Зависимость изменения ХПК и пороговой интенсивности запаха от поглощенной дозы при различных условиях обработки

	Аэрация		Облучение		Облучение с аэрацией		Аэрация		Облучение		Облучение с аэрацией	
ХПК, 4гО₂/л	очист- ка, %	ХПК, мгО₂/л	очист- ка, %	ХПК, мгО ₂ /л	очист- ка, %	Р, у. е.	очист- ка, %	P, e.	очист- ка, %	P, y. e.	очист- ка, %	
50	0	50	0	50	0	2670	0	2670	1	2670	0	
50	0	49	2	43	14	2400	10	2000	25	600	78	
49	2	49	2	39	22	2200	18	1000	63	200	93	
49	2	48	4	38	24	2000	25	700	74	100	96	
49	2	47	6	31	38	1800	33	350	87	50	98	
47	6	44	12	25	50	1600	40	100	96	1	100	
40	20	32	36	20	60	1400	48	1	100	1	100	
	50 50 49 49 49 47	FO2/A Ka. % 50 0 50 0 49 2 49 2 49 2 49 6	FO2/A Ka. % MFO2/A 50 0 50 50 0 49 49 2 49 49 2 48 49 2 47 47 6 44	FO2/A Ka. % MFO2/A Ka. % 50 0 50 0 50 0 49 2 49 2 49 2 49 2 48 4 49 2 47 6 47 6 44 12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

паха. Результаты очистки в различных условиях по ХПК и Р приведены в табл. 2. Наиболее эффективная очистка по ХПК происходит при облучении с аэрацией. При дозе 1 кГр очищенная вода имеет ХПК около 20 мгО₂/л, что является нормой для воды оборотного водопользования ЦБП. В этих же условиях достигается практически полная дезодорация конденсатов.

Таким образом, обработка конденсатов выпарных цехов ЦБП ионизирующим излучением в сочетании с аэрацией приводит к эффективному разрушению органических и неорганических серосодержащих соединений, значительному снижению ХПК и пороговой интенсивности запаха. Качество очищенной радиационным методом воды позволяет повторно использовать ее для водоснабжения любого участка ЦБП.

ЛИТЕРАТУРА

- 1. Заморцев Б. М. Использование воды в целлюлозно-бумажной промышленности.— М., 1966, с. 161. 2. Долии П. И., Шубин В. М., Брусенцева С. А. Радиационная очистка
- воды. М., 1973, с. 151.
- 3. Шубин В. М., Брусенцева С. А., Никонорова Г. Қ. Радиационно-полимеризационная очистка производственных стоков.— М., 1979, с. 96.
- лимеризационная очистка производственных стоков.— М., 1979, с. 96.
 4. Петряев Е. П., Ковалевская А. М., Герасимович О. А., Шлык В. Г.— Весці АН БССР. Сер. фіз.-энерг. навук, 1980, № 1, с. 80.
 5. Міllідап В., Rivett D., Savige W.— Austral. J. Chem., 1963, N 16, р. 1020.
 6. Раднолиз сернистых соединений, ч. IV.— Тбилиси, 1973, с. 140.
 7. Лукьяница В. Г.— Докл. АН СССР, 1955, т. 102, № 6, с. 1055.
 8. Лурье Ю. Ю., Рыбникова А. И. Химический анализ производственных сточных вод.— М., 1974, с. 335.

УДК 547.442+547.822

И.Г.ТИЩЕНКО, В.А.МЕЖЕНЦЕВ, Л.С.НОВИКОВ

СИНТЕЗ В, У-НЕПРЕДЕЛЬНЫХ 1,5-ДИКЕТОНОВ И ЦИКЛИЗАЦИЯ ИХ В ПРОИЗВОДНЫЕ ПИРИДИНА

В последние десятилетия разработаны препаративные способы получения 1,5-дикетонов, являющихся основой для синтеза ценных в практическом отношении шестичленных кислород-, серо- и азотсодержащих гетероциклических соединений, адамантанов и макроциклических систем [1, 2]. В то же время в, у-непредельные 1,5-дикетоны исследованы мало. В работах [3, 4] показано, что последние могут быть использованы в синтезе винилзамещенных производных пиридина.

В продолжение исследований по сиптезу и изучению свойств функционально замещенных 1,5-дикетонов в настоящей работе изучены основно-каталитическая конденсация ряда арилметилкетонов с изомасляным альдегидом с образованием β , γ -непредельных 1,5-дикетонов и пре-

вращение их в производные пиридина.

Конденсацию арилметилкетонов с изомасляным альдегидом, как и ранее [5—8], проводили при умеренном (до 60 °C) нагревании метанольных растворов в присутствии щелочи. При этом образуется равновесная смесь α , β - и β , γ -непредельных кетонов A и B, которые в условиях реакции подвергаются межмолекулярной конденсации Михаэля с образованием соответствующих 2-метил-5-изопропил-4,6-диароил-2-гексенов I—V с выходом 79—98 %. Во всех описанных примерах алкилирование кетоолефинами A мезомерного дненолята C, который может возникать как из α , β -, так и β , γ -непредельных кетонов A и B, протекает регноселективно в α -положение, а образования продуктов γ -алкилирования не происходит, что, вероятно, может быть связано со стерическими факторами, вызванными наличием объемного изопропильного заместителя при олефиновой связи.

Взаимодействие синтезированных 1,5-дикетонов I-V с солянокислым гидроксиламином при кипячении в течение 30-44 ч в смеси диоксан-метанол с выходом 54-71~% приводит к 4-изопропил-3-(2-метил-1-пропенил)-2,6-диарилпиридинам VI-X. Реакция в этом случае, видимо, протекает через стадию получения монооксимов, которые под влиянием кислоты трансформируются в конечные продукты VI-X.

где $Ar = 4 - C_8H_{17}O - C_6H_4(I, VI); 4 - C_6H_5 - C_6H_4(II, VII); 4 - (4^1 - (CH_3)_2CH - C_6H_4) - C_6H_4(III, VIII); 3 - Br - 4 - C_2H_5O - C_6H_3(IV, IX); 4 - (C_6H_5 - CH_2) - C_6H_4(V, X).$

Строение всех полученных соединений подтверждено данными эле-

ментного анализа, ИК, ПМР и масс-спектрами.

По данным ПМР спектров, в конденсации арилметилкетонов с изомасляным альдегидом образуются 2-метил-5-изопропил-4,6-диароил-2гексены I—V, представляющие собой индивидуальные, вероятно, более стабильные диастереоизомеры, имеющие константу спин-спинового взаимодействия протонов, принадлежащих асимметрическим атомам углерода, как и в случае димера изобутилиденацетофенона [9], равную 8,5 Гц.

Масс-спектры низкого разрешения содержат интенсивные пики молекулярных ионов M^+ , соответствующие вычисленным значениям молекулярных масс синтезированных 1,5-дикетонов I-V, пики осколочных ионов M^+-15 , M^+-43 , M^+-55 , M^+-105 , а также пики, соответствующие ионным фрагментам ароильных групп $ArCO^+$, непредельных кетонов $[ArCOCH_2CH=C(CH_3)_2-1]^+$, и некоторые другие.

'В ИК спектрах пиридинов VI—X, по сравнению со спектрами исходных дикетонов I—V, наблюдается исчезновение полос поглощения карбонильных групп в области $1680-1695~{\rm cm}^{-1}$.

Спектры $\dot{\Pi}$ MP полученных пиридинов содержат сигналы протонов одной изопропильной группы (1,16 м. д., 6H, д, J=7 Γ Ц; 3,10 м. д., IH, спт, J=7 Γ Ц), 2-метил-1-пропенильного фрагмента (1,15 м. д., 3H, с; 1,68 м. д., 3H, с; 6,14 м. д., IH, с), а также протона пиридинового ядра (7,46 м. д., IH, с) и арильных заместителей в области 7,20—8,10 м. д. (соединение VII), что подтверждает структуру полученных продуктов.

Экспериментальная часть

ИК спектры сняты на приборах «UR-20» и «Specord-75 1R» в растворе CCl₄. Спектры ПМР записаны на спектрометрах «Varian HA-100 D15» и «JNMPS-100» при рабочей частоте 100 МГц, внутренний стандарт — ТМС, химические сдвиги измерены в δ-шкале. Масс-спектрометрические данные получены на масс-спектрометре «Varian MAT-311» при энергии ионизирующего излучения 30 и 70 эВ. Индивидуальность полученных соединений и ход реакций контролировались методом ТСХ на пластинках «Silufol UV-254». Физико-химические характеристики полученных соединений приведены в табл. 1,3, параметры спектров ПМР — в табл. 2,4.

2-Метил-5-изопропил-4,6-диароил-2-гексены I, IV, V. К раствору, содержащему 16—24 г едкого кали в 100 мл метанола и 0,2—0,3 г-мол соответствующего арилметилкетона, прибавляли в течение 3-15 мин при 35—60 °C 0,3—0,8 г-мол изомасляного альдегида и перемешивали при этой температуре в течение 30—60 мин. Реакционную смесь охлаждали до комнатной температуры, разбавляли водой и нейтрализовали разбавленной уксусной кислотой. Выпавший продукт отфильтровали, промыли на фильтре водой, охлажденным метанолом, гексаном и кристаллизовали из метанола или смеси бензол-метанол.

2-Метил-5-изопропил-4,6-диароил-2-гексены II, III. Дикетон II получали конденсацией 0,3 г-мол 4-фенилацетофенона с 0,8 г-мол изомасляного альдегида в растворе 240 г едкого кали в 1200 мл метанола при температуре 60 °C. Дикетон III — конденсацией 0,08 г-мол 4-(4¹-изопропилфенил)-ацетофенона с 0,4 г-мол изомасляного альдегида при 60 °C в

Таблица 1 2-метил-5-изопропил-4,6-диароил-2-гексены I—V

ение				Найдено, %		Брутто-	Вычисле- но, %	
Соединение	Ar	Выход,	<i>t</i> _{пл} , °С	С	н	формула	С	н
I	4—C ₆ H ₁₇ O—C ₆ H ₄	79,3	93,5—94,5	79,1	10,2	C ₄₀ H ₆₀ O ₄	79,4	10,0
II	$4-C_6H_5-C_6H_4$	98,4	160—160,5	86,3	7,2	$C_{36}H_{36}O_2$	86,4	7,3
H	$4-(4^{1}-(CH_{3})_{2}CH-C_{6}H_{4})-C_{6}H_{4}$	79,4	200-200,5	81,6	8,2	$C_{42}H_{48}O_2$	81,8	8,3
IV	3—Br—4—C ₂ H ₅ O—C ₆ H ₃	91,6	133,5—134,0	56,7	5,8	$C_{28}H_{34}Br_{2}O_{4}$	56,5	5,7
V	$4-(C_6H_5-CH_2)-C_6H_4$	94,9	134,5—135,0	86,4	7,6	$C_{38}H_{40}O_2$	86,3	7,6

Таблица 3

Параметры спектров ПМР 2-метил-5-изопропил-4,6-диароил-2-гексенов I—V

Соедине- ние	COCH2	СН=С	$\overline{CH} - \overline{CH} =$	(C <u>H</u> ₃)₂C=	(CH₃)₂C <u>H</u>	(СН₃)СН	Ar
I	2,45—3,20 (ЗН,м)	5,00 (1H,д)	4,24 (1H, 2д)	1,35 и 1,62 (6H, 2c)	1,50 (IН, м)	0,84 (6Н, м)	1,24(2OH, м), 3,94(4H, т) 0,84(6H,т), 1,72(4H, д), 6,85(4H, м), 7,87(4H, м)
П	2,52—3,22 (3H, м)	5,08 (1H,д)	4,36 (1H,2д)	1,45 и 1,72 (6H, 2c)	1,80 (1Н,м)	0,94 (6H,м)	7,42(14Н, м), 7,92(4Н, м)
III	2,50—3,20 (3H, м)	5,00 (1H, д)	4,16 (1H,2д)	1,32 и 1,62 (6H, 2c)	1,68 (1Н,м)	0,86 (6H,м)	1,22(12Н, д), 2,90(12Н, м), 7,20—8,00(16Н, м)
IV	2,40—3,10 (3H, м)	4,88 (1H, д)	4,10 (1H,2д)	1,35 и 1,62 (6H, 2c)	1,60 (1Н, м)	0,82 (6H,м)	1,42(6Н, т), 4,10(4Н, м), 6,80—8,10(6Н, м)
V	2,56—3,02 (3H, м)	5,20 (1Н, д)	4,45 (1H,2д)	1,42 и 1,68 (6H, 2c)	1,76 (1Н, м)	0.84 (6Н, м)	4,16(4H, c) 7,56(14H, m), 8,18(4H, m)

4-изопропил-3-(2-метил-1-пропенил)-2,6-диарилпиридины VI—X

Найдено, % Вычислено, % Соедине-Выход, t. пл., Брутто-формула Ar °C ние % С Н Ν С Н Ν VI $4-C_8H_{17}O-C_6H_4$ 61,2 19-23 81,9 9,9 2,3 $C_{40}II_{57}NO_{2}$ 82,3 9,8 2,4 VII $4-C_6H_5-C_6H_4$ $C_{36}H_{33}N$ 90,2 6,9 2,9 71,2 130 - 13189,9 7,0 3,0 8,5 2,4 VIII $4-(4^{1}-(CH_{3})_{2}CH-C_{6}H_{4})-C_{6}H_{4}$ 58,3 111-112 89,3 8,6 2,5 $C_{42}H_{48}N$ 89,0 IX 3-Br-4-C₂H₅O-C₆H₃ 5,5 $C_{28}H_{31}Br_2NO_2$ 5,4 2,5 54,0 58,2 2,4 58,6 81 - 82X 8,5 $4-(C_6H_5-CH_2)-C_6H_4$ 88,9 8,2 2,6 $C_{38}H_{41}N$ 89,2 2,4 59,1 95 - 96

Таблица 4 Параметры спектров ПМР 4-изопропил-3-(2-метил-1-пропенил)-2,6-диарилпиридинов VI—X

Сое- дине- ние	(CH ₃) ₂ CH	CH=C	(CH ₃) ₂ C=CH	HC(CH ₃) ₂	<u>Н</u> пирид.	Ar
VI	3,08 (1H, спт)	6,10 (1H, c)	1,2о и 1,65 (6H, 2c)	1,18 (6H, д)	7,38 (1H, c)	0,84(6H, м) 1,20—1,60(24H, м) 3,85(4H, м), 6,70—8,05(8H м)
VII	3,10 (1Н, спт)	6,14 (1H, c)	1,15 и 1,68 (6H, 2c)	1,16 (6H, д)	7,46 (1H, c)	7,20— 8,10(18Н, м)
VIII	3,16 (1Н, спт)	6,16 (1H, c)	1,20 и 1,72 (6H, 2c)	1,20 (6H, д)	7,50 (IH, c)	1,50(12H, м), 2,86(2H, м), 7,10—8,20(16H, м),
IX	3,04 (1Н, спт)	6,08 (1H, c)	1,18 и 1,72 (6H, 2c)	1.16 (6H, д)	7,44 (1H, c)	1,40(6H, м), 4,00(4H, м), 6,64—8,04(6H, м),
X	3,12 (1Н, спт)	6,12 (1H, c)	1,14 и 1,70 (6H, 2c)	1,20 (6H, д)	7,46 (1H, c)	3,96(4H, c), 6,96—8,00(18H, м)

растворе 60 г едкого кали в 600 мл метанола. Выделение и очистку соединений II, III проводили аналогично вышеприведенному.

4-Изопропил-3-(2-метил-1-пропенил)-2,6-диарилпиридины VI—X. Раствор 0,1 г-мол дикетонов І—V и 0,2 г-мол солянокислого гидроксиламина в смеси диоксан-метанол 1:1 кипятили в течение 30-44 ч до исчезновения исходных дикетонов по данным ТСХ. Реакционную смесь упаривали, остаток растворяли в эфире, промывали раствором соды, водой и сушили поташом. Растворитель упаривали в вакууме, а остаток кристаллизовали из метанола или гексана. При выделении пиридина VIII остаток после упаривания реакционной смеси растворяли в смеси бензол гексан, промывали раствором соды, водой, сушили поташом и фильтровали через 5 см слой нейтральной окиси алюминия, фильтрат упаривали, а остаток кристаллизовали из метанола.

ЛИТЕРАТУРА

- 1. Харченко В. Г., Чалая С. Н. 1,5-Дикетоны.— Саратов, 1977. 2. Харченко В. Г., Шебалдова А. Д., Красцова В. Н., Смирнова Н. С., Проини А. Ф. Некоторые вопросы химии дикетонов и соединений на их основе. - Саратов, 1979.
- 3. Новиков Л. С., Меженцев В. А., Тищенко И. Г.— ХГС, 1979, № 12, c. 1693.
- 4. Тищенко И. Г., Меженцев В. А., Новиков Л. С., Волков Е. В.— Весці АН БССР. Сер. хім. навук, 1984, № 4, с. 92.
- 5. Новиков Л. С., Тищенко И. Г.— Весці АН БССР. Сер. хім. навук, 1970,
- № 5, с. 79. 6. Новиков Л. С.— Вестн. Белорусского ун-та. Сер. 2, хим., биол., геол., геогр., 1970, № 2, c. 87.
- 7. Меженцев В. А., Новиков Л. С.— Материалы научи.-теорет. конф. молодых ученых. Минск, 1975, с. 450. 8. Новиков Л. С., Тищенко И. Г., Меженцев В. А.— ЖОрХ, 1975, т. 11,
- вып. II, с. 2266.
 - 9. Ånet R.— J. Org. Chem., 1961, v. 26, № 2, p. 246.