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УДК 517.9 
МЕТОД ОСЛАБЛЕНИЯ ФАЗОВЫХ ОГРАНИЧЕНИЙ  

В НЕГЛАДКИХ ЗАДАЧАХ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

М. П. ДЫМКОВ1), С. М. ДЫМКОВ2)

1)Белорусский государственный экономический университет,  
пр. Партизанский, 26, 220070, г. Минск, Беларусь 

2)Независимый исследователь, г. Минск, Беларусь

Рассматривается задача оптимального управления, описываемая системой обыкновенных дифференциальных 
уравнений при наличии фазовых ограничений. Получены теоретические результаты, касающиеся аппроксимации 
этой задачи последовательностью новых задач оптимального управления с модифицированной правой частью сис-
темы управления и без фазовых ограничений. Обсуждаются также вопросы аппроксимации непрерывных систем 
управления их дискретными версиями. 
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A METHOD FOR RELAXING STATE CONSTRAINTS  
IN NONSMOOTH OPTIMAL CONTROL PROBLEMS
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In this paper, we consider the optimal control problem described by a system of ordinary differential equations in the 
presence of state constraints. Theoretical results are obtained concerning the approximation of this problem by a sequence 
of new optimal control problems with a modified right-hand side of the control system and no state constraints. The issues of 
the approximation of continuous control systems by their discrete versions are also discussed. 

Keywords: optimal control; state constraints; nonsmooth optimisation; approximation.



108

Журнал Белорусского государственного университета. Математика. Информатика. 2022;2:107–114
Journal of the Belarusian State University. Mathematics and Informatics. 2022;2:107–114 

Introduction
This paper is concerned with the optimal control problem described by the ordinary differential equations 

in the presence of the trajectory constraints of min-max kind which often arise during the mathematical mo-
delling of real technical processes. The research of the extremal problems with nonsmooth state restriction 
(min-max constraints are typical for this) has met both essential theoretical and numerical difficulties (see, for 
example, [1; 2]). As far as the theoretical ones are concerned, then the main problem is generated by the fact 
that the state constraints lead to the discontinuity (jump) of the trajectories of the adjoint system. This yields, 
in part, that the formulation of the optimality conditions uses the heavy mathematical tools such as the Borel 
measures, constrained variation functions as Lagrange multiplayers, etc. In addition, the necessary optimality 
conditions in this case can be degenerated for any admissible trajectory. The bibliography on the classic opti-
misation with a state constraint can be found, for example, in survey [3]. The nonsmooth character of the state 
constraints gives additional difficulties for the optimisation of these control models. Naturally, the effective 
numerical methods can not be constructed without a proper theoretical background based on the update non-
smooth optimisation theory (see [4; 5]). Note that there exists a good theory to construct the discrete appro-
ximation for optimisation problems under state constraints (see [6; 7] and the bibliography therein). It is well 
known that the approximation in this case demands a careful construction of the discrete model to guarantee 
the necessary adequacy of the model (the counterexample that demonstrates the noncorrect results of stan-
dard discretisation can be found in [7], for example). The nonsmooth character of the state constraint leads, in 
general, to an increasing number of the corresponding discrete finite-dimensional models of the constrained 
mathe matical programming problem, and hence their solving by readily available software is exorbitantly ex-
pensive. An essential and key question for both theoretical and numerical aspects of approximations is the fol-
lowing: can one and in which sense approximate an optimal solution of the original control system using the 
approximate model? In order to achieve a well-posed discrete approximation ensuring the proper convergence 
of optimal solutions we need to admit, in general, the state perturbations in the discrete model. Another way 
to construct the proper approximation for the optimisation problem under the state constraint is to introduce 
a new (continuous in time) model without any state constraints. Surely, such simplification demands proper 
modification of the model: we make worse (in some sense) the right-hand side of the control system. Some 
aspects of this approach were considered in [8; 9]. 

Notation and model definition
In this section we use the idea of approximation by a continuous in time model for the following optimal 

control problem: 
minimize 
 J u x T

u
( ) = ( )( ) →

⋅( )
ϕ min  (1)

over absolutely continuous trajectories x T Rn: ,0[ ] →  for the differential equation 

 
dx t
dt

f x u t x x u t U( ) = ( ) ( ) = ( ) ∈, , , , ,0 0  almost everywhere t T∈[ ]0,  (2)

under the nonsmooth state constraint of the form 

 x t G t T G x R g xn( ) ∈ ∈[ ] = ∈ ( ) ≤{ }, , , : ,0 0where  (3)

where ϕ : R Rn →  is a continuous function; g R Rn: →  is a continuous and continuous directional differen-
tiable function; x0 is the given n-vector. The derivatives along the direction l ∈ R n we denote as ′ ( )g lx . Let us 
assume that the function l g lx→ ′ ( ) is continuous. We suppose that the function f R R R Rn r r: × × →  satisfies 
the Caratheodory conditions (i. e.  f  is continuous on x u,( ) and measurable on t) such that the initial Cauchy 
problem for differential equation (2) has an unique absolutely continuous solution. 

Definition 1. We say that the function u T Rr: →  is admissible for (2) if it is measurable and satisfies the 
constraint u t U( ) ∈  almost everywhere t ∈ T, where U is a given compact set from R r. We say that the function 
x T Rn: →  is an admissible solution of (2) corresponding to the given admissible control u t( ) if it is absolutely 
continuous with respect to t ∈ T and satisfies (2) for almost all t ∈ T.

Next we suppose that the set of admissible controls U ⋅( ) is nonempty and assume also that the following 
assumption is satisfied.
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Assumption 1. There exist the constants e0 > 0, α < 0 such that for all u ∈ U and almost all t T∈[ ]0,  the 
following inequality is fulfilled:
 ′ ( )( ) ≤ ∀ ≤ ( ) ≤g f x u t x g xx , , .α efor : 0 0  (4)

This condition can be treated as some normality or regularity conditions for the optimisation problem with 
state constraints. In fact, the assumption 1 coordinates the dynamic behaviour of system (2) with state restric-
tion (3) in order to avoid the long time presence in the prohibited zone where the state constraints are disturbed. 
Also note that since g x g l f x u tx( ) ′ ( ) ( ), , , ,  are continuous then the assumption 1 is sufficiently to satisfy for 
∀ ( ) =x g x: 0 with some α < 0. We consider this condition in the form (4) since the given number e0 will be 
used in the estimates below.

Remark 1. The constraint of form (3) includes a wide class of the state restriction. In particular, this con-
straint is often given in the following form:

x t G t T G x R g x xn

i m i( ) ∈ ∈[ ] = ∈ ( ) = ( ) ≤{ }≤ ≤
, , , : max .0 0

1
where ϕ

Usually it is assumed that the functions ϕi x( ) are continuously differentiable. It is known that in this case 
the function g x( ) is continuous, directional differentiable and the derivative along the direction l ∈ R n is given 
by the formula 

′ ( ) =
∂ ( )

∂






( ) = ( ) = ( ){ }
∈ ( )

g l
x
x

l Q x i g x xx i Q x

i
imax , , : .

ϕ
ϕwhere

Approximation by continuous in time optimisation problems
In order to construct the proper approximation for the optimisation problem with the state constraint we 

introduce a new model without any state constraints. Such simplification demands the corresponding modi-
fication of the right-hand side of the control system. This approach for optimisation problems of differential 
inclusions with the smooth state constraint can be proposed by [8]. In this paper, we use this idea for the control 
systems described by the ordinary differential equations in the presence of a nonsmooth state constraint. 

For the optimisation problem, (1) – (3) introduce the following continuous time approximation: for each 
n = 1, 2, … one consider the sequence of the optimal control problems of the form

 J u x T
u

( ) = ( )( ) →
⋅( )

ϕ min  (5)
over the solutions of the equations 

 
dx t
dt

nh x f x u t u t U( ) = − ( )( ) ( ) ( ) ∈1
2

, , , , almost everywhere t T x x∈[ ] ( ) =0 0 0, , ,  (6)

where h x g x( ) = ( ){ }max , .0

Thus, the original optimisation problem (1) – (3) is approximated by a sequence of continuous time optimi-
sation problems without state constraints x t G( ) ∈ . This relaxation is compensated by the modification of the 
right-hand side of the differential equation. Surely, it is interesting how the trajectories of the relaxed problem 
approximate the trajectories of the original system and the state constraint G. The following results are true. 

Theorem 1. Let n ≥ 1

0

2e
 and the assumption 1 be held. Then each trajectory x t( ) of system (6) with the initial 

condition x x g x0 0
1 1( ) = ( ) ≤:  and the  fixed admissible control  function u t( ) satisfies the inequality nh x t2

1( )( ) <  

for ∀ ∈[ ]t T0, .

P r o o f. On the contrary, let there exist a moment t̂ T∈[ ]0,  such that nh x t2
1

^( )( ) ≥ .nh x t2
1

^( )( ) ≥ .  Since the parameter 

nh x2( ) is continuous and nh x nh x2 2

10 0( )( ) = ( ) = , then there is a minimal t T∗ ∈( ]0,  such that nh x t2
1∗( )( ) = , 

and hence for any e > 0 there is such δ > 0 that 1 1
2− ≤ ( )( ) <e nh x t  for ∀ ∈ −[ )∗ ∗t t tδ, . Since n ≥ 1

0

2e
 then 
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0 0≤ ( )( ) ≤g x t e  for ∀ ∈ −[ )∗ ∗t t tδ, . Using the properties (see details in [7; 10], for example) of the function 

h x t( )( ) we can calculate the one-sided derivative d h
dt

+
 for all t t t∈ −[ )∗ ∗δ, :

 d
dt

nh x t ng x t g x tx t

+

( )( )( )  = ( )( ) ′ ( )( )2
2  .  (7)

Using (4), we have 

d
dt

nh x t ng x t nh x t g f x t u t tx t

+

( )( )( )  = ( )( ) − ( )( )( ) ′ ( ) ( )2 2
2 1 , ,(( )( ) ≤ ( )( ) ≤2 0ng x t αe .

The obtained inequality contradicts to the the given condition 

1
2 2= ( )( ) = ( )( ) ∈ −[ ]{ }∗ ∗ ∗nh x t nh x t t t tmax : , .δ

Since we have the function nh x t2 ( )( )  that does not increase on the interval t t∗ ∗−[ ]δ, , and hence nh x t2
1( )( ) ≥  

for ∀ ∈ −[ ]∗ ∗t t tδ,  that is false since t∗ is the minimal time where nh x t2
1∗( )( ) = . The theorem is proved.

Remark 2. Differential equation (6) can be presented in a different way in the general form 

dx t
dt

H x u t u t U( ) = ( ) ( ) ∈, , , , almost everywhere t T x x∈[ ] ( ) =0 0 0, , ,

where the choice of H can be used to improve in the proper sense the necessary properties of the produced ap-
proximation. In general, we may variate the right-hand side of the differential equation (6) in the wide margins. 
In particular, differential equality (6) can be replaced by a differential inclusion that gives the wide margin to 
use this choice to guarantee the necessary approximation properties. As an example, we present the following 
modification. Let us assume that there are constants α < 0, e0 > 0, and the continuous function r x( ) such that 
the following inequality 

′ ( )( ) ≤g r xx α  for ∀ ≤ ( ) ≤x g x: 0
0

e

is held. Now we consider the sequence of the optimal control problem  f  (5), (6) where differential equation (6) is 
replaced by the following 

dx t
dt

nh x f x u t nh x r x( ) = − ( )( ) ( ) + ( ) ( )1
2 2

, , .

We can use the choice of the function r x( ) to improve the properties of the produced differential equation. It is 
shown that the statement of theorem 1 is true in this case. The corresponding changes of the proof after (7) are 
given as follows:

d
dt

h x t ng x t g f x t u t t h x tx t

+

( )( )( )  = ( )( ) ′ ( ) ( )( )( ) − ( )( )2 2
2 1, , (( ) + ( ) ′ ( )( )



( )h x g rx tx t

2
.

Since the functions f x u t x t g lx, , , ,( ) ( ) ′ ( ) are continuous then there is a constant M  > 0 such that 

′ ( ) ( )( )( ) ≤( )g f x t u t t Mx t , ,  for ∀ ∈[ ]t T0, . Hence, choosing e > 0 and δ > 0, we have again 

d
dt

h x t ng x t M t t t
+

∗ ∗( )( )  = ( )( ) + −( )  ≤ ∈ −[ ]2
2 1 0e α e δ, , .

So, the required statement is obtained.
Theorem 2. Let the given assumptions in theorem 1 and the following condition f x u t M, ,( ) ≤  for 

∀ ∈x n
 , ∀ ∈ ∀ ∈[ ]u t Tr

 , 0,  are held with M > 0. Then  for any  fixed control u t( ) the trajectory of system (6) 
with the initial condition x x g x0 0

1 1( ) = ( ) ≤:  satisfies the  following estimation:

ρ αx t G M
n( )( ) ≤ −,
1   for ∀ ∈[ ]t T0, ,

starting  from some n > n0 , where n0 is some integer, ρ x G x y
y G

, min( ) = −
∈

 is the distance between the point x 
and the set G. 
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P r o o f. From theorem 1 it follows that for any t T∈[ ]0,  the inequality nh x t2
1( )( ) <  is held, starting from 

n ≥ 1

0

2e
, and hence g x t n( )( ) ≤ 1

. Thus for any e∗, 0 ≤ e∗ ≤ e0, the inequality g x t n( )( ) ≤ < ∗
1 e  is held for all  

t T∈[ ]0, , starting from some n > n0. If g x t( )( ) ≤ 0 for ∀ ∈[ ]t T0,  then ρ x G,( ) = 0 since x t G( ) ∈  for 

∀ ∈[ ]t T0, . Let the inequality g x t( )( ) ≤ 0 is not fulfilled on the interval 0, T[ ]. We pick an arbitrary value

τ ∈[ ]0, ,T  where 0 < ( )( ) < ∗g x τ e . Let us consider now the following Cauchy problem:

 y f y u t t y x t= ( )( ) ( ) = ( ) ≥, , , , ,0 0τ  (8)

where u t( ) is the control function corresponding to the given trajectory x t( ). This problem has a unique solu-
tion defined on the interval 0, T[ ]. Since 0 0< ( )( ) = ( )( ) < ∗g y g x τ e  and then the function g y( ) is continuous 

for small values 0 < e ≤ e∗ and for almost all t ∈[ ]0, ,e  we have 0 ≤ ( )( ) ≤ ∗g y t e . Then due to the assumption 1 
we have

′ ( ) ( )( )( ) ≤ <( )g f y t u t ty t , , α 0

for all y t( ) such that 0 ≤ ( )( ) ≤ ∗g y t e  for ∀ ∈[ ]t 0, .e  Then calculating the directional derivative of the function 
g y t( )( ) yields 

d
dt

g y t g y t g f y t u t t ty t y t

+

( ) ( )( )( )  = ′ ( )( ) = ′ ( ) ( )( )( ) ≤ < , , ,α 0 ∈∈[ ]0, .e

Therefore the following decomposition 

g y t g y t d
dt

g y o t
o t
t

t( )( ) = ( )( ) + ( )( )  + ( ) ( ) → ↓
+

0 0 0 0, ,at

is fulfilled. Since d
dt

g y
+

( )( )  ≤0 α, where α < 0 is a constant, then for a small e∗ the inequality 

0 0≤ ( )( ) = ( )( ) + + ( ) ≤ + ≤∗ ∗g y t g x t o tτ α e αe

is held for all t ∈[ ] ≤ ∗0, , .e e e  This yields that ∃ < ≤ − ( )( )^ ^τ τ α τ, 0
1 g x  such that g y τ̂( )( ) = 0.g y τ̂( )( ) = 0. This says that 

y Gτ̂( ) ∈ .y Gτ̂( ) ∈ . Hence, integrating system (8) leads to the following estimation:

ρ τ τ τ τx G x y x y
y g y

( )( ) = ( ) − ≤ ( ) − ( ) ≤
( ) ≤

, min
: 0

^ρ τ τ τ τx G x y x y
y g y

( )( ) = ( ) − ≤ ( ) − ( ) ≤
( ) ≤

, min
: 0

^

≤ ( ) − ( ) − ( ) ≤ ≤ − ( )( ) ≤ −∫x x f y u t dt M M g x M
nτ τ τ α τ α

τ

0

, ,
1

^

^

for all t T∈[ ]0,  and n ≥ n0 for some integer n0. The proof is completed.

Discrete approximation
In the introduction of this paper it is noted that the well posed discrete approximation based on finite dif-

ferences can be achieved if some perturbations of the state constraints are admitted in the produced discrete 
models. In this paragraph on the basis of the approach proposed in [6] we construct the well-posed discrete 
model for the control model (1), (2) with nonsmooth state constraint (3). Here we adopt this result for using in 
the numerical solution of the robot pass planning in the presence of state constraints and comparing the latter 
with the solution based on the proposed relaxation approach approximation. 

Let us replace the derivatives in (2) by the Euler finite difference 

x t
h
x t h x t h( ) ≈ +( ) − ( )  →1

0as .

Put N = 1, 2, 3, … . Let T h h T hN N N N 0 2, , , ,… −{ }  be a uniform grid on 0, T[ ] with the stepsize h T
NN  , 

and let 
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 x t h x t h f x t u t t t T NN N N N N N N+( ) = ( ) + ( ) ( )( ) ∈ = …, , , , , ,for 1 2  (9)

be an associated sequence of discrete equations. State constraints (3) are replaced by the following disturbed 
discrete analogous 
 g x t N( )( ) ≤ e .  (10)

We say that the sequence of the problems of (1), (9), (10) is a discrete approximation of problem (1) – (3) if 
hN → 0 and eN → 0 as N → ∞.

Our purpose is to state the condition that guarantees the convergence of the optimal trajectories and optimal 
criteria values for the given discrete approximation at N → ∞.

First of all, we establish that any admissible trajectory of (2) can be uniformly approximated by a sequence 
of discrete trajectories (9). This can be done on the basis of the known results of the optimal control theory. 
Next, using the results obtained in [6] we show that the so-called relaxation stability property is sufficient 
for the value convergence of discrete approximation under the proper perturbation of the state constraints. 
It should be noted that the requirement of the proper state constraints perturbation in the discrete scheme is 
essential for the value convergence (some details and corresponding counterexamples can be found in [6], for 
example).

Let x t t TN( ) ∈, , be a trajectory of discrete equation (9), and for any t T∈[ ]0,  we denoted by t N and tN the 
points of the grid TN  nearest to t from left and right, respectively. Now we consider the following piecewise-linear 
extension of the discrete trajectories (the so-called Euler’s broken line):

 x t x t
h

x t x t t t t TN N
N

N
N N N

N N( ) = ( ) + ( ) − ( )



 −( ) ∈[ ]1

0for , .  (11)

The following result for the pointwise convergence of the extended trajectories is true. 
Lemma 1. Let x t t T( ) ∈[ ], ,0,  be admissible absolutely continuous trajectory of (2). Then for any parti-

tion TN of the interval 0, T[ ] with hN → 0 as N → ∞ there exists a subsequence x t t TN N( ){ } ∈, , of admissible 
solutions of discrete equation (9), piecewise-linear extensions (11) of which converge uniformly to x t( ) on the 
interval 0, .T[ ]

A well-posed approximation ensuring a proper convergence of the optimal discrete trajectories of (1), (9), (10) 
to the optimal solution of the original problem (1) – (3) exploits its following relaxation stability property. Along 
with the optimisation problem (1) – (3) we consider the following relaxation (in the Gamkrelidze form): to mini-
mise cost functional (1) over the set of couples of measurable functions αi it u t i n( ) ( ) = … +{ }, , , , ,1 2 1  and 
the set of absolutely continuous trajectories x t t T( ) ∈[ ], , ,0  which satisfy constraints (3) and the following 
convexified differential equations:

dx t
dt

t f x u t t T xi i
i

n( ) = ( ) ( ) ∈[ ] ( )
=

+

∑ α , , , almost everywhere , ,
1

1

0 0 == x0,

 α αi i
i

n

it t u t U i n( ) ≥ ( ) = ( ) ∈ = … +
=

+

∑0 1 1 2 1

1

1

, , , , , , .  
(12)

Let J J J NC R N
0 0 0

1 2, , , , , ,= …  be the minimal values of cost functional (1) in problems (2), (3), (12) and (9), (10), 
respectively.

It is said that the original optimisation problem (1) – (3) is stable with respect to relaxation if J JC R
0 0= .

This property is connected with the so-called hidden convexity [6] of the nonconvex differential systems 
and it holds for a wide class of the control systems such as linear systems, nonlinear systems in the absence 
of state constraints and some others. Thus, the necessary value convergence is given by the following lemma.

Lemma 2. Let us assume problem (1) – (3) is stable with respect to relaxation. Then there is a sequence of 
perturbations eN → 0 as N → ∞ in (9), (10) such that 

N
N CJ J

→ ∞
=lim .

0 0

The outlined in this section discrete approximation will be used for numerical tests and the results will be 
reported in due course.



113

Краткие сообщения
Short Communications

Conclusion
This paper has used the continuous in time approximation to design numerical methods for solutions 

of the optimisation problems with min-max state constraints. The main advantage of using the proposed 
approximation is that it eliminates the need for solving a potentially very large collection of the constrained 
nonlinear programming problems which usually arise under standard approximation schemes. We present 
the theoretical background to construct the scheme with proper trajectory convergence. It is conjectured that 
our approach accompanied by the modern methods of nonsmooth optimisation (see [4; 7; 10]), computatio-
nal theory for optimal control (see [5]) and some results for the optimisation of special repetitive processes 
(see [11–13]) will be effective for the solution of optimal control problems with state constraints. The pro-
posed approximation will be tested for the robot trajectory planning and the results of numerical tests will 
be reported in due course. 
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