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Introduction

This paper is concerned with the optimal control problem described by the ordinary differential equations
in the presence of the trajectory constraints of min-max kind which often arise during the mathematical mo-
delling of real technical processes. The research of the extremal problems with nonsmooth state restriction
(min-max constraints are typical for this) has met both essential theoretical and numerical difficulties (see, for
example, [1; 2]). As far as the theoretical ones are concerned, then the main problem is generated by the fact
that the state constraints lead to the discontinuity (jump) of the trajectories of the adjoint system. This yields,
in part, that the formulation of the optimality conditions uses the heavy mathematical tools such as the Borel
measures, constrained variation functions as Lagrange multiplayers, etc. In addition, the necessary optimality
conditions in this case can be degenerated for any admissible trajectory. The bibliography on the classic opti-
misation with a state constraint can be found, for example, in survey [3]. The nonsmooth character of the state
constraints gives additional difficulties for the optimisation of these control models. Naturally, the effective
numerical methods can not be constructed without a proper theoretical background based on the update non-
smooth optimisation theory (see [4; 5]). Note that there exists a good theory to construct the discrete appro-
ximation for optimisation problems under state constraints (see [6; 7] and the bibliography therein). It is well
known that the approximation in this case demands a careful construction of the discrete model to guarantee
the necessary adequacy of the model (the counterexample that demonstrates the noncorrect results of stan-
dard discretisation can be found in [7], for example). The nonsmooth character of the state constraint leads, in
general, to an increasing number of the corresponding discrete finite-dimensional models of the constrained
mathematical programming problem, and hence their solving by readily available software is exorbitantly ex-
pensive. An essential and key question for both theoretical and numerical aspects of approximations is the fol-
lowing: can one and in which sense approximate an optimal solution of the original control system using the
approximate model? In order to achieve a well-posed discrete approximation ensuring the proper convergence
of optimal solutions we need to admit, in general, the state perturbations in the discrete model. Another way
to construct the proper approximation for the optimisation problem under the state constraint is to introduce
a new (continuous in time) model without any state constraints. Surely, such simplification demands proper
modification of the model: we make worse (in some sense) the right-hand side of the control system. Some
aspects of this approach were considered in [8; 9].

Notation and model definition

In this section we use the idea of approximation by a continuous in time model for the following optimal
control problem:
minimize

J(u)=0(x(T)) > m(i? (1)
over absolutely continuous trajectories x : [0, T ] — R" for the differential equation
dx(l)
0 = f(x, u, 1), x(0)=x,, u(t) € U, almost everywhere ¢ € [0, T] ()
under the nonsmooth state constraint of the form
x(t) e G, te[0, T], where G:{xeR":g(x)SO}, 3)

where @ : R” — R is a continuous function; g : R” — R is a continuous and continuous directional differen-
tiable function; x, is the given n-vector. The derivatives along the direction / € R" we denote as g, (/). Let us
assume that the function / — g (l ) is continuous. We suppose that the function f: R" x R" X R — R" satisfies
the Caratheodory conditions (i. . f is continuous on (x, u) and measurable on f) such that the initial Cauchy

problem for differential equation (2) has an unique absolutely continuous solution.

Definition 1. We say that the function #: 7 — R" is admissible for (2) if it is measurable and satisfies the
constraint u (t) € U almost everywhere t € T, where U is a given compact set from R". We say that the function
x:T — R" is an admissible solution of (2) corresponding to the given admissible control u(¢) if it is absolutely
continuous with respect to # € T and satisfies (2) for almost all # € T.

Next we suppose that the set of admissible controls U/ () is nonempty and assume also that the following
assumption is satisfied.
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Assumption 1. There exist the constants €, > 0, o. < 0 such that for all # € U and almost all ¢ € [O, T ] the
following inequality is fulfilled:

g;(f(x, u, t))SOL for Vx:0 < g(x)<e,. (4)

This condition can be treated as some normality or regularity conditions for the optimisation problem with
state constraints. In fact, the assumption 1 coordinates the dynamic behaviour of system (2) with state restric-
tion (3) in order to avoid the long time presence in the prohibited zone where the state constraints are disturbed.

Also note that since g(x), g2(/), f(x, u, t) are continuous then the assumption 1 is sufficiently to satisfy for
Vx: g(x) =0 with some o < 0. We consider this condition in the form (4) since the given number g, will be

used in the estimates below.
Remark 1. The constraint of form (3) includes a wide class of the state restriction. In particular, this con-
straint is often given in the following form:

x(t)e G, te|0, T], where G:{xeR" : g(x)= max @,(x)< 0}.

1<i<m

Usually it is assumed that the functions (pi(x) are continuously differentiable. It is known that in this case
the function g(x) is continuous, directional differentiable and the derivative along the direction / € R" is given
by the formula

¢/ (1)= max (a“’—“‘) 1], where 0(x) =17 g(x) =0, (x)].

ieQ(x) ox

Approximation by continuous in time optimisation problems

In order to construct the proper approximation for the optimisation problem with the state constraint we
introduce a new model without any state constraints. Such simplification demands the corresponding modi-
fication of the right-hand side of the control system. This approach for optimisation problems of differential
inclusions with the smooth state constraint can be proposed by [8]. In this paper, we use this idea for the control
systems described by the ordinary differential equations in the presence of a nonsmooth state constraint.

For the optimisation problem, (1)—(3) introduce the following continuous time approximation: for each
n=1,2, ... one consider the sequence of the optimal control problems of the form

J(u)=0(x(T)) > min (5)
over the solutions of the equations
d)iT(tt) = (1 - nhz(x))f(x, u, t), u(l) € U, almost everywhere ¢ € [0, T], x(O) =Xy, (6)

where /(x)=max{0, g(x)}.
Thus, the original optimisation problem (1)—(3) is approximated by a sequence of continuous time optimi-
sation problems without state constraints x(t) € G. This relaxation is compensated by the modification of the

right-hand side of the differential equation. Surely, it is interesting how the trajectories of the relaxed problem
approximate the trajectories of the original system and the state constraint G. The following results are true.

1
Theorem 1. Let n 2 — and the assumption 1 be held. Then each trajectory x(t) of system (6) with the initial

€9
condition x(O) =x:g (x1 ) < Oand the fixed admissible control function u (l) satisfies the inequality nh* (x(t)) <1
Jforvielo, T].
Proof. On the contrary, let there exist a moment 7 [0, T ] such that nhz(x(?)) >1. Since the parameter
nh*(x) is continuous and nh*(x(0))=nh’(x,) =0, then there is a minimal ¢, € (0, T'] such that nk*(x(z,)) =1,

. . 1
and hence for any € > 0 there is such § > 0 that 1 — € < nhz(x(t)) <1 for Vte [t*— 0, t*). Since n 2 —- then
0

109



ZKypnaa Besopycckoro rocyrapcTBeHHOro ynupepcurera. Maremaruka. Madopmaruxa. 2022;2:107-114
Journal of the Belarusian State University. Mathematics and Informatics. 2022;2:107-114

+

0< g(x(t)) <g, for Vi e [t* -9, L) Using the properties (see details in [7; 10], for example) of the function
t

(

X )) we can calculate the one-sided derivative d’h forall t e [t* -9, t*):

L (x(0) = 2m (x(1) g (5(0) @)
Using (4), we have

c;—+[ hz(x(t))] = 2ng(x(t))(1 - nhz(x(t)))g;(t)<f(x(t), u(t), t)) < 2ng(x(t))0c€$ 0.

t

The obtained inequality contradicts to the the given condition
1= nhz(x(t* )) = max{nh2 (x(t)) iteft,— 8, ]}
Since we have the function nh> (x(t)) that does not increase on the interval [z, — 8, £, |, and hence nh* (x(t)) >1

for Vi e [t* -9, t*] that is false since ¢, is the minimal time where nhz(x(t*)) =1. The theorem is proved.
Remark 2. Differential equation (6) can be presented in a different way in the general form

d)iT(tt) = H(x, u, t), u(t) € U, almost everywhere ¢ € [0, T], x(O) =X,

where the choice of H can be used to improve in the proper sense the necessary properties of the produced ap-
proximation. In general, we may variate the right-hand side of the differential equation (6) in the wide margins.
In particular, differential equality (6) can be replaced by a differential inclusion that gives the wide margin to
use this choice to guarantee the necessary approximation properties. As an example, we present the following

modification. Let us assume that there are constants o < 0, €, > 0, and the continuous function r(x) such that
the following inequality

g;(r(x)) <o for Vx:0< g(x)<eg,

is held. Now we consider the sequence of the optimal control problem £ (5), (6) where differential equation (6) is
replaced by the following

dx(t

il(t ) = (1 — nh? (x))f(x, u, t) + nh® (x)r(x).

We can use the choice of the function r(x) to improve the properties of the produced differential equation. It is
shown that the statement of theorem 1 is true in this case. The corresponding changes of the proof after (7) are
given as follows:

d+

E[m(x(t))] = 2ng(x(t))[g;(t)(f(x(t), u(t), t))(l — K (x(t))) + hz(X)g;(,) (rx(l))}.

Since the functions f(x,u, 1), x(¢), g.(/) are continuous then there is a constant M >0 such that
g;(t)(f(x(t), u(t), t)) <M for Vt [0, T]. Hence, choosing € > 0 and 8 > 0, we have again

d+

E[hz(x(t))] =2ng(x(¢))[eM + a(1-€)]<0, te[t,- 8, 1,].

So, the required statement is obtained.
Theorem 2. Let the given assumptions in theorem 1 and the following condition |f(x, u, t)| <M for

VxeR” VueR' Ve [0, T] are held with M > 0. Then for any fixed control u(t) the trajectory of system (6)
with the initial condition x(O) =X :g(xl) < 0 satisfies the following estimation:

p(x(t), G) < —%\/% for Nte [0, T],

starting from some n > n,,, where n is some integer, p(x, G) = min”x —y” is the distance between the point x
and the set G. yeo
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Proof. From theorem 1 it follows that for any 7 € [0, T] the inequality nhz(x(t)) < 1is held, starting from

n %, and hence g(x(t)) < \/% Thus for any €,, 0 <&, < g, the inequality g(x(t)) < \/% <€, is held for all

te [O, T], starting from some n > n,. If g(x(t)) <0 for Vte [0, T] then p(x, G)=O since x(t)e G for
Vte [0, T ] Let the inequality g(x(t)) <0 is not fulfilled on the interval [0, T ] We pick an arbitrary value
1[0, T], where 0 < g(x(1)) < &,. Let us consider now the following Cauchy problem:

y=f(y,u(t), 1), y(0)=x(1), 1 =0, (8)
where u(t) is the control function corresponding to the given trajectory x(t). This problem has a unique solu-
tion defined on the interval [0, T]. Since 0 < g( y(O)) = g(x(‘c)) < &, and then the function g () is continuous

for small values 0 < € < ¢, and for almost all € [0, €], we have 0 < g( y(t)) < g,. Then due to the assumption 1
we have

20760, u(0). 1)) <@ <0
forall y(7) suchthat0 < g (J’ (1 )) <¢, for V¢ €0, €]. Then calculating the directional derivative of the function
g(»(1)) yields

d+ ’ . ,
L a(v()]= g (5(0)= g (7 (4(0). ue). ) s @< 0. € [0, ¢].

Therefore the following decomposition

+

g(y()=g(x(0)) + t%[g(y(O))] +o(1), @ So0atrdo,

+

is fulfilled. Since %[ g( y(O))] < a, where o < 0 is a constant, then for a small €, the inequality
0<g(y(t))=g(x(1))+to+o(r)<e, +ae,<0

is held for all £€[0, €], € < ¢,. This yields that 3T, 0< T < —ég(x(r)) such that g( ( )) 0. This says that
y(’f) € G. Hence, integrating system (8) leads to the following estimation:

p(x(t), 6)= min_ |x(z) ] <[x(e) - »(3)] <

<

2
j y, u, t
0
for all £ [0, T] and n > n,, for some integer n,. The proof is completed.

Discrete approximation

In the introduction of this paper it is noted that the well posed discrete approximation based on finite dif-
ferences can be achieved if some perturbations of the state constraints are admitted in the produced discrete
models. In this paragraph on the basis of the approach proposed in [6] we construct the well-posed discrete
model for the control model (1), (2) with nonsmooth state constraint (3). Here we adopt this result for using in
the numerical solution of the robot pass planning in the presence of state constraints and comparing the latter
with the solution based on the proposed relaxation approach approximation.

Let us replace the derivatives in (2) by the Euler finite difference

~—[xt+h ]ashﬁO

PutN=1,2,3,....Let T), = {0, hy, 2hy, ..., T — hN} be a uniform grid on [0, T] with the stepsize hy = —
and let
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xy(t+hy)=xy(t)+ by f(xy(2), uy(t), ) for te Ty, N=1,2, ..., )

be an associated sequence of discrete equations. State constraints (3) are replaced by the following disturbed
discrete analogous

g(x(r)) < ey (10)

We say that the sequence of the problems of (1), (9), (10) is a discrete approximation of problem (1)—(3) if
hy—0and ey — 0as N — oo,

Our purpose is to state the condition that guarantees the convergence of the optimal trajectories and optimal
criteria values for the given discrete approximation at N — co.

First of all, we establish that any admissible trajectory of (2) can be uniformly approximated by a sequence
of discrete trajectories (9). This can be done on the basis of the known results of the optimal control theory.
Next, using the results obtained in [6] we show that the so-called relaxation stability property is sufficient
for the value convergence of discrete approximation under the proper perturbation of the state constraints.
It should be noted that the requirement of the proper state constraints perturbation in the discrete scheme is
essential for the value convergence (some details and corresponding counterexamples can be found in [6], for
example).

Let x(t), t € Ty, be a trajectory of discrete equation (9), and for any 7 € [0, T ] we denoted by " and ty the

points of the grid 7, nearest to ¢ from left and right, respectively. Now we consider the following piecewise-linear
extension of the discrete trajectories (the so-called Euler’s broken line):

xy (1) =xy (V) + i[xN(tN) - xN(tN)}(t — ") for 1e[0, 7). (11)

The following result for the pointwise convergence of the extended trajectories is true.

Lemma 1. Let x(t), te [O, T ] be admissible absolutely continuous trajectory of (2). Then for any parti-

tion Ty of the interval [0, T] with hy — 0 as N — oo there exists a subsequence {xN (t)} te Ty, of admissible
solutions of discrete equation (9), piecewise-linear extensions (11) of which converge uniformly to x(t) on the
interval [0, T].

A well-posed approximation ensuring a proper convergence of the optimal discrete trajectories of (1), (9), (10)
to the optimal solution of the original problem (1)—(3) exploits its following relaxation stability property. Along
with the optimisation problem (1)—(3) we consider the following relaxation (in the Gamkrelidze form): to mini-

mise cost functional (1) over the set of couples of measurable functions {Oci(t), u (1), i=12,....,n+ 1} and

the set of absolutely continuous trajectories x(t), te [0, T ], which satisfy constraints (3) and the following
convexified differential equations:

dx(t) n+1
= z o (¢) f(x, u;, t), almost everywhere ¢ € [0, T], x(0) = x,,

=1
(12)
o, ()20, Yo (t)=Lu(t)eU,i=1,2,..,n+1.

Let JC0 , J,? , J ]8, N =1, 2, ..., be the minimal values of cost functional (1) in problems (2), (3), (12) and (9), (10),
respectively.

It is said that the original optimisation problem (1)—(3) is stable with respect to relaxation if JC0 = J,g .

This property is connected with the so-called hidden convexity [6] of the nonconvex differential systems
and it holds for a wide class of the control systems such as linear systems, nonlinear systems in the absence
of state constraints and some others. Thus, the necessary value convergence is given by the following lemma.

Lemma 2. Let us assume problem (1)—(3) is stable with respect to relaxation. Then there is a sequence of

perturbations €y — 0 as N = oo in (9), (10) such that lim J](\)/ = Jé’.
N— oo

The outlined in this section discrete approximation will be used for numerical tests and the results will be
reported in due course.
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Conclusion

This paper has used the continuous in time approximation to design numerical methods for solutions
of the optimisation problems with min-max state constraints. The main advantage of using the proposed
approximation is that it eliminates the need for solving a potentially very large collection of the constrained
nonlinear programming problems which usually arise under standard approximation schemes. We present
the theoretical background to construct the scheme with proper trajectory convergence. It is conjectured that
our approach accompanied by the modern methods of nonsmooth optimisation (see [4; 7; 10]), computatio-
nal theory for optimal control (see [5]) and some results for the optimisation of special repetitive processes
(see [11-13]) will be effective for the solution of optimal control problems with state constraints. The pro-
posed approximation will be tested for the robot trajectory planning and the results of numerical tests will
be reported in due course.
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