агара, стерильный субстрат перлит : вермикулит (1:1),10 г/л сахарозы (73,88 и 81,25% соответственно). Во втором случае микроклональные растения характеризовались более интенсивным ростом и развитием. Высокая приживаемость растений $T.\ cordata$, в отличие от $T.\ platyphyllos$, установлена для варианта ½ MS, 0,3 мг/л ИМК,10 г/л сахарозы (80,56 и 42,86% соответственно).

Сессия 8

Изучение взаимосвязи генетической регуляции накопления флавоноидов и каротиноидов в зависимости от аллельного состава генов, определяющих качество плодов томата

Бабак О.Г.^{А*}, Некрашевич Н.А.^A, Дрозд Е.В.^A, Анисимова Н.В.^A, Яцевич К.К.^A, Соловьева А.Е.^Б, Курина А.Б.^Б, Артемьева А.М.^Б, Фатеев Д.А.^Б, Кильчевский А.В.^A

^АИнститут генетики и цитологии НАН Беларуси, лаборатория экологической генетики и биотехнологии, Минск, Беларусь

^БВсероссийский институт генетических ресурсов растений им. Н. И. Вавилова (ВИР), Санкт-Петербург, Россия

*E-mail: O.Babak@igc.by

Выполнен биохимический анализ накопления каротиноидов и антоцианов у форм томата в зависимости от аллельного состава структурных и регуляторных генов качества плодов на широкой коллекции образцов Института генетики и цитологии и ВИР. ДНК-скрининг форм томата осуществлялся по целевым аллелям: rin, nor, r, at, t, og, og^c , B, gf-3, gf-5, hp-1, hp-2 dg , u, gs, SlMyb12, Ant1. На основе сопоставления данных молекулярной оценки и биохимического анализа получены следующие результаты: показано повышение концентрации пигментов в плодах при наличии в генотипе аллелей: U, $hp-2^{dg}$, аллелей gf; подтверждены закономерности накопления форм каротинов в плодах томата в зависимости от аллелей гена ликопин-В-пиклазы: максимальное накопление ликопина у форм с сочетанием аллелей og^c , каротина – с аллелем B, преимущественное накопление ликопина – у форм с аллелем b; выявлен регуляции накопления взаимосвязи генетической флавоноидов каротиноидов: максимальное накопление антоцианов в плодах томата, в генотипе которых присутствуют аллели Ant1, Y, U, сопряжено с уменьшением концентрации ликопина в плодах; наличие аллеля у гена халконсинтазы увеличивает накопление ликопина в плодах томата. Отобраны образцы S. lycopersicum с различным сочетанием аллелей генов накопления флавоноидов и каротиноидов как для дальнейшего изучения генетической регуляции накопления пигментов в плодах и использования в селекционном процессе, направленном на создание форм с высоким уровнем антиоксидантной активности.

Коллекция бородатых корней «hairy roots», как основа для фундаментальных и прикладных исследований

Степанова А.Ю.*, Соловьева А.И., Малунова М.В., Евсюков С.В., Карпычев И.В. Институт физиологии растений им. К.А. Тимирязева, группа специализированного метаболизма корней Отдела биологии клетки и биотехнологии, Москва, Россия *E-mail: step_ann@mail.ru

В связи с ростом населения, нестабильностью климатических условий и уменьшением территорий, возникает необходимость в привлечении современных генетических подходов для получения высокопродуктивного растительного материала. Данное утверждение относится как к созданию сортов растений, так и получению нового фармацевтического сырья. Генетическая трансформация растительных клеток с