дого ξ_i определяем β_i , заменяем G_2 на G_1 и размещаем по ключу $G_1\beta_i$, причем в качестве информации фигурирует G_2 и ξ_i . Элементы разных структур, создавшие коллизию, выявляют взаимнооднозначное соответствие, что и определяет изоморфную подстановку. Такое использование хеширования можно назвать оперативным, так как оно используется для решения поставленной задачи.

Число сравнений с учетом коллизий при установлении изоморфизма:

 $L^1=2kN$, где k — величина коллизии и $k=1\div 5$.

В [8] показано, что число сравнений и обращений в память для простейшего случая графов, имеющих различные пары полустепеней исхода и захода вершин, при использовании обычной памяти равно:

$$L^2=rac{N(N+1)}{2}$$
 ,

где N — число вершин в графе.

Если использовать в качестве свойств пары чисел $(v_{i,j}, w_{i,j})$, где j= $=1, 2; i=1, \ldots, N$ и $v_{i,j}$ — полустепень исхода, а $w_{i,j}$ — полустепень захода, то выигрыш R равен

$$R = \frac{L^2}{L^1} = \frac{N+1}{2k} \approx \frac{N}{2k}.$$

Очевидно, что R есть функция от N.

Можно сделать следующие выводы. Использование памяти предложенного типа, эффективно реализующей табличные операции, дает значительный выигрыш в быстродействии при обработке структур данных. Использование указанной памяти порождает новые алгоритмы решения ряда задач обработки структур данных. Для рассмотренного случая графов выигрыш в скорости равен N/2k. Данная память в аппаратном варианте может быть использована в любой вычислительной системе в качестве внешнего ЗУ. Возможна также реализация системы с использованием такой памяти в качестве оперативного ЗУ. В случае отсутствия аппаратной реализации эту память с точки зрения функциональных возможностей можно осуществить в виде программного комплекса при сохранении выигрыша по времени.

ЛИТЕРАТУРА

1. Вельбицкий И. В., Нетесин И. Е., Шолмов Л. И.— Программирование, 1982, № 1, с. 27.

1982, № 1, с. 27.
2. Яковлев Ю. С.— Управляющие системы и машины, 1983, № 3, с. 15.
3. Липницкий А. С., Черников Г. Н., Шпаковский Г. И. Двухпризнаковая память с хеш-доступом, ч. 1. Структура и функционирование. — Рукопись деп. в ВИНИТИ, № 431-83. Деп. от 26.01.83.
4. Липницкий А. С., Черников Г. Н., Шпаковский Г. И. — Труды Всесоюзной конференции: Развитие теории и техники хранения информации, окт. 1983, с. 53.
5. Липницкий А. С., Черников Г. Н., Шпаковский Г. И., Серикова Н. В. Выбор генератора функций расстановки для параллельной вычислительной системы. — Рукопись деп. в ВИНИТИ, № 347-83. Деп. от 20.03.83.
6. Курейчик В. М., Королев А. Г. — Кибернетика, 1977, № 2, с. 82.
7. Земляченко В. Н., Корненко Н. М., Тышкевич Р. И. — Записки науч. семинаров Ленинградского отделения Матем. ин-та АН СССР, 1982, т. 118, с. 83.
8. Мелихов А. Н. Ориентированные графы и конечные автоматы. — М., 1971, с. 24.

УДК 517.925

А. КЕССИ

УРАВНЕНИЯ С НЕПОДВИЖНЫМИ КРИТИЧЕСКИМИ ОСОБЫМИ ТОЧКАМИ ВИДА $\omega'^m = P_{2m}(z, \omega)$ И ИХ ИНТЕГРИРОВАНИЕ

Будем рассматривать дифференциальные уравнения вида:

$$\omega'^m = P_{2m}(z, w), \tag{1}$$

где $P_{2m}(z, \omega)$ — полином степени не выше 2m от ω и аналитическая функция от z.

Очевидно, что уравнение (1) удовлетворяет первому и второму условиям Фукса. Рассмотрим 3-е условие:

$$F(\omega', \omega, z) = \omega'^m - P_{2m}(z, \omega) = 0.$$
 (2)

Из уравнения (2) получаем:

$$D(\omega, z) = P_{2m}(z, \omega). \tag{3}$$

Из общей теории известно [1], что нули дискриминанта $D(\omega,z)$ должны быть решениями уравнения (1). При $P_{2m}(z,\omega)=0$ $\frac{\partial P_{2m}}{\partial z}+\frac{\partial P_{2m}}{\partial \omega}\cdot\omega'=0$, т. е. при $P_{2m}(z,\omega)=0$ $\frac{\partial P_{2m}}{\partial z}\equiv 0$. Отсюда мы получим, что $P_{2m}(z,\omega)==a_0(z)\cdot P(\omega)$. Тогда уравнение (1) имеет такой вид:

$$\left(\frac{d\omega}{\sqrt[m]{a_0(z)\cdot dz}}\right)^m = P(\omega).$$

Пусть $d\tau = \sqrt[m]{a_0(z)}dz$, тогда получим

$$\left(\frac{-d\omega}{d\tau}\right)^m = P(\omega). \tag{4}$$

Так как уравнения вида (4) уже изучены [2], то можно найти все формы уравнения вида (1) с неподвижными критическими точками и их интегрирования.

ЛИТЕРАТУРА

1. Голубев В. В. Лекции по аналитической теории дифференциальных уравнений — М 1941

ния.— М., 1941. 2. Колесникова Н. С., Лукашевич Н. А.— Дифференц. уравнения, 1972, т. 8. № 10, с. 1753.

УДК 519.872

А. Н. ДУДИН

ОБ ОДНОЙ НЕНАДЕЖНОЙ СИСТЕМЕ МАССОВОГО ОБСЛУЖИВАНИЯ С ИЗМЕНЯЕМОЙ СКОРОСТЬЮ ВХОДЯЩЕГО ПОТОКА

Рассмотрим следующую математическую модель системы массового обслуживания (СМО) с ожиданием. В систему поступают требования, длина которых имеет распределение $B(\tau)$ с преобразованием Лапласа—

Стилтьеса
$$\beta(s)$$
 и конечными моментами $b_j = \int\limits_0^\infty \tau^j dB(\tau)$, $j = 1, 2$. В течение

времени, имеющего экспоненциальное распределение с параметром φ_1 , система функционирует нормально: в систему поступает простейший поток требований интенсивности λ_1 , происходит обслуживание требований с постоянной скоростью δ_1 единиц длины в единицу времени. По истечении времени нормального функционирования системы происходит поломка прибора. Время, затрачиваемое на его ремонт, имеет распределение $D(\tau)$ с преобразованием Лапласа — Стилтьеса d(s) и конечными мо-

ментами $d_{j} = \int_{0}^{\infty} \tau^{j} dD(\tau)$, j = 1, 2. Во время ремонта в систему поступает

простейший поток требований интенсивности λ_2 , обслуживание требований не производится. После окончания ремонта снова начинается нормальное функционирование СМО, причем требование, находившееся на приборе в момент поломки, дообслуживается. Требуется найти производящую функцию стационарного распределения вероятностей числа требований в данной системе. Эта задача решена в [1], когда распределения $B(\tau)$ и $D(\tau)$ экспоненциальные, в [2], когда эти распределения эрланговские. Решим эту задачу в случае произвольных распределений $B(\tau)$, $D(\tau)$.