10⁻²⁴ см³, Fe³⁺ — 0,41·10⁻²⁴ см³, Zn²⁺ — 0,49·10⁻²⁴ см³. Количество ионов данного сорта N_i определяли по заданному химическому составу и измеренной постоянной кристаллической решетки.

Зависимость от состава α_{0^2-} , отложенная от уровня суммарной поляризуемости катионов, дана на рис. 4. Видно, что сумма $4\alpha_{0^2-}$ и α катионов совпадает с экспериментальным значением α одной формульной единицы шпинели. Это свидетельствует о корректности подсчета α катионов, α_{0^2-} , приходящаяся на один нескомпенсированный спин, определенная нз зависимости $\alpha_{0^2-}(m)$, равна 0,5 · 10⁻²⁴ см³.

Оценку порядка величины поляризуемости за счет установления одной магнитной обменной связи $a_{m'=1}$ можно сделать, используя соотношение между числом этих связей m' и поляризуемостью $\alpha = a_{m'=1} \cdot m'$ [7] и вычисляя m' через тепловую энергию в точке Кюри $k\Theta$, обменный интеграл j_{ab} между ближайшими магнитными соседями, расположенными в разных подрешетках, и суммарными некомпенсированными спинами S_a и S_b ионов в этих подрешетках по Джилео [10]:

$$a = \frac{3}{2} a_{m'=1} \frac{k\Theta}{|j_{ab}| |S_a| S_b|}.$$
 (6)

Для Li_{0,5}Fe_{2,5}O₄ Θ = 918 K, а валентных электронов на 4 иона равна 5,2·10⁻²⁴ см³, $|S_a| = 5/2$, $|S_b| = 1,5 \cdot 5/2$. I_{ab} , определенный в работе [11], составляет 30 K · k. Тогда $\alpha_{m'=1} = 2\alpha |I_{ab}| |S_a| |S_b| / 12k\Theta = 0,3 \cdot 10^{-24}$ см³.

Ионную составляющую є определяли как разность между величиной є, измеренной при 77 К на частоте 17 МГц, и $\varepsilon_{3\pi} = n^2$. При 77 К на частотах от 10 до 300 МГц є исследуемых ферритов от частоты не зависит и по смыслу представляет собой статическую диэлектрическую проницаемость непроводящего кристалла, так как составляющие поляризации, связанные с квазисвободными носителями заряда, при этом «вымораживаются». Как и $\varepsilon_{3\pi}$, $\varepsilon_{пон}$ уменьшается с ростом степени диамагнитного разбавления (см. рис. 3). Это уменьшение, как показывает вычисление $\varepsilon_{поп}$ по Сигети, обусловлено в основном уменьшением при этом электронной поляризуемости и, как следствие, $\varepsilon_{3\pi}$. Это связано с тем, что входящие в формулу Сигети

$$\varepsilon_{\rm mon} = \left(\frac{n^2 + 2}{3}\right)^2 \frac{\pi (q^*)^2 N_{\rm A}^2 \rho}{\overline{\omega}_0^2 \overline{M}_{\rm K} M_{\rm O2} -}$$
(7)

плотность кристалла ρ , средняя частота собственных колебаний ω_0 тетраэдрически и октаэдрически связанных ионов и средняя масса катионов $M_{\rm K}$ хотя и изменяются в зависимости от состава значительно, но так, что изменение их практически взаимно компенсируется. Тогда изменение $\varepsilon_{\rm поп}$ от x может быть обусловлено только изменением n^2 и эффективного ионного заряда. Положив $q^* = 2,286$ заряда электрона, т. е. предположив чисто ионную связь в исследуемых шпинелях с зарядами ионов, кратными заряду электрона (Li⁺, Zn²⁺, Fe³⁺, O²⁻), получаем, что при $n^2 = 5,153 = {\rm const}$, расчетная $\varepsilon_{\rm пон}$ Li_{0,5}Fe_{2,5}O₄ равна 6,015, а (Li_{0,5}Fe_{0,5})_{0,3}Zn_{0,7}Fe₂O₄ — 5,841. Таким образом, уменьшение $\varepsilon_{\rm пон}$ расчетного при изменении x от 0 до 0,7 и в предположении о постоянстве nи q^* составляет 2,88 %. Реальное уменьшение $\varepsilon_{\rm пон}$ при этом равно 21,5 %. Если же при расчете $\varepsilon_{\rm пон}$ по Сигети применять n^2 экспериментальное, падающее с ростом x, то уменьшение $\varepsilon_{\rm пон}$ при изменении x от 0 до 0,7 составит 23,6 %, что близко к экспериментальному. Естественно, что q^*

не равен тому предельному значению, которое принято при расчете єпон, и меняется в зависимости от состава. Есть основания полагать, что он увеличивается при днамагнитном разбавлении [12], что будет замедлять падение єпон при росте х в исследуемых ферритах, и тогда расчетное уменьшение будет меньше 23,6 %. Однако для обсуждения влияния q* на єщон нужно независимое определение q*.

Полученные результаты позволяют заключить, что основной мотив поведения электронной и ионной составляющих є в бинарной системе литий-цинковых ферритов (падение є при переходе от феррита лития к ферриту цинка) связан с уменьшением числа обменных магнитных связей в результате диамагнитного разбавления.

ЛИТЕРАТУРА

1. Rezleski N., Luca Emil.-Bul. Inst. politehn. Jasi, 1977, Sec. 1, v. 23, № 1-2, р. 109. 2. Левин Б. Е., Третьяков Ю. Д., Летюк Л. М. Физико-химические основы

получения, свойства и применения ферритов. М., 1979. 3. Сафантьевский А. П. Поликристаллические феррошпинели СВЧ. Совре-

менное состояние и перспективы развития: Обзоры по электронной технике. Сер. 6,

Материалы, 1979, вып. 9 (670). 4. Виноградов Е. А., Ирисова Н. А., Леонов Ю. С., Урсуляк Н. Д. — Электронная техника. Сер. 1, электроника СВЧ, 1981, вып. 5 (329), с. 63. 5. Жиляков С. М., Иволга В. В., Мальцев В. И., Найден Е. П. — ФТТ, 1977, т. 19, вып. 10, с. 3108.

6. Patton C. E., Edmondson C. A. and Liu Y. H.-J. Appl. Phys., 1982, v. 53, № 3, Part. II, p. 2431.

Данилькевич М. И. Вести. Белорусского ун-та. Сер. 1, физ., мат. и мех., 1983, № 3, c. 62.

8. Банд И. М., Тржасковская М. Б. Таблицы собственных значений энергий электронов, плотностей вблизи нуля и средних значений в самосогласованных полях атомов и понов, 2 ≤ Z ≤ 52. — Л., 1974.

9. Даутов Л. М., Ионов С. П. Таблицы атомных волновых функций. — Алма-Ата, 1974.

10. Gilleo M. A.— J. Phys. Chem. Solids, 1960, v. 13, № 2, р. 33. 11. Пахомова Н. Л., Козлов В. А.— Изв. вузов, физика, 1982, т. 25, № 11, c. 54

12. Данилькевич М. И., Литвинович Г. В.— ФТТ, 1978, т. 20, № 8, с. 2509. Поступила в редакцию 12.12.83. Кафедра физики твердого тела

УДК 535.37

В. А. ГАЙСЕНОК, Г. Н. СИЦКО, В. И. ЗУБКО

К ВОПРОСУ ОБ ОПРЕДЕЛЕНИИ АБСОЛЮТНОЙ ОРИЕНТАЦИИ ОСЦИЛЛЯТОРОВ

Определение абсолютной ориентации дипольных моментов переходов относительно молекулярных осей является важной задачей спектроскопии многоатомных молекул [1, 2]. Для ее решения чаще всего используют поляризационные измерения характеристик поглощения и люминесценции молекул в ориентированных средах (растянутые пленки, жидкие кристаллы, и т. п.). В настоящее время наиболее разработанными являются методы анализа дихроизма в таких системах [3—5], позволяющие устанавливать ориентацию осциллятора поглощения. При этом необходимо знать не более двух параметров, определяющих ориентацию молекул в пленке [5]. В случае люминесценции активированных одноосных сред число ориентационных параметров, определяющих поляризацию свечения, увеличивается до пяти [6]. Количественный анализ таких измерений оказывается, во-первых, весьма громоздким и, во-вторых, требует для определения ориентационных параметров большего числа дополнительных измерений, чем метод дихроизма поглощения. В связи с этим поляризационные исследования люминесценции ориентированных сред чаще всего используют для качественного анализа [1, 2]. Количественные результаты обычно получают лишь в рамках простейших моделей ориентации молекул и расположения осцилляторов [7, 8]. Попытка