ОЦЕНКА СВЯЗЫВАНИЯ И ПЕРОКСИДАЗНОЙ АКТИВНОСТИ КОМПЛЕКСОВ [CytC - DOPA]. РОЛЬ ФОСФАТИДНОЙ КИСЛОТЫ В МОЛЕКУЛЯРНЫХ МЕХАНИЗМАХ КЛЕТОЧНОЙ ГИБЕЛИ

Конюхова С.П., Степанов Г.О., Осипов А.Н.

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия

На сегодняшний день управление механизмами программируемой смерти клетки, такими как апоптоз и ферроптоз, может лежать в основе лечения и профилактики многих социально значимых заболеваний. В развитии запрограммированной клеточной гибели важную роль играет окисление фосфолипидов мембран. Но до сих пор не все механизмы ясны: так, взаимодействие цитохрома c (CytC) с кардиолипин-содержащими мембранами ведет к увеличению пероксидазной активности CytC и запускает апоптоз [1, 2]. Непонятно, почему при наличии кардиолипина (CL) и CytC в составе митохондрий нормальных клеток они не погибают самопроизвольно. Возможно другие фосфолипиды, например, фосфатидная кислота (PA), которая структурно похожа на CL, участвуют в развитии этих процессов?

Цель настоящего исследования – сравнение способности CytC формировать комплексы с PA и CL и изменение пероксидазной активности этих комплексов. Изменение конформации CytC при его взаимодействии с фосфолипидами приводит к резкому повышению его пероксидазной активности, что можно показать при образовании феноксильного радикала этопозида методом электронного парамагнитного резонанса (ЭПР). Связывание CytC с мембранами было измерено методом спектрофлуоресценции с использованием флуоресцентной метки NBD(C6)PC на фосфолипидах.

В результате измерений тушения флуоресцентно-меченных фосфолипидов была показана способность СуtС взаимодействовать с мембранами, содержащими СL или PA, причем с PA более выраженно (в 1,6 раз). Одновременно, СуtС-фосфолипидные комплексы изучались по способности влиять на пероксидазную активность. Данные измерения были выполнены при помощи метода ЭПР. Присутствие как CL, так и PA демонстрирует увеличение пероксидазной активности в 1,8 и 1,7 раз соответственно.

Таким образом, PA, как и CL, может приводить к резкому увеличению пероксидазной активности CytC, чему предшествует в 1,6 раз более выраженное, чем у CL, связывание CytC с биологическими мембранами. А повышение пероксидазной активности CytC способствует изменению проницаемости, порообразованию мембран митохондрий, выходу железа из CytC и развитию клеточной гибели. Данные наблюдения позволяют предполагать значимую роль PA в процессах инициации гибели клеток.

Библиографические ссылки

- 1. Vladimirov Y.A., Proskurnina E.V., Alekseev, A.V. Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex // Biochemistry Moscow. 2013. Vol. 78. No. 10. P. 1391–1404.
- 2. Stepanov G.O., Gnedenko O.V., Osipov A.N. et. al. Evaluation of cytochrome c affinity to anionic phospholipids by means of surface plasmon resonance // FEBS Letters. 2006. Vol. 583. P. 97–100.