Отметим, что наименьшей изменчивостью отличаются тангенциальные размеры ранних и поздних трахеид (коэффициент вариации составил для ранних трахеид 3,4 %, для поздних – 3,7 %), а потому в ряде исследований данные параметры вообще не учитывают [3].

Таким образом, в результате проведенных исследований получены новые экспериментальные данные и выявлена закономерная изменчивость морфолого-анатомической структуры годичных слоев сосны обыкновенной в сосняке долгомошном и сосняке багульниковом. Показана значимость отдельных размерных характеристик для установления типа леса. Установлено, что к наиболее изменчивым морфолого-анатомическим параметрам можно отнести количество поздних трахеид (10%) и площадь клеточной стенки поздних трахеид (9%), а также площадь клеточной стенки ранних трахеид (6%). При этом следует отметить, что все морфолого-анатомические параметры годичных слоев у сосняка долгомошного выше, чем у сосняка багульникового (за исключением количества ранних трахеид), что может быть обусловлено лучшими условиями местопроизрастания.

В целом авторы полагают, что уникальность морфолого-анатомических параметров годичных слоев древесины сосны обыкновенной наряду с относительной простотой их фиксации открывают широкие возможности не только для диагностики происхождения лесоматериалов, но и для изучения широкого спектра климатических и экологических изменений в прошлом.

ЛИТЕРАТУРА

1. Унжакова, С. В. Технология работы по идентификации места происхождения древесины на основе дендрохронологической информации / С.В. Унжакова, Ю.М. Жаворонков //Криминалистика: вчера, сегодня, завтра. – 2017. – №. 3 (3). – С. 83–86.

2. *Björklund, J.* Dendroclimatic potential of dendroanatomy in temperture-sensitive *Pinus sylvestris /* Björklund J [et al.] // Dendrochronologia. – 2020. – V. 60. – P. 1–9. DOI: 10.1016/j.dendro.2020.125673

3. *Lee, LC.* Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps /. Lee LC, Liong CY, Jemain AA //Analyst. – 2018. – V. 143. – No. 15. – P. 3526–3539. DOI: 10.1039/c8an00599k

КВАНТОВО-ХИМИЧЕСКИЙ АНАЛИЗ СОРБЦИОННОГО ВЗАИМОДЕЙСТВИЯ МЕЖДУ ПСОРАЛЕНОМ И ОКСИДОМ УГЛЕРОДА (II)

QUANTUM CHEMICAL ANALYSIS OF THE SORPTION INTERACTION BETWEEN PSORALENE AND CARBON DIOXIDE (II)

В. С. Чепля, С. Н. Шахаб V. Cheplya, S. Shahab

Белорусский государственный университет, МГЭИ им. А.Д. Сахарова БГУ г. Минск, Республика Беларусь vlad1997.cheplya@gmail.com Belarusian State University, ISEI BSU Minsk, Republic of Belarus

В настоящей работе исследованы адсорбционные свойства псоралена при взаимодействии с СО с помощью теории функционала плотности (уровень теории DFT: wB97XD/6-31G*) в воде как растворителе. Определено несвязанное взаимодействие псоралена и СО по электронным свойствам, таким как E_{HOMO} и E_{LUMO} , энергетический зазор между НОМО и LUMO, глобальная твердость.

In this paper, the adsorption properties of psoralen in the interaction with CO with the help of the density functional theory (DFT theory level: wB97XD/6-31G*) in a water solvent are investigated. Definitely unrelated interaction of psoralen and CO by electronic properties such as ENOMO and ELUMO, energy gap between HOMO and LUMO, global hardness.

Ключевые слова: псорален, адсорбция, DFT.

Keywords: psoralen, adsorption, DFT.

https://doi.org/10.46646/SAKH-2021-1-358-360

Проблема загрязнения окружающего воздуха является одной из приоритетных проблем современной науки, а поиск инновационных способов его очистки одним из главных ее направлений. Использование методов компьютерной химии для изучения физико-химических, адсорбционных свойств молекул, по сравнению с экспериментальными исследованиями, значительно ускоряет получение теоретических результатов. В частности, в создании модели сильных поглотителей СО воздуха с помощью методов квантовой химии.

Оценочное квантово-химическое моделирование комплексов между псораленом и СО произведено полуэмпирическим методом РМ6. По рассчитанным значениям энергий выбраны наиболее стабильные комплексы [1].

Полное квантово-химическое моделирование комплексов псоралена с СО проведено с помощью метода wB97XD/6-31G*. Оптимизированные структуры соединения показана на рисунке 1. Оптимизированные структуры соединений: псорален, комплекс псорален/СО (I) показаны на рисунке 1.

В таблице 1 приведены термохимические параметры, такие как сумма электронной и тепловой энергий (E+T), сумма электронной и тепловой энтальпий (E+H), сумма электронной и тепловой свободных энергий (E+G) и энтропия (S) оптимизированных соединений и комплексов [1, 3].

Данные таблицы 1 свидетельствуют о том, что, когда молекула псоралена находится в несвязанном состоянии, значения E+G, E+H и E+T больше, чем в связанном. Уменьшение значения энергии отражает снижение реакционной способности и повышение стабильности молекулы псоралена в присутствии CO.

Рис. 1 – Структурные формулы: а) псорален; б) комплекс псорален/СО

Таблица 1 – Термохимические параметры псоралена и комплексов псорален
с CO и CO $_2$, рассчитанные с помощью метода wB97XD/6-31G st

Соединение	E+G (ккал/моль)	Е+Н (ккал/моль)	Е+Т (ккал/моль)	S (кал/моль*К)
Псорален -408 763.807		-408 674.740	-408 681.127	96.645
Псорален/СО	-486 681.725	-486 779.533	-487 749.835	108.948

Электронные спектры для комплексов *псорален/СО* для одноэлектронных возбуждений в области 223,70–478,67 нм. (табл. 2).

Таблица 2 – Электронная структура комплексов в воде,
рассчитанная методом wB97XD/6-31G* относительно основных пиков

Псорален/СО					
Состояние	Длина волны, нм	Разложение волновых функций по однократно возбужденной конфигурации	Сила осциллятора (f)		
$S_0 \rightarrow S_4$	337.9	- 0.3 (35→40) + 0.2 (36→43) - 0.5 (39→40)	0.49		
$S_0 \rightarrow S_{II}$	290.6	$\begin{array}{r} + 0.5 (36 \rightarrow 40) \\ + 0.2 (36 \rightarrow 41) \\ + 0.2 (38 \rightarrow 40) \\ - 0.2 (38 \rightarrow 41) \\ - 0.2 (39 \rightarrow 42) \\ + 0.1 (39 \rightarrow 43) \end{array}$	0.29		
$S_0 \rightarrow S_{12}$	270.3	$\begin{array}{r} + 0.2 (36 \rightarrow 44) \\ - 0.2 (38 \rightarrow 44) \\ - 0.6 (39 \rightarrow 44) \\ - 0.1 (39 \rightarrow 46) \end{array}$	0.24		

Из рисунка 2 видно, что первая широкая и интенсивная полоса поглощения с максимумом при 337.9 нм с f = 0.4850 относится к переходу в первое возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_4$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению трех конфигураций для одноэлектронных возбуждений 35 \rightarrow 40, 36 \rightarrow 43, 39 \rightarrow 40. Возбуждение электрона с 36 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 43 дает главный вклад в полосу поглощения при 337.9 нм.

Вторая полоса поглощения наблюдается при 290.6 нм с f = 0.2864 и относится к переходу в возбужденное синглетное состояние молекулы (S₀→S₁₁). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению шести конфигураций для одноэлектронных возбуждений (таблица 2, рисунок 2). Возбуждение электрона с (36→40) дает главный вклад в полосу поглощения при 290.6 нм.

Рис. 2 – УФ-спектр комплекса псорален/СО, рассчитанного с помощью метода wB97XD/6-31G*

Третья полоса поглощения наблюдается при 270.3 нм с f = 0.2408 и относится к переходу в возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_{12}$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению четырех конфигураций для одноэлектронных возбуждений (таблица 2, рисунок 3). Возбуждение электрона с (36 \rightarrow 44) дает главный вклад в полосу поглощения при 270.3 нм.

Другие возбужденные состояния исследуемого комплекса имеют очень малую интенсивность ($f \approx 0$). Данные переходы запрещены по симметрии.

В настоящей работе представлены результаты исследования физической сорбции псоралена с СО, используя метод wB97XD/6-31G*.

Выявлено, что электронные свойства псоралена чувствительны к адсорбции СО. Заряд атомов исследуемых соединений подвергается изменению при несвязывающем взаимодействии с СО. Установлено, что λ_{max} псоралена при несвязанном взаимодействии с СО. меняется не значительно.

Результаты свидетельствуют о несвязанном взаимодействии между псораленом и СО. Таким образом, доказано, что псорален может быть использован в разработке отечественных фильтров для очистки воздуха от СО.

ЛИТЕРАТУРА

1. *Bagayoko D*. Understanding the Relativistic Generalization of Density Functional Theory (DFT) and Completing It in Practice / Bagayoko D // Journal of Modern Physics. – Vol.7. No.9. – 2016 May 26. – P. 4236.

2. Changqing, Y. A Generation Method of Dithering Signal Based on DFT / Changqing Y, Xingzhong X // International Journal of Communications, Network and System Sciences. – Vol.10. – No.8. 2017 August 14. – P. 245–271.

3. *Cheplya, V*. Theoretical model of physisorption effect of CO on coniine and furanocoumarins for air purification / Cheplya V, Shahab S, Murashko M // IX International Scientific Conference for Young Scientists, Graduates, Master and PhD Students "Actual Environmental Problems".: International Sakharov Environmental Institute of Belarusian State University. – 2019 November 21–22. – P. 324–325.

4. *Fidel, L.* Breeding and Analysis of Two New Grapefruit-Like Varieties with Low Furanocoumarin Content / Fidel L, Carmeli-Weissberg M, Yaniv Y, Shaya F, Dai N, Raveh E, Eyal Y, Porat R, Carmi N // Food and Nutrition Sciences. – Vol.7. No.2. – 2016 February 23. – P. 428–439.

5. *Shahab S*. DFT study of physisorption effect of CO and CO₂ on furanocoumarins for air purification / Shahab S, Sheikhi M, Khaleghian M, Kumar R, Murashko M. // Journal of Environmental Chemical Engineering. – 2018. – P. 4784–4796.

ТИРЕОИДНЫЕ ГОРМОНЫ У КРЫС ПРИ ОЖИРЕНИИ: ОСОБЕННОСТИ РЕАКЦИИ НА СТРЕСС THYROID HORMONES IN OBESE RATS: FEATURES OF THE RESPONSE TO STRESS

E. H. Чудиловская¹, A. A. Басалай¹, A. C. Мигалевич¹, B. Д. Свирид², T. A. Митюкова¹ E. N. Chudilovskaya¹, A. A. Basalai¹, A. S. Migalevitch¹, V. D. Svirid², T. A. Mityukova¹

¹ГНУ Институт физиологии НАН Беларуси, г. Минск, Республика Беларусь ²Белорусский государственный университет, МГЭИ им. А.Д. Сахарова БГУ, г. Минск, Республика Беларусь asvirid@tut.by ¹Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus ²Belarusian State University, ISEI BSU Minsk, Republic of Belarus