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3amaun. CTpyKTypa rpylInupOBKYA HAHOCITYTHUKOB Spire Global n3ydeHa Ha OCHOBE aHan3a 06a3bl TaHHBIX OPOUTATHHBIX
napameTpoB, npejacraBieHHbIX B opmare TLE (two-line element set), a Taxoke 0a3 JaHHBIX CITYTHUKOBBIX TPYIIIAPOBOK
U caiita pazpaboryuka. J[iiss mocTpoeHus TPYIIMPOBKH HCIOIB30BAIMCH JIBE CXEMBI 3aIlycKa — 3aIycK ¢ MexyHapos-
HOM KOCMHUYECKOW CTAHIIMU W IOMYTHBIN 3amycK. VcciienoBaHbl CXeMbl pa3BepTHIBAHISI HAHOCITYTHHKOB, OPOUTAIEHBIC
napameTpbl ¥ mapaMeTphl mnosera. [yt MoAenupoBaHus OCTPOCHUS PErHOHAIBHOM TPYIITUPOBKH MPOAHATU3UPOBAHBI
3aITyCKH HAaHOCITYTHUKOB ¢ KocMoapoMoB Taifroans u L[3fomroans Ha OpOUTHI ¢ HaKJIOHEHHEM OKoj0 90°, HamTydImmuM
00pa3oM COOTBETCTBYIOIIIE MPoJeTy Hax MuHckoM (@ = 53°54727” ¢. mr., A =27°33’52” B. 1.). Pazpaboran MeTox npes-
MOJISTHOTO ITPOTHO3UPOBAHMSI OPOUTHI HAHOCITY THHKA NIPH TIOITy THOM 3artycke. JJaHHBIi MeTO/| Ipe/iroaraeT onpeaeieHue
BEKTOpa COCTOSIHUSI HAHOCITYTHUKA B TIEPBBIH JICHB 110JIETa U Ha HAa4aJlo BBIIOJIHEHUS TPYNITUPOBKOI 1eneBoi 3anauun. Ha-
YaJIbHBIE JAaHHBIE, HEOOXOANMBIE JUIsl MOZIEIIMPOBAHNS IIPEATIOKEHHBIM METO/IOM, BKJIIOUAIOT B ce0st BpeMsl 3aITyCKa, KOOp/IU-
HaThl KOCMOJIPOMA, THIT PAKEThI-HOCUTEJIS, HAKIIOHEHHE U BBICOTY OpOUTHI (TIeprof). Takke MpOBOIHUIICS aHATM3 HCTOPHU
3aIyCKOB U JIMHAMUKH JIBUKEHHS CITyTHUKA Ha aHAJIOTHYHBIX OpOUTaX. YCTAHOBIIEHO, YTO JUISl OPraHU3allMU PErHOHAIb-
HOH IPYIIIMPOBKY CO CPEeHEN MPOIOIDKUTEILHOCTHIO TIEPEePhIBA PAANOBUAMMOCTH NOPsKa 36 MUH IIPH MaKCUMaIbHOM
3HAYCHUU 85 MUH OOCTATOYHO IIATH 3aITyCKOB.

Knroueswie cnosa: rpynmnupoBKa HAHOCITYTHUKOB; HOHyTHbII;‘I 3allyCK; IpEeAIOJICTHOC TPOrHO3UPOBAHNUEC Op6I/ITbI.

bnazooapnocms. PaboTa BBITIOIHEHA TIPU MOAIEPKKE TOCYIAPCTBEHHBIX MPOTPaMM Hay4IHBIX UCCIIeI0BaHn Pecmy0-
nuku benapych «BbICOKOTEXHOIIOTHYHBIE TEXHOJIOTHH U 00opynoBaHue» u «L{udpoBbie U KOCMUYECKHE TEXHOJIOTHH,
0e30MacHOCTh YEIIOBEKa, OOIIECTBA U TOCYAapCTBaY.
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The roadmap for constructing a regional nanosatellite constellation using the piggyback launch according to Chinese
provider information has developed. For nanosatellite constellation formation to a specific purpose, it is necessary to ana-
lyse existing constellation operated similar tasks. Therefore, the software module for the Spire Global constellation orbital
construction analysis was developed. The construction of Spire Global nanosatellites constellation based on orbital pa-
rameters database in the two-line element set format, satellite constellation databases and the developer site was analysed.
A launch from the International Space Station and a piggyback launch were used for constellation formation. Nanosatel-
lite deployment schemes, orbital parameters and flight parameters are investigated launches from the Taiyuan and Jiuquan
Satellite Launch Centers with orbit inclination about 90°, that best correspond to the passes over Minsk (¢ = 53°54"27” N,
A =27°33"52" E) are analysed. The method of nanosatellite orbit preflight prediction at a passing launch has been deve-
loped. It involves a finding the nanosatellite state vector in the first flight day and at the time of constellation mission operate
start. The launch time, satellite launch center coordinates, launch vehicle type, orbit inclination and altitude (period) are used
in the method. In addition, the launch history and the satellite motion dynamics analysis on similar orbits is carried out.
It was found that five launches are enough to organise a regional nanosatellite constellation with average radio visibility
interruption time of at least 36 min with a maximum value of 85 min.

Keywords: nanosatellite constellation; piggyback launch; pre-flight orbit prediction.
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Introduction

In Belarusian State University, the development of Earth remote sensing onboard satellite equipment has
been carried out for 40 years at the aerospace research department of A. N. Sevchenko Institute of Applied
Physical Problems [1] and at the department of physical optics [2]. In 2010, the radio physics and computer
technology faculty started specialists preparation for aerospace sector. A university nanosatellite and a ground-
based control system have been developed for the quality students training [3].

Over the past decade, there has been a worldwide trend towards the nanosatellite constellations formation
for various purposes [4; 5]. As of early 2022, 52 constellations were still deploying. Of these, 27 — communi-
cation constellations (radio and optical range, data transmission, Internet), 13 — remote sensing, 5 — weather
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phenomena research, 3 — mobile objects automatic tracking (aircrafts and ships) and 4 — scientific research
constellations [6; 7]. More than 50 nanosatellite constellations are planned for the future [8], including new
task specifications such as asteroid observation, solar and ionospheric research. The number of satellites in the
constellation ranges from tens to thousands.

For satellite constellations deploying are used a launch from the International Space Station and a piggyback
launch (most often in sun-synchronous orbit) as secondary payload integration [9; 10]. The information enables
the satellite developers to select a suitable launch for the mission is provided by a launch service in advance. This
information includes the launch time, orbit inclination and altitude, and the launch vehicle type and characteristics.

Various constellation deployment methods are used. For single-plane nanosatellite constellation configu-
rations the necessary in-plane separation can be achieved by either the launch vehicle upper-stage, carrier
vehicles [11], differential separation spring deployment, differential drag [12], or nanosatellite propulsion sys-
tems [13]. For nanosatellite constellation with multiple orbital planes the requirement for out-of-plane ma-
noeuvring can be costly. The paper [12] proposes a method for deploying a nanosatellite constellation to seve-
ral orbital planes from a single launch vehicle. The method is based on commercially available deorbit devices
that are used to lower the initial orbit, and that are discarded after the correct altitude has been reached. Calcu-
lations and simulations presented in the paper are shown, that with a launch of 6 satellites to an initial 800 km
sun-synchronous orbit, orbital plane separation of approximately 30° between each satellite can be achieved
within five years, with each satellite in its own final 600 km orbital plane [12]. Due to the long timescales,
this method is best suited for long lifetime nanosatellite missions. In the work [14] constellation deployment
method using plasma drag is proposed. Analytical analysis and numerical simulation results both agree that the
constellation deployment time is proportional to the inverse square root of magnetic moment, the square root
of desired phase angle and the square root of satellite mass [14]. Allowable constellation deployment time one
year and more, this method is the best suited for long lifetime nanosatellite missions.

When creating a nanosatellite constellation to collecting data from mobile facilities and service for a par-
ticular region with a pass frequency 15-20 times a day does not require many spacecrafts in different planes.
To meet the demand of information users requests, 5—6 nanosatellite is enough, when the period of repeated
observations does not exceed 1-2 h [15]. In this paper to minimise the deployment time and cost of the nano-
satellite constellation formation for collecting data from mobile facilities and service over the Minsk territory,
a deployment scheme by launching nanosatellites from different spaceports is proposed. It is assumed that
the nanosatellites do not have a propulsion system that allowed them to be separated according to the latitude
argument in one orbital plane, which they would have acquired with a joint piggyback launch. Therefore, with
the help of single launch vehicle, it is advisable to launch one nanosatellite of the constellation. The nanosatellite
constellation is deployed in an orbital inclinations close to 90°, to provide extensive communication coverage
over Minsk region. The key parameters for nanosatellite constellation are average radio visibility interruption
time of at least 40 min with a 90 min maximum value. For example, this allows to control the aircraft traffic
and unmanned aerial vehicles over a certain region [16].

For nanosatellite constellation formation to a specific purpose, it is necessary to analyse existing constel-
lation operated similar tasks. It is necessary to assess the methods of constellation formation, to analyse the
orbital parameters and to carry out numerical simulation of its operation dynamics. For analyse and numerical
simulation, the Spire Global constellation has chosen.

Spire Global constellation analyses

Spire Global constellation is engaged in weather phenomena research, tasks of moving objects automatic
tracking — planes and ships [16; 17]. The Spire Lemur and Minas nanosatellites are Cubesat 3U standard with
a mass of 4.6 kg and two years design life [16]. They have the following onboard payload: STRATOS navi-
gational receiver for remote atmosphere and ionosphere sensing, and accurate orbit determination; SENSE re-
ceiver for ship signals; ADS-B receiver (automatic dependent surveillance-broadcasting) for aircraft tracking;
various weather sensors [16; 17]. Using the GNSS (Global Navigation Satellite System) receiver STRATOS
(vertical sensing resolution of the 100 m order; longitudinal 200 km; transverse 1 km) [17] and various weather
sensors for remote atmosphere and ionosphere sensing, the considered constellation provides the following
user services: global weather forecast at different altitudes; produces 50 weather variables; provides various
time intervals for weather forecast (short-term — forecast every hour, average — forecast every 6 h, long-term —
forecast of the last 3 days or more) [16]. Based on the Automatic Identification System data processing, the
receiver SENSE collects data and tracks the ships. The ADS-B receiver data provides information on aircraft
tracking.

This work analyses the construction of Spire Global nanosatellites constellation based on orbital para-
meters database in the two-line element set (TLE) format [18], satellite constellation [8] databases and the
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developer site [16]. A launch from the International Space Station and a piggyback launch were used for con-
stellation formation. During the period 2016-2022, 34 nanosatellites were launched from the International
Space Station (2, 4 or 8 satellites each). As of March 2022, only 14 nanosatellites are active (2 satellites are
expected to deorbit shortly). The orbital parameters of these Spire Global constellation satellites are as follows:
inclination 51.6°, eccentricity less than 0.001, orbital altitude from 200 to 470 km. Between 2015 and 2022,
105 nanosatellites were successfully orbiting by 20 piggyback launches (with 2, 4, 6 or 8 satellites each). There
are currently 101 nanosatellites in orbit. The orbital parameters of these Spire Global constellation satellites
are as follows: inclination 36.9° (8 satellites), 49.9° (1 satellite), 82.9° (2 satellites), 85.0° (2 satellites) and
from 97.3° to 97.7° (88 satellites); eccentricity less than 0.001; altitude range is from 500 to 650 km.

A software for the Spire Global constellation orbital construction analysis was developed based on the
simplified general perturbations model [19; 20] and initial TLE data [21]. It includes estimates for the constel-
lation orbits formation, the modelling of nanosatellites Lemur constellation dynamics and the pass parameters
prediction over the Belarusian State University ground receiving station. The orbital parameters of the 115 —
satellites constellation on 14 March 2022 were modelling. It was determined that satellites altitude ranged
between 200 and 650 km at the time of the simulation. Besides, had defined the satellites orbital eccentricities
are close to zero that would allow the circular motion model use for further modelling. Satellites are at diffe-
rent orbital inclinations. The 88 satellites are in sun-synchronous orbit, with inclinations ranging from 97.3°
to 97.7°. The orbital planes are almost evenly distributed along the ascending node longitude, allowing global
monitoring of all longitudes from 0 to 360°. However, as shown in fig. 1, Spire Global satellites weren’t ob-
served with ascending node longitudes from 162.9° to 179.6° and from 230.1° to 256.6° at the start time of
simulation on 14 March 2022.
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Fig. 1. The dependence of the latitude argument on the ascending
node longitude for the Spire Global nanosatellite constellation

The highest number of satellites (50 %) was in the range ascending node longitude of 118.5° to 162.9°.
In the plane of one orbit, the most uniform satellites distribution over the argument latitude was observed for
the ascending node longitudes: 41.7°; 118.5°; 133.5°-157.4°; 203.4°; 295.8°. This allows global monitoring at
all latitudes of —90° to +90° for ascending node longitude data at the time of modelling.

Pre-launch calculation orbital parameters method

In order to minimise the cost of the nanosatellite constellation formation for the purpose to solve the task of
regional monitoring over the Minsk territory, a deployment scheme by launching nanosatellites from different
spaceports is proposed. The mission target task begins a week after the constellation last nanosatellite launch.
From the point the Belarusian State University has a positive experience with Chinese partners the information
on the 2021 launches was chosen to analyse from the Chinese spaceports for the period June — November. Taking
into account the Minsk geographical coordinates (¢ = 53°54’27” N, A = 27°33"52” E) 15 launches with an
orbital inclination close to 90° were chosen from the following two launch sites: Jiuquan (¢ = 40°57°29” N,
A =100°17"28" E), Taiyuan (¢ = 38°50"56.71” N, A = 111°36"50.59” E).

In the paper [22] the satellite state vector determination method based on the perturbed circular motion
for the piggyback launch into the solar-synchronous near-circular orbit has been developed. According to this
method, the orbital period and satellite ascending node longitude are initially estimated from known launch
time, orbital inclination and active launch path. Then, based on the launch history analysis results from the
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target spaceport by similar launch vehicles, using the initial TLE files, the latitude argument at the satellite
launched epoch time was numerically predicted. Besides, based on the perturbed circular motion, the nano-
satellite pass parameters (elevation, azimuth) and the Doppler frequency shift or radio signals necessary for
successful radio communication over the ground receiving station are calculated.

In order to calculate the state vector of the constellation nanosatellites, a pre-launch orbit prediction method
was developed. It involves two stages: finding the nanosatellite state vector in the first flight day and at the time
of constellation mission operate start. The method flowchart is presented by fig. 2. The following input data is
used in the method: the launch time, target spaceport coordinates, launch vehicles type, orbit inclination and
altitude (period), as well as the history and motion dynamics analysis results of previous launches from the
target spaceport to orbit with similar altitudes and inclinations.

toa i’
Ty, T, Estimation of satellite Predicting the position
Launch ™| Estimation of the modulus | Zo- &> 1 longitude A, Poew?) | radius-vector Ry
provider data of the position radius-vector R 7| latitude @, for time |y @, ) for time points
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Fig. 2. Nanosatellite state vector calculation flowchart for constellation flight simulation

In the first stage, the nanosatellite state vector in the first flight day is calculated based on the minimum
launch data (inclination i, altitude H,, or period 7;, launch time #,, target spaceport coordinates, launch vehic-
les type), and the launch history analysis results from the target spaceport by similar launch vehicles. In the
process of satellite launch, the spent stages or boosters of the first and second launch vehicle stages should
fall into specially designated areas for this purpose, where they can not cause any harm [23]. Therefore, it is
assumed that the nanosatellite longitude A ., and latitude @,.,, from subsequent launches by similar vehicles at
time 7, + T, + At should coincide with the longitude A, and latitude @, of previous launches:

xnew(tgew + TV At) = xold(zg‘d +109+ At),

(pnew(t(’)‘ew + 1" + At) = q>01d(zg‘d + 1004 At),

old _new

old  new
> tO a %

where ¢ — previous and subsequent launch time; T
trajectory time interval; A7 — several minutes time interval.
To find the nanosatellite radius-vector and velocity vector at the epoch time 7,, the previous launches by
similar vehicles are analysed, besides, nanosatellite longitude A and latitude ¢ at three time moments #, =7, — T,
t,=t, t; =t,+ 7 in the first flight day are estimated. Then, based on the orbital period 7, the position radius-
vector modulus R is calculated [8; 19]: -
EA
2n

where |1 is the gravitational parameter of the Earth and is equal 398 600.5 km®/c’.
Three nanosatellite radius-vectors RECEF(X ECEF> YECEF> ZECEF) in the Earth-centered, Earth-fixed (ECEF)
coordinate system at times ¢, t,, t; (Earth’s oblateness has ignored) are figured out as follows [19]:

previous and subsequent active launch

Zecpr = Rsin@; Xpepr = Rcos@cos; Yicpr = Rcos@sinA,
where Xpcpps Yecrrs Zrcpr are coordinates of radius-vector Ryqgr in the ECEF coordinate system.
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Since the greatest difference between geodesic latitude and geocentric latitude is reached at 45° latitude and
is 0.1921°=11.315", geocentric latitude for calculations has used.

Transforming radius-vector from the Earth-fixed to the geocentric inertial coordinate system at the time
moment #, (i, = 1, 2, 3). The nanosatellite radius-vector in Earth-centered inertial (ECI) coordinate system [19]:

Xecr Xecer
Rier =| Year |= R (_GGST )RECEF =Ry (_eGST) Yecer |»
Zear Zgcrr
cos(—OGST) sin(—GGST) 0
where R, (—GGST) = —sin(—GGST) cos(—eGST) 0 | is rotate matrix; Xpcy, Ypep Zgcp are coordinates of radius-
0 0 1

vector Ry in the ECI coordinate system; 047 is the Greenwich Sidereal Time (GST).
The Gibbs or Herrick — Gibbs method (for small time intervals values between the time moments ¢,) is used

to find the nanosatellite velocity vector V(¢,) from three position vectors Riq(#) [19]. Thus, the nanosat-

telite state vector in the first flight day at the epoch time 7, = ¢, is fully defined.

In the second stage, based on the nanosatellite state vector in the first flight day, the orbit prediction at the time
constellation mission operate start is conducted. As known [19; 24], for a low-orbiting spacecraft, the main
perturbing forces are the non-centrality Earth gravity field (mainly taking into account the second zone har-
monic, that characterises the Earth polar compression) and the atmosphere resistance force.

Since the prediction time interval can reach several months to estimate the nanosatellite state vector, a sim-
plified perturbed motion takes into account only secular orbital parameter perturbations are used. The secular
average motion perturbations (average motion derivative) based on nanosatellite motion dynamics analysis of
previous launches to similar altitudes and inclinations are estimated.

Then, in the simplified perturbed nanosatellite motion model (taking into account the secular perturbations
from the second zone harmonic and from the mean motion derivative), a nanosatellite state vector assessment
at the constellation flight simulation beginning time are made (a week after the last constellation nanosatellite
launch).

The input data in the simplified perturbed motion model for nanosatellites orbital parameters calculating
at the constellation mission operate start time ¢, expressed in the Julian date format, are: Az — the difference
between the constellation mission operate start time and the epoch elements time ¢,, expressed in the Julian
date format (At = ¢ —¢,); semi-major axis a,; orbit parameter p,; eccentricity e,; inclination 7; ascending node
longitude €; perigee argument w,; mean anomaly M,; mean motion n,, calculated based on nanosatellites
state vector at the epoch time z,.

First, the nanosatellite orbital parameters at the constellation mission operate start time ¢, taking into account
the secular perturbations from the first zone harmonic and the atmosphere resistance force (the mean motion
first derivative) are determined [19]:

2 2(1-e 3n,RpJ.
a=ay— 0 pAt, e=ep - umz, Q= Q, - ZTE2 cos(i) At
ny 3n, Po
3n,RpJ. : '
w=wy + L2 (4 - 5sin(i)) A, M =M, + nyAr + gmz,

Po
p =a(1 - ez),

where J, = 0.001082 6267 is the second zonal harmonic; R, = 6378.137 km is the mean equatorial radius of
the Earth.
Then, the Kepler equation for eccentric anomaly £ has been solved:
E—esinE=M.
After calculating the eccentric anomaly £, we find the true anomaly ¥ at the constellation operate start
moment of time ¢ [19; 24]:
l+e E cosE—e

tﬁ— tg— or cos9=—
8 1=t 1—-ecosE’
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The current nanosatellite state vector at the constellation operate start time 7 in the orbital coordinate system
is determined with the used the radius vector module and the true anomaly angle O as [9; 19]:

Xorb = Rorbcos ﬁ? Yorb = Rorb SIHﬁv Zorb = O’

. u u
Ve, = —s1m?}\/;, Vy = (e + cosﬁ)\/;, V, =0,

where R, = lL is the orbital radius vector module.
+ ecos

As aresult, the nanosatellite position vector Ry (7) = (X, ¥, Z) and the velocity vector Vi, (¢) = ( VoV, V. )

in the geocentric inertial coordinate system (OXYZ) at the constellation operate start time are determined [9; 19]:

X Xow
Y :RS(_Q)RI (‘i)R3(_W) Yo |5
VA Z.
VX VXorb
Vy :R3(_Q)R1(_’)R3(_W) W |
V; v,

1 0 0
where R(o)=|0 cosa sina | is rotation matrix.

0 —sina coso

Results and discussion

For 15 launches from the Jiuquan and Taiyuan spaceports at 00:00:00 UTC (coordinated universal time)
11 November 2021 the nanosatellite constellation orbital parameters were calculated. As the result, the route
map for the regional nanosatellites constellation formation was developed, that presented in fig. 3.

T 3July2021 14 October 2021 ™.
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38°50'56.71" N/ L 3895056.71"N

~ 111°36'50.59" E - 11036750597 E

Q4 Date
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“ 111°36750.59"E L~ . 100°1728"E " 100°17°28"E .

Fig. 3. Route map of the regional nanosatellites constellation
formation for selected five launches from Jiuquan and Taiyuan

According presented road map (see fig. 3), five launches (11 June, 3 July, 24 August, 14 October, 3 No-
vember) were chosen to produce five orbital planes differing in ascending node longitude Q (20°, 24.8°,
37.9°, 80.3°, 140.4°). For the close nanosatellite orbital planes (with Q = 20° and Q = 24.8°), the launches
spaced by the latitude argument u to diametrically opposite points of the orbit were selected, as shown in
the table.
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Nanosatellite orbital parameters for five selected launches
. Nanosatellite ;
Date and lunch time (spaceport) number i, degree H, km Q, degree u, degree
11 June 2021 (Taiyuan) 4 97.50 493 24.8 279.1
3 July 2021(Taiyuan) 5 97.52 536 20 124.4
24 August 2021 (Jiuquan) 1 86.41 1099 37.9 73.3
14 October 2021 (Taiyuan) 3 97.46 514 140.4 47.6
3 November 2021 (Jiuquan) 2 98.10 695 80.3 131.8

The constellation with five nanosatellites during its pass over the Minsk at the daily interval of 11 November
2021 was modelled. Figure 4 presents a visibility constellation nanosatellites time chart. It has been established
that the largest number of times (10) in the Minsk sight area was nanosatellite 1, with a 18 min maximum in-
terval. The rest (nanosatellites 2—5) passed 7-8 times with a 13 min maximum interval. At the same time, the
constellation radio visibility interruption time was 36 min with an 85 min maximum value.
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Fig. 4. The visibility constellation nanosatellites time chart

Conclusion

The software module for the nanosatellite constellation orbital construction analysis was developed. The con-
struction of Spire Global nanosatellites constellation based on orbital parameters database in the TLE format, sa-
tellite constellation databases and the developer site information was analysed. The pre-flight piggyback launched
nanosatellite orbit prediction method was developed. It involves two stages: finding the nanosatellite state
vector in the first flight day and at the time of constellation mission operate start. The roadmap for constructing
a regional nanosatellite constellation to collecting data from mobile facilities and service using the piggyback
launch according to Chinese provider information has developed. Launches from the Taiyuan and Jiuquan
Satellite Launch Centers with orbit inclination about 90°, that best correspond to the passes over Minsk are
analysed. It was found that five launches are enough to organise a regional nanosatellite constellation with
average radio visibility interruption time of at least 36 min with an 85 min maximum value.
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