Министерство образования Республики Беларусь

Учебно-методическое объединение по экологическому образованию

УТВЕРЖДАЮ

Первый заместитель Министра образования

Республики Беларусь

А.И. Жук

201/1 г.

Регистрационный № ТД-Н. 036/тип.

История биологии и экологии

Типовая учебная программа для высших учебных заведений по специальности 1-33 01 01 «Биоэкология»

СОГЛАСОВАНО

Председатель Учебно-методического объединения по экологическому образованию

С.П. Кундас

2011 г.

СОГЛАСОВАНО

Начальник Управления высшего и среднего специального образования Министерства образования Республики Беларусь

Ю.И. Миксюк

2011 г.

Проректор по учебной и воспитательной работе Государственного учреждения образования «Республиканский институт высшей школы»

В.И. Шупляк

2011 г.

Эксперт-нормоконтролер

С.М. Артемьева

_ 2011 г. Машу

Минск 2011

СОСТАВИТЕЛЬ:

Василий Витальевич Гричик, заведующий кафедрой общей экологии и методики преподавания биологии Белорусского государственного университета, доктор биологических наук, доцент

РЕЦЕНЗЕНТЫ:

Кафедра биологии человека и экологии Учреждения образования «Международный государственный экологический университет имени А.Д. Сахарова»;

Александр Евгеньевич Каревский, доцент кафедры экологии Учреждения образования «Гродненский государственный университет им. Я. Купалы», кандидат биологических наук

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой общей экологии и методики преподавания биологии Белорусского государственного университета (протокол № 5 от 26 октября 2010 г.);

Научно-методическим советом Белорусского государственного университета (протокол № 1 от 03 ноября 2010 г.);

Научно-методическим советом по специальностям 1-33 01 01 «Биоэкология» 1-33 80 01«Экология» и 1-33 01 02«Геоэкология» Учебно-методического объединения по экологическому образованию (протокол № 5 от 03 декабря 2010 г.)

Ответственный за редакцию: Василий Витальевич Гричик

Ответственный за выпуск: Василий Витальевич Гричик

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Типовая учебная программа по дисциплине «Истории биологии и экологии» составлена в соответствии с требованиями образовательного стандарта высшего образования первой ступени по специальности 1-33 01 01 «Биоэкология».

Предметом дисциплины «История биологии и экологии» является развитие биологических наук и экологии с древнейших времен до наших дней. В содержании курса последовательно раскрываются общие закономерности развития естественных наук и факторы, его определявшие. При этом на фоне рассмотрения становления и развития основных направлений биологической науки (ботаники, зоологии, сравнительной морфологии, палеонтологии и эмбриологии животных, физиологии человека и животных, теории биологической эволюции и др.) раскрывается процесс накопления экологических знаний, интегрированных в рамках этих наук. Особое внимание уделяется становлению и развитию биоэкологи как самостоятельной науки, и формированию прикладных направлений экологии.

Цель курса — сформировать систему представлений о закономерностях развития биологических и экологических знаний со времени зарождения рациональной науки и до начала XXI в.

Задачи:

- сформировать представление о современных научных подходах к изучению фактографического материала по истории биологии и экологии;
- раскрыть основные закономерности развития биологии в различные исторические эпохи, ее дифференцирования на самостоятельные науки и научные направления;
- рассмотреть становление и развитие экологии как самостоятельного комплекса наук;
- раскрыть тенденции развития биологических наук и экологии в настоящее время.

Курс «История биологии и экологии» связан с такими дисциплинами, как «Цитология и гистология», «Теория эволюции», «Общая экология», «Анатомия человека», «Микробиология», «Генетика», «Физиология растений», «Физиология человека и животных», «Зоология позвоночных», «Зоология беспозвоночных», «Систематика высших растений» и др.

В результате изучения дисциплины обучаемый должен:

знать:

- историю основных биологических идей, традиций и научных направлений;
- историю формирования экологии как биологической науки и ее интеграции в систему фундаментальных и прикладных дисциплин;
- современную проблематику и перспективы развития биологии и экологии;

уметь:

- использовать основные биологические и экологические понятия и категории;
 - раскрывать влияние философских учений на развитие биологии;
 - объяснять связь биологии и экологии с другими точными науками;
 - отличать подлинно научные концепции от лже- и псевдонаучных.

Основными методами (технологиями) обучения, отвечающими целям изучения дисциплины, являются:

- элементы проблемно-модульного обучения;
- компетентностный подход, реализуемый на лекциях и при самостоятельной работе студентов.

Типовым учебным планом специальности 1-33 01 01 «Биоэкология» в качестве формы итогового контроля по дисциплине рекомендован зачет. Для самоконтроля знаний и умений студентов по данной дисциплине можно использовать следующий диагностический инструментарий:

- компьютерные тестовые задания;
- подготовка реферата.

Курс истории биологии и экологии должен расширить кругозор студентов, дать им представления о тенденциях развития биологии в различные исторические эпохи, показать роль биологических наук в развитии современной цивилизации. Программа курса рассчитана на 28 часов, из них 20 аудиторных – лекционных.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

№ разде- лов и тем	Наименование разделов и тем	Аудиторные часы	
		Bcero	Лекции
1.	Введение	1	1
2.	Биологические знания в Древнем мире и Средневековье	2	2
3.	Развитие биологических наук в Новое время	4	4
4.	Становление классической биологии и экологии в XIX в.	4	4
5.	Развитие биологии и экологии в XX – XXI вв.	9	9
ИТОГО:		20	20

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. ВВЕДЕНИЕ

Предмет, задачи и методы истории биологии и экологии. Происхождение термина «биология». Роль научного метода в становлении и развитии биологии. Периодизация истории биологии.

Закономерности развития естественных наук. Эволюционные и революци-

онные периоды развития науки. Теория парадигмы Т. Куна. Роль парадигмы в науке и образовании. История биологии как взаимодействие и смена парадигм. Познавательные модели биологии.

2. БИОЛОГИЧЕСКИЕ ЗНАНИЯ В ДРЕВНЕМ МИРЕ И СРЕДНЕВЕКОВЬЕ

Возникновение наук в Древней Греции

Предпосылки появления рационального знания в Древней Греции. Биологические труды Аристотеля и Теофраста. Развитие биологических знаний в Римской империи. Т.Л. Кар и его поэма «О природе вещей». «Естественная история» Плиния. Работы Галена и Диоскорида. Значение начального периода развития биологических наук.

Символическая картина мира Средневековья

Особенности семиотическаой парадигмы. Реализм и номинализм. Вклад философов-схоластов в развитие науки. Биологические знания в трудах Авиценны, Альберта Великого, Венсана де Бове и других ученых.

3. РАЗВИТИЕ БИОЛОГИЧЕСКИХ НАУК В НОВОЕ ВРЕМЯ

Возрождение рациональной науки

Социально-экономические и культурные преобразования в Европе в XIV-XVI вв. Изобретение книгопечатания и основание национальных библиотек. Великие географические открытия, создание музеев естественной истории, ботанических и зоологических садов. Роль Ф. Бэкона Г. Галилея, Р. Декарта, И.Ньютона и Г.В. Лейбница в формировании научной картины мира.

Развитие ботаники и зоологии в XV-XVIII вв.

Начальный этап описания и систематизации растений (И. Бок, М. Лобелий, К. Баугин, А. Чезальпино, Д. Рэй, Ж. Турнефор). Открытие клетки (Р. Гук) и возникновение анатомии растений (М. Мальпиги, Н. Грю). Системы растений К. Линнея, М. Адансона, Б. и А.-Л. Жюссье, Ж.Б. Ламарка. Развитие представлений о физиологии растений (Я. Гельмонт, Р. Бойль, С. Гейлс, (Р. Камерариус, Й-Г. Кельрейтер).

Первые сводки животных нового времени (К. Геснер, Т. Моуфет, У. Альдрованди, Э. Уоттон, Дж. Рэй). Система животных К. Линнея. «Естественная история» Ж. Бюффона. Исследования насекомых (Р. Реомюр), червей и тлей (Ш. Бонне), гидры (А. Трамбле), регенерации и оплодотворения низших позвоночных (Л. Спалланцани).

Экологические знания в рамках ботаники и зоологии в XV-XVIII вв.

Развитие физиологии человека и животных в XV-XVIII вв.

Работа А. Везалия «Семь книг о строении человеческого тела». Открытие кровообращения У. Гарвеем, простейших А. Левенгуком, фолликулов в яичниках млекопитающих Р. де Граафом. Первая экспериментальная работа по

биологии русского ученого М. Тереховского «О наливочном хаосе Линнея». А. Галлер и его работа «Элементы физиологии».

Теории развития живых организмов — преформизм (Сваммердам, Левенгук, Лейбниц, Бонне, Галлер) и эпигенез (Мопертюи, Дидро, Нидхэм, Бюффон). «Теория зарождения» К. Ф. Вольфа.

4. СТАНОВЛЕНИЕ КЛАССИЧЕСКОЙ БИОЛОГИИ И ЭКОЛОГИИ В XIX В.

Морфология, палеонтология и эмбриология животных

Развитие сравнительной анатомии и морфологии животных. Вклад в науку Ж. Кювье и Э. Ж. Сент-Илера. Диспут Кювье и Сент-Илера в 1830 г. Открытие зародышевых листков Х. Пандером. Теория зародышевых листков К. М. Бэра. Открытие ядра Р.Броуном. Создание клеточной теории (Т.Шванн) и возникновение гистологии (Я. Э. Пуркине и И. Мюллер).

Экология

Экологические представления в трудах А. Гумбольдта. Э. Геккель и введение термина «экология». Исследования К. Мёбиуса, А. Кетлэ, В. Шелфорда. Экологические знания в системе наук о биологическом разнообразии. Зарождение синэкологии.

Теория биологической эволюции

Зарождение эволюционных идей (Ш. Нодэн, Л.Окен, Э. Эйхвальд, К.Ф. Рулье). Теория эволюции Ж.Б.Ламарка. Научная биография Ч.Дарвина. Гносеологические аспекты теории эволюции Дарвина. Перестройка палеонтологии, эмбриологии, сравнительной анатомии и систематики животных под влиянием дарвинизма (В.О. Ковалевский, Л. Долло, А.О. Ковалевский, И.И. Мечников, Ф.Мюллер, Э.Геккель и др.).

Физиология человека и животных

Развитие физиологии человека и животных. Работы Ф. Мажанди, К. Бернара, И. Мюллера, Э. дю Буа-Реймона, Г. Гельмгольца и К. Людвига. Основоположники русской школы физиологии И.М. Сеченов и И.П. Павлов. Экологическая физиология в работах А. Декандоля, И. Либиха, В. Шелфорда.

Микробиология

Формирование микробиологии. Исследования этиологии сибирской язвы и туберкулеза Р. Кохом. Научная деятельность Л. Пастера. Открытие вирусов Д.И. Ивановским и М. Бейеринком. Фагоцитарная (И.И.Мечников) и гуморальная (П. Эрлих) теории иммунитета.

Цитология

Выделение цитологии в самостоятельную науку. Создание теории микроскопа Э.Аббе. Открытие клеточного ядра (Р.Броун), клеточного центра (Т. Бовери), митохондрий (Р.Альтман, К.Бенда), пластинчатого комплекса (К.Гольджи). Описание митоза (Э. Страсбургер, В. Флемминг), мейоза (Э. ван Бенеден) и оплодотворения (О. Гертвиг, С. Г. Навашин).

5. РАЗВИТИЕ БИОЛОГИИ И ЭКОЛОГИИ В ХХ-ХХІ ВВ.

Предпосылки развития биологии в XX в.

Этапы развития биологии в XX веке. Влияние физики и химии на биологию. Книга Э. Шредингера «Что такое жизнь с точки зрения физики» и принцип редукционизма. Разработка методов ультрацентрифугирования (Сведберг), электрофореза (Тизелиус), хроматографии (Мартин, Синг) и рентгеноструктурного анализа (Лауэ, Брэгг). Создание электронного микроскопа (Кнолль и Руска).

Экология

Становление и развитие аут-, син- и демэкологии. Работы Ч. Элтона, К. Тролля, В.Н. Сукачева, С.С. Шварца и др. Эволюция понятия популяции в течение XX века. Формирование эволюционной экологии и прикладных направлений экологии. Влияние экологической науки на общественное сознание.

Биохимия

Исследования строения углеводов и белков (Фишер), нуклеиновых кислот (Мишер, Коссель, Левин). Разработка теории катализа (Фишер, Анри, Михаэлис, Ментен). Открытие витаминов (Функ) и коферментов (Эйлер). Исследования гликолиза и дыхания Варбургом, Сент-Дьерди, Кребсом и др.. Открытие антибиотиков (Флеминг, Флори, Чейн, Ваксман). Рентгеноструктурный анализ нуклеиновых кислот (Астбери, Уилкинс) и белков (Полинг, Перутц, Кендрью). Секвенирование белков (Сенгер, Стейн, Мур). Исследования окислительного фосфорилирования (Энгельгардт, Ленинджер, Митчел).

Генетика

Работа Менделя «Опыты над растительными гибридами» и подтверждение открытых им законов Корренсом, Чермаком и де Фризом. Разработка проблем генетики количественных признаков Гальтоном, Пирсоном и Иогансеном. Создание хромосомной теории наследственности (Сэттон, Бовери, Морган). Первые генетические карты дрозофилы (Стертевант) и кукурузы (Эмерсон, Бидл и Фрейзер). Исследования полиплоидии (Винклер, Карпеченко, Жебрак, Астауров). Открытие физического (Мёлер, Стадлер) и химического мутагенеза (Ауэрбах, Рапопорт), разработка теории мишени (Тимофеев-Ресовский и Дельбрюк). Возникновение популяционной генетики и синтетической теории эволюции (Четвериков, Райт, Фишер, Добжанский). Исследования тонкой структуры гена (Серебровский, Дубинин). Работы по цитогенетике Навашина, Левитского и Живаго.

Молекулярная биология

Исследование генетической роли нуклеиновых кислот (Грифит, Эвери, Херши, Чейз, Френкель-Конрат). Открытие двойной спирали ДНК (Уотсон, Крик), исследования тонкой структуры гена (Бензер), репликации (Мезельсон, Сталь, Корнберг) и транскрипции (Темин, Балтимор и др). Расшифровка генетического кода и механизма трансляции (Гамов, Ниренберг, Маттеи, Спирин и др.). Изобретение полимеразной цепной реакции (Маллис). Исследования дифференциальной активности генов (Жакоб и Моно), открытие апоптоза (Керр, Бреннер, Хорвиц) и теломеразных часов (Оловников, Блэкберн, Грейдер). Про-

ект «Геном человека» (1990-2003).

Современные тенденции развития биологии и экологии.

История биологии в Республике Беларусь

Ученые и натуралисты XVIII-XIX вв. (Жилибер, Юндзилл, Тизенгауз, Эйхвальд, братья Дыбовские, К. Ельский и др.).

Основание Белорусского государственного университета и Национальной Академии наук. Исследования белорусских ученых-биологов до и после Великой Отечественной войны (А.В. Федюшин, В.Ф. Купревич, Т.Н. Годнев, А.Р. Жебрак, Г.Г. Винберг, П.Ф. Рокицкий, Н.В.Турбин и др).

Развитие биологических наук и высшего биологического образования в Республике Беларусь.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

Основная:

- 1. Глушен С.В. История биологии / С.В. Глушен. Мн.: БГУ, 2010.
- 2. Новиков А.Н. Очерки по истории экологии. М., 1990.

Дополнительная:

- 1. *Азимов А.* Краткая история биологии. От алхимии до генетики / А. Азимов. М.: ЗАО Изд-во Центрполиграф, 2002.
- 2. *Брызгалина Е. В.* История биологии как смена парадигмального знания / Е.В. Брызгалина. М.: МГУ, 1998.
- 3. *Воронцов Н. Н.* Развитие эволюционных идей в биологии / Н.Н. Воронцов. М.: Прогресс-Традиция, 1999.
- 4. *Гайсинович А. Е.* Зарождение и развитие генетики / А. Е. Гайсинович. М.: Наука, 1988.
- 5. *Кациельсон 3. С.* Клеточная теория в ее историческом развитии / 3. С. Кациельсон. Л.: Гос.изд-во мед. литературы, 1963.
- 6. Кун Т. Структура научных революций / Т. Кун. М.: Прогресс, 1977.
- 7. *Лункевич В. В.* От Гераклита до Дарвина / В. В. Лункевич. М.: Гос. уч. пед. ид-во Министерства просвещения РСФСР, 1960. Т. 1–2.
- 8. *Рьюз М.* Философия биологии / М. Рьюз. М.: Прогресс, 1977.
- 9. *Уотсон Дж.* Двойная спираль. Воспоминания об открытии структуры ДНК / Дж. Уотсон. М.: Мир, 1969.
- 10. *ШредингерЭ*. Что такое жизнь с точки зрения физики? / Э. Шредингер. М.: Римис, 2009.