ЛАЗЕРЫ И ИХ ПРИМЕНЕНИЕ

УДК 621.378.35

ИЗЛУЧАТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ДВУХСЕКЦИОННОЙ ЛАЗЕРНОЙ СТРУКТУРЫ НА ОСНОВЕ δ-ЛЕГИРОВАННОЙ СВЕРХРЕШЕТКИ

© 2003 г. Д. В. Ушаков*, В. К. Кононенко**, И. С. Манак*

*Белорусский государственный университет. 220050 Минск, Белоруссия **Институт физики им. Б.И. Степанова НАНБ, 220072 Минск, Белоруссия E-mail:lavik@dragon.bas-net.by Поступила в редакцию 07.08.2002 г.

Теоретически исследованы спектральные характеристики двухсекционной лазерной структуры с δ -легированными активными областями. Большой диапазон перестройки длины волны генерации обусловливается в первую очередь особенностями спектров усиления *n-i-p-i*-кристаллов: зависимостью эффективной ширины запрещенной зоны сверхрешетки от уровня возбуждения, характером изменения интегралов перекрывания волновых функций электронов и дырок и уширением электронных спектров из-за флуктуаций электростатического потенциала. В зависимости от токов накачки в секциях лазерной структуры можно получить перестройку длины волны генерации в широком спектральном диапазоне в инфракрасной области спектра в режимах стационарной генерации, переходного процесса и регулярных пульсаций. В режиме самоподдерживающихся пульсаций возможна также генерация излучения на двух далеко разнесенных длинах волн.

ВВЕДЕНИЕ

Для систем оптической обработки информации и спектрального анализа необходимы источники лазерного излучения, перестраиваемые в широком диапазоне длин волн. Большими возможностями управления длиной волны генерации обладают удобные в эксплуатации инжекционные лазеры [1]. Например, в лазерных диодах на основе асимметричных квантоворазмерных гетероструктур с неоднородным возбуждением реализована квазинепрерывная перестройка длины волны генерации в области 0.8 мкм на 22 нм [2]. Перестройка длины волны при неоднородном возбуждении многосекционных лазеров связана с изменением добротности резонатора, вследствие чего изменяется положение максимума усиления.

При подборе параметров асимметричных квантово-размерных лазерных гетероструктур имеются широкие возможности управления спектром усиления и соответственно кривыми перестройки излучателей для диодной лазерной спектроскопии [3]. На этой основе могут быть созданы также новые генераторы регулярных импульсов света для приборов интегральной оптики, дальнометрии, калибровки детекторов, контроля записи информации и автоматического управления.

Режим динамической перестройки спектра излучения импульсных лазеров – режим свипирования – наиболее эффективен при использовании активных сред с широкими однородно уширенными полосами усиления [4]. В этих случаях может быть обеспечен широкий диапазон перестройки длины волны при высоких значениях спектральной яркости генерируемого излучения и плавном изменении интегральной модности. Свип-лазеры описаны на таких активных средах, как растворы красителей [5] и кристаллы с центрами окраски [6]. Из-за малых длительностей генерации импульсных лазеров на этих активных средах (порядка 10⁻⁸-10⁻⁵ с) требуются скорости управления спектром селективных потерь резонатора не менее 10³ см⁻¹/мкс. Увеличение скорости свипирования, поиск новых принципов динамической перестройки спектра генерации важны также с точки зрения повышения экспрессности спектроскопических исследований.

К широкополосным лазерным системам относятся структуры на основе легированных сверхрешеток, или *n-i-p-i*-кристаллов [7, 8]. Их мощностные и спектральные характеристики перестраиваются в результате трансформации электронного спектра в процессе возбуждения и излучения [9]. Большие возможности открываются при неоднородном возбуждении двухсекционной лазерной структуры на δ-легированном *n-i-p-i*-кристалле [10–12]. В данной работе обсуждаются различные режимы генерации таких лазеров и анализируется процесс свипирования длины волны генерации в широком диапазоне в инфракрасной области спектра.

ПЕРЕСТРОЙКА СПЕКТРА УСИЛЕНИЯ

В легированных полупроводниковых сверхрешетках перестройка энергетических и спектральных характеристик обусловлена в основном изменением глубины потенциального рельефа $2\Delta V$ и соответственно эффективной ширины запрещенной зоны E' при увеличении уровня возбуждения кристалла. Поэтому для получения больших диапазонов перестройки необходимо выбирать структуры с большими значениями 2 ΔV и короткими периодами сверхрешетки. По сравнению с обычными легированными сверхрешетками в δ-легированных *n-i-p-i*-кристаллах при одинаковых периодах реализуются большие значения $2\Delta V$ [7, 8]. Кроме того, в структурах с б-легированными слоями из-за более сильного перекрывания волновых функций электронов и дырок значительное усиление достигается при сравнительно малых уровнях возбуждения кристалла [13, 14].

Далее остановимся на четырехпериодной δ -легированной *n-i-p-i*-сверхрешетке на основе GaAs с равными поверхностными концентрациями донорных и акцепторных примесей ($N_d d_n = N_d d_p =$ = 10¹³ см⁻²) и нелегированной областью шириной $d_i = 9$ нм. Зонная диаграмма такой структуры схематически представлена на рис. 1. Период сверхрешетки составляет порядка $d = d_n + d_p + 2d_i = 20$ нм. В лазерной структуре выделяются две неоднородно возбуждаемые секции, одна из которых (или обе) усиливает излучение.

Расчет профиля потенциальной энергии, уровней размерного квантования и волновых функций электронов и дырок проводился путем численного самосогласованного решения уравнений Шредингера и Пуассона с учетом эффектов экранирования носителями заряда, сужения запрещенной зоны и флуктуаций концентраций примесей [9]. Спектр усиления и скорость спонтанной излучательной рекомбинации рассчитывались в модели прямых переходов и гауссовых "хвостов" плотности состояний. Процедура учета эффектов уширения электронного спектра и расчета спектров испускания легированных сверхрешеток подробно описана в [15].

Диапазон перестройки длины волны генерации при заданном усилении в максимуме результирующего спектра усиления $k(\lambda)$ двухсекционного лазера зависит от значений относительных протяженностей неоднородно возбуждаемых частей активной области r_1 и r_2 ($r_1 + r_2 = 1$)

$$k(\lambda) = r_1 k_1(\lambda) + r_2 k_2(\lambda),$$

где k_1 и k_2 – коэффициенты усиления в первой и второй секциях. При этом в режиме стационарной генерации результирующий коэффициент усиления $k(\lambda)$ в максимуме спектра усиления должен равняться коэффициенту потерь k_l .

Рис. 1. Профиль легирования $N_d(z)$ и $N_a(z)$ (а) и зонная диаграмма (б) δ -легированной сверхрешетки на GaAs. Показаны также уровни энергии электронов и тяжелых дырок и края зон эмиттеров E_c и E_v .

Рис. 2. Спектры усиления в первой $r_1k_1(\lambda)$ (1) и второй $r_2k_2(\lambda)$ (2) секциях, а также суммарное усиление $k(\lambda)$ (3) при $r_1 = 0.7$, $r_2 = 0.3$ и различных двухмерных концентрациях электронов: $n_1 = 8.2 \times 10^{12}$ см⁻², $n_2 = 0.5 \times 10^{12}$ см⁻² (a); $n_1 = n_2 = 4.9 \times 10^{12}$ см⁻² (б).

На рис. 2 приведены спектры усиления при различных уровнях возбуждения лазерной структуры [10]. Для заданного коэффициента потерь максимальная длина волны генерации достигается при равных двухмерных концентрациях электронов n_1 и n_2 соответственно в первой и второй секциях структуры (рис. 2б). При этом в обеих секциях лазера свет усиливается. С ростом концентрации электронов в усиливающей секции уровень возбуждения второй секции для выполнения порогового условия $k_{max}(\lambda) = k_l$ должен быть ниже и длина волны в максимуме результирующего спектра усиления уменьшается.

Диапазон перестройки длины волны излучения ограничен максимально допустимым значением плотности тока инжекции в усиливающей секции диода j_{max} . При заданном j_{max} больший диапазон перестраиваемых длин волн излучения достигается при увеличении протяженности усиливающей части [10]. Как видно из рис. За, для $j_{max} \approx 300$ A/см² при значениях $r_1 = 0.5$, 0.6 и 0.7 область перестройки составляет 33, 48 и 63 нм соответственно.

Следует отметить, что при больших значениях *r*₁ для перестройки максимума спектра усиления в коротковолновую область требуются достаточно низкие уровни возбуждения поглощающей сек-

Рис. 3. Изменение плотности тока накачки j (а) и излучательного времени жизни τ (б) при перестройке длины волны в максимуме результирующего спектра усиления при $r_1 = 0.5$ (I), 0.6 (2), 0.7 (3). Стрелками показаны направления изменения j и τ в первой (I) и второй (II) секциях лазера.

ции и соответственно получаются большие значения излучательного времени жизни неравновесных носителей тока, которые могут достигать 1 мкс и более (рис. 36). При этом генерация достигается при низких значениях плотности тока накачки в поглощающей секции диода (до 0.1 А/см²). Чтобы устранить эффекты насыщения в поглощающей секции и последующее изменение спектра усиления, необходимо уменьшать эффективное время жизни неравновесных носителей в этой секции при соответствующем увеличении тока.

Это можно осуществить путем введения дополнительных дефектов структуры при ионной имплантации или облучении быстрыми частицами [16]. Облучение тяжелыми ионами приводит к аморфизации материала вдоль трека ионов и созданию при малых дозах облучения в матрице полупроводникового материала локальных областей с достаточно высокой скоростью безызлучательной рекомбинации. Например, облучение GaAs ионами кислорода высокой энергии приводит к возникновению эффективного канала безызлучательной рекомбинации, уменьшающего время жизни электронов до единиц пикосекунд при дозах облучения выше 10¹² см⁻² [17, 18]. Отмечается также, что имплантация не приводит к заметному изменению структуры и формы полос люминесценции или появлению новых линий излучения. С другой стороны, облучение электронами отражается на спектрах фотолюминесценции GaAs [19]. Уменьшение времени жизни носителей тока в двухсекционном лазерном диоде может быть достигнуто также при достаточно большом градиенте потенциала [20].

УСТОЙЧИВОСТЬ СТАЦИОНАРНОЙ ГЕНЕРАЦИИ

Динамика генерации излучения двухкомпонентного инжекционного лазера, в котором распространяющееся вдоль волноводной части структуры излучение поочередно проходит через участки активного слоя с различными уровнями возбуждения, в одномодовом приближением описывается следующей системой скоростных уравнений [21]:

$$\frac{dn_1}{dt} = \frac{j_1}{ed} - \frac{R_1}{\eta_1} - v_g G_1 S,$$

$$\frac{dn_2}{dt} = \frac{j_2}{ed} - \frac{R_2}{\eta_2} - v_g G_2 S,$$
 (1)
$$\frac{dS}{dt} = v_g (r_1 G_1 + r_2 G_2 - k_l) S + \beta (r_1 R_1 + r_2 R_2),$$

где j_1 и j_2 – плотности тока, R_1 и R_2 – скорости спонтанной рекомбинации, η_1 и η_2 – квантовые выходы люминесценции в секциях l и 2, v_g – групповая скорость света в кристалле, $G_1 = k_1/(1 + \epsilon_1 S)$ и $G_2 = k_2/(1 + \epsilon_2 S)$ – модовые коэффициенты усиления (поглощения) в соответствующих секциях, ϵ_1 и ϵ_2 – параметры нелинейного усиления (поглощения), β учитывает вклад спонтанных переходов в лазерную моду. Здесь плотность фотонов S и объемные концентрации носителей тока n_1 и n_2 в секциях I и II приведены к периоду сверхрешетки d.

Проанализируем устойчивость стационарного решения системы уравнений (1). Ввиду незначительности вклада спонтанного излучения в лазерную моду ограничимся рассмотрением в приближении самовозбуждения ($\beta = 0$). Для анализа устойчивости по Ляпунову необходимо найти корни характеристического уравнения

$$\begin{vmatrix} -\theta_{1} - x & 0 & -v_{g}G_{1}(1 - \xi_{1}) \\ 0 & -\theta_{2} - x & -v_{g}G_{2}(1 - \xi_{2}) \\ v_{g}r_{1}G'_{1}S & v_{g}r_{2}G'_{2}S & -\theta_{3} - x \end{vmatrix} = 0.$$
(2)

Здесь использованы обозначения: $G'_i = \partial G_i(n_i, S)/\partial n_i$, $\theta_i = \partial (R_i/\eta_i)/\partial n_i + v_g G'_i S$, $\xi_i = \varepsilon_i S/(1 + \varepsilon_i S)$, i = 1, 2; $\theta_3 = v_g (r_1 \xi_1 G_1 + r_2 \xi_2 G_2)$. Вычисление определителя Здесь $F_i = v_g^2 r_i G'_i G_i (1 - \xi_i) S$, i = 1, 2.

сительно х

Стационарное решение системы уравнений (1) устойчиво при выполнении двух условий. Во-первых, свободный член уравнения (3) должен быть положителен. Во-вторых, должно выполняться условие

(2) приводит к уравнению третьей степени отно-

 $x^{3} + x^{2}(\theta_{1} + \theta_{2} + \theta_{3}) +$

+ $x[F_1 + F_2 + \theta_1\theta_2 + (\theta_1 + \theta_2)\theta_3]$ +

$$\theta_{1}\theta_{2}(\theta_{1}+\theta_{2})+\theta_{1}F_{1}+\theta_{2}F_{2}+ \\ +\theta_{3}[F_{1}+F_{2}+(\theta_{1}+\theta_{2})(\theta_{1}+\theta_{2}+\theta_{3})] > 0.$$
(4)

Анализ условия (4) показывает, что режим генерации становится неустойчивым и возникают, в частности, автоколебания при наличии поглощения излучения в одной из секций, например в II ($G_2 < 0$). Кроме того, так как условие устойчивости (4) включает положительные слагаемые с кубической зависимостью от плотности фотонов S, а отрицательные – только с квадратичной, то, очевидно, автоколебания отсутствуют при достаточно высокой плотности фотонов. При малой величине S неравенство (4) также выполняется. Таким образом, автоколебания возможны только в определенном интервале токов накачки в секциях.

Для получения автоколебаний интенсивности генерируемого излучения, кроме большой величины дифференциального параметра $\partial G_2/\partial n_2$, поглощающая секция II должна обладать также малой постоянной времени τ_2 , которая обратна величине $\partial (R_2/\eta_2)/\partial n_2$. Так как квантовый выход люминесценции в поглощающей секции равен

$$\eta_2 = \frac{R_2(n_2)}{R_2(n_2) + n_2/\tau_{n_2}^2},$$
(5)

то выражение для τ_2 имеет вид

$$1/\tau_2 = \partial R_2/\partial n_2 + 1/\tau_{nr2}.$$
 (6)

Здесь τ_{nr2} определяет время жизни носителей тока относительно безызлучательной рекомбинации.

Как отмечалось выше, из-за разнесения потенциальных ям для электронов и дырок легированная сверхрешетка в поглощающей секции обладает большим излучательным временем жизни носителей тока при слабом уровне возбуждения, необходимом для получения генерации в коротковолновой области перестройки. Поэтому без дополнительных мер по уменьшению времени жизни носителей в поглощающей секции стацио-

ОПТИКА И СПЕКТРОСКОПИЯ том 94 № 3 2003

нарная генерация реализуется только при обратном токе в этой секции, что соответствует обратному смещению и истощению носителей. Однако при вводе безызлучательного канала рекомбинации, например путем имплантации ионов кислорода, доминирующую роль начинает играть безызлучательная рекомбинация. В результате время жизни неравновесных носителей в поглощающей секции падает согласно (6) и перестройка длины волны генерации может осуществляться при прямом токе инжекции в обеих секциях.

Расчеты областей различных режимов генерации двухсекционного лазера, основанные на анализе условий устойчивости [12], показывают, что для значения безызлучательного времени жизни $\tau_{nr2} = 1$ нс свободный член уравнения (3) оказывается положительным в широкой области токов накачки и легко выполнимо условие (4) устойчивой стационарной генерации. При $r_1 = 0.7$ спектральный диапазон перестройки стационарной генерации может достигать 30 нм – от значений длин волн 1053 до 1083 нм.

ДИНАМИКА ГЕНЕРАЦИИ

Значительная перестройка длины волны генерации возможна только в импульсном режиме. Динамические процессы в двухсекционном лазере исследуем на основе следующей системы уравнений [11, 22]:

$$\frac{dn_i}{dt} = \frac{j_i}{ed} - \frac{R_i(n_i)}{\eta_i} - v_g \sum_j \frac{k_i(n_i, \lambda_j)}{1 + \varepsilon S_{\text{tot}}} S_j,$$

$$\frac{dS_j}{dt} = v_g \sum_i \frac{r_i k_i(n_i, \lambda_j)}{1 + \varepsilon S_{\text{tot}}} S_j - v_g k_l S_j + \beta \sum_i r_i R_i(n_i).$$
(7)

Здесь индекс i = 1, 2 соответствует первой и второй секциям лазера. Отметим, что в нестационарном режиме генерирует несколько мод, поэтому в системе скоростных уравнений присутствует набор плотностей фотонов S_j для N мод (j = 1, ..., N). Результирующая плотность фотонов S_{tot} определяется как сумма всех мод $S_{tot} = \sum_j S_j$, а среднее значение длины волны генерируемого излучения определяется следующим образом:

$$\lambda_{\rm av}(t) = \frac{\sum_{j} \lambda_{j} S_{j}(t)}{S_{\rm tot}(t)}.$$
(8)

Для простоты принималось также $\varepsilon_1 = \varepsilon_2 = \varepsilon$. Квантовый выход люминесценции в первой секции η_1 полагался равным 1, а во второй части диода η_2 рассчитывалось по формуле (5).

(3)

Рис. 4. Режим самоподдерживающихся пульсаций излучения в двухсекционном лазере. а, в – зависимость от времени двухмерной концентрации электронов *n* в первой (1) и второй (2) секциях лазера; б, г – зависимость от времени суммарной плотности фотонов S_{tot} . Плотность тока в секциях $j_1 = 300 \text{ A/cm}^2$, $j_2 = 10 \text{ A/cm}^2$ (a, б); $j_1 = 200 \text{ A/cm}^2$, $j_2 = 390 \text{ A/cm}^2$ (в, г). Числа у пичков $S_{\text{tot}}(t)$ дают значения средних длин волн генерируемых импульсов излучения λ_{av} (в нм); $k_l = 50 \text{ см}^{-1}$, $\tau_{nr2} = 1$ нс, $\varepsilon = 5 \times 10^{-18} \text{ см}^3$, $r_1 = 0.7$.

Рис. 5. а. в – зависимость от времени двухмерной концентрации электронов *n* в первой (1) и второй (2) секциях лазера; б. г – зависимость от времени суммарной плотности фотонов S_{tot} . Плотность тока в секциях $j_1 = 500 \text{ A/cm}^2$, $j_2 = 30 \text{ A/cm}^2$ (a. 6); $j_1 = 100 \text{ A/cm}^2$, $j_2 = 700 \text{ A/cm}^2$ (в. г). Числа у пичков $S_{tot}(t)$ дают значения λ_{av} (в нм); $k_l = 50 \text{ cm}^{-1}$, $\tau_{nr2} = 1 \text{ нс}$, $\varepsilon = 5 \times 10^{-18} \text{ сm}^3$, $r_1 = 0.7$.

Анализ динамики генерации показал, что в двухсекционном лазере на основе δ-легированной сверхрешетки можно осуществить три способа перестройки длины волны излучения. Один способ реализуется в режиме самоподдерживающихся пульсаций излучения [12]. Режим незатухающих пульсаций излучения возникает в условиях, когда стационарное решение системы скоростных уравнений (1) неустойчиво. Область токов накачки, при которых возникают автомодуляционные пульсации излучения, ограничена сверху границей устойчивости, а снизу – пороговыми значениями токов. Наименьшая длина волны генерации самоподдерживающихся пульсаций излучения получается при малых токах в поглощающей секции *j*₂. Для больших значений *j*₂ реализуется наибольшая длина волны незатухающих пульсаций.

На рис. 4 представлены зависимости концентраций электронов в усиливающей n₁ и поглощающей n₂ секциях лазера и суммарной плотности фотонов S_{tot} от времени после подачи ступеньки токов накачки, определяющих две различные установившиеся длины волны излучения регулярных импульсов. Потери, вносимые поглощающей секцией, способствуют накоплению носителей тока в зонах. Развивающийся импульс излучения просветляет поглощающую секцию, что приводит к резкому уменьшению суммарных потерь, в результате чего накопленная инверсная населенность идет на генерацию мощного пика излучения. После срыва генерации населенность n_1 растет в результате инжекции, а концентрация n₂ падает вследствие безызлучательной рекомбинации, и далее процесс повторяется. Как видно из рис. 46, с ростом тока в поглощающей секции лазера происходит уменьшение периода следования и амплитуд генерируемых импульсов излучения. Таким образом, регулируя ток в секциях, можно в динамическом режиме перестроить длину волны генерации в диапазоне 1017-1062 нм.

Отметим, что в режиме самоподдерживающихся пульсаций в двухсекционном лазере на основе легированной сверхрешетки возможна генерация сдвоенных спектрально разнесенных импульсов (рис. 4а). Появление длинноволнового импульса излучения следом за первым коротковолновым мощным импульсом излучения объясняется следующим образом [12]. После окончания первого импульса излучения концентрация неравновесных носителей в поглощающей секции возрастает, а в усиливающей падает. Результирующий коэффициент усиления в коротковолновой области оказывается мал, а его максимум сдвигается в область больших длин волн. Если суммарный коэффициент усиления в некотором интервале длин волн оказывается больше коэффициента потерь, то происходит генерация длинноволнового импульса излучения. В этом случае поглощающая секция вносит своеобразные "динамические потери" [23], изменяющиеся во времени ($r_2k_2(\lambda, t) < 0$). Для рассматриваемой лазерной структуры в режиме самоподдерживающихся пульсаций излучения генерация сдвоенных импульсов осуществляется на длинах волн 1018 и 1054 нм. При этом длительности световых импульсов составляют ~30 пс.

Другой способ перестройки длины волны генерации в двухсекционном лазере на основе б-легированной сверхрешетки связан с изменением длины волны в первом релаксационном пичке при вариации токов накачки в первой и второй секциях диода [11]. Как показывают расчеты, наибольший диапазон) перестройки в первом релаксационном пичке достигается для плотностей тока, соответствующих области устойчивой стационарной генерации.

Наименьшая длина волны генерации реализуется для малых значений тока в поглощающей и больших – в усиливающей секциях структуры. Если в отсутствие безызлучательного канала рекомбинации ($\tau_{nr} \rightarrow \infty$) наибольшая длина волны в первом релаксационном пичке достигается при равных плотностях тока в обеих секциях лазера, то при введении безызлучательных центров плотности токов инжекции в секциях для этих условий генерации становятся различными.

Динамика изменения двухмерных концентраций электронов в первой и второй секциях лазера и суммарной плотности фотонов при подаче ступеньки токов накачки показана на рис. 5. Видно, что средняя длина волны в первом релаксационном пичке может варьироваться в широких пределах в диапазоне длин волн 1016–1080 нм в зависимости от амплитуды токов накачки в секциях. Аналогичные оценки, выполненные для двухсекционных лазеров с активной областью на основе объемных полупроводников, дают диапазон перестройки менее 10 нм [22].

Как видно из рис. 56, лазер может генерировать последовательность импульсов с длиной волны, увеличивающейся от 1016 до 1058 нм, подобно свип-лазеру [4–6, 23], что можно считать еще одним способом перестройки длины волны генерации [11]. Больший диапазон и более плавную перестройку длины волны во времени можно получить, если в одну из секций лазера не вводить дополнительный канал рекомбинации [11]. Так, при квантовом выходе люминесценции в поглощающей секции лазера $\eta_2 \approx 1$ диапазон перестройки длины волны генерации длины волны генерации может достигать 73 нм – от 1007 нм в первом релаксационном пичке до 1080 нм в установившемся стационарном режиме. Диапазон перестройки зависит также от

Рис. 6. Модовый состав излучения $S(\lambda)$ в различные моменты времени t = 3.19 (а). 3.26 (б) и 3.47 нс (в); $j_1 = 500 \text{ A/cm}^2$, $j_2 = 20 \text{ A/cm}^2$, $k_l = 50 \text{ cm}^{-1}$, $\varepsilon = 5 \times 10^{-18} \text{ cm}^3$, $r_1 = 0.7$.

относительных длин секций лазера. При заданных токах инжекции в секциях диапазон перестройки длины волны изменяется от 69 нм при $r_1 = 0.6$ до 63 нм при $r_1 = 0.7$ и достигает максимальной величины ~73 нм при $r_1 = 0.65$.

На рис. 6 представлен модовый состав излучения в различные моменты времени. При расчетах межмодовое расстояние полагалось равным 1.4 мэВ, что соответствует длине резонатора ~100 мкм. Как видно, набор генерируемых мод заметно изменяется во времени. Средние значения длин волн генерации в моменты времени t = 3.19, 3.26 и 3.47 нс составляют соответственно 1017, 1055 и 1075 нм.

ЗАКЛЮЧЕНИЕ

Таким образом, в зависимости от токов накачки в секциях лазерной структуры на основе δ-легированной сверхрешетки можно получить перестройку длины волны излучения в широком спектральном диапазоне в режимах стационарной генерации, переходного процесса и регулярных пульсаций. В режиме самоподдерживающихся пульсаций возможна также генерация излучения на двух далеко разнесенных длинах волн. В структурах на GaAs диапазон перестройки в области длин волн 1 мкм достигает 70 нм.

Авторы выражают благодарность за обсуждение результатов и помощь в работе А.А. Афоненко. Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Nadezhdinskii A.I., Prokhorov A.M. // Proc. SPIE. 1992.
 V. 3724. P. 2–62.
- Ikeda S., Shimizu A., Sekiguchi Y., Hasegawa M., Kaneko K., Hara T. // Appl. Phys. Lett. 1989. V. 55. № 20. P. 2057–2059.
- Kononenko V.K., Afonenko A.A., Manak I.S., Nalivko S.V. // Opto-Electron. Rev. 2000. V. 8. № 3. P. 241– 250.
- 4. Анохов С.П., Марусий Т.Я., Соскин М.С. Перестраиваемые лазеры. М.: Радио и связь, 1982. 360 с.
- 5. Карпушко Ф.В., Синицын Г.В. // Письма в ЖТФ. 1977. Т. 3. № 8. С. 337–339.
- Карпушко Ф.В., Саскевич Н.А. // Письма в ЖТФ. 1980. Т. 6. № 5. С. 264–267.
- 7. Schubert E.F. // Surf. Sci. 1990. V. 228. № 1–3. P. 240– 246.
- Schubert E.F. // Opt. Quant. Electron. 1990. V. 22. № 1. P. S141–S186.
- Kononenko V.K., Manak I.S., Ushakov D.V. // Proc. SPIE. 1998. V. 3580. P. 10–27.
- Ушаков Д.В., Афоненко А.А., Манак И.С. // Лазерная физика и спектроскопия: Материалы IV Междунар. конф. по лазерной физике и спектроскопии. Ч. 1. Гродно, 1999. С. 125–127.
- 11. Ушаков Д.В., Афоненко А.А., Манак И.С. // Lithuanian J. Phys. 1999. V. 39. № 4–5. Р. 361–364.
- Ushakov D.V., Kononenko V.K., Manak I.S. // Proc. 2nd Int. Conf. on Transparent Optical Networks. Gdansk, 2000. P. 41–44.
- Ushakov D.V., Kononenko V.K. // Physics, Chemistry and Application of Nanostructures. Singapore, 1997. P. 121–124.
- Ushakov D.V., Kononenko V.K., Manak I.S. // Nonlinear Phenomena in Complex Systems. Minsk, 1999. P. 144– 151.
- 15. Ушаков В.В., Кононенко В.К., Манак И.С. // ЖПС. 1999. Т. 66. № 5.С. 711–715.

ОПТИКА И СПЕКТРОСКОПИЯ том 94 № 3 2003

- Коршунов Ф.П., Гатальский Г.Б., Иванов Г.М. Радиационные эффекты в полупроводниковых приборах. Минск: Наука и техника, 1978. 231 с.
- 17. Алферов Ж.И., Журавлев А.Б., Портной Е.Л., Стельмах Н.М. // Письма в ЖТФ. 1986. Т. 12. № 18. С. 1093–1098.
- Журавлев А.Б., Марущак В.А., Портной Е.Л., Стельмах Н.М., Титков А.Н. // ФТП. 1988. Т. 22. № 2. С. 352–354.
- 19. Коршунов Ф.П., Мудрый А.В., Патук А.И., Шакин И.А. // ЖПС. 1997. Т. 64. № 1. С. 122–124.
- 20. Васильев П.П., Голдобин И.С. // А.с. 1614056. БИ. 1990. № 46. С. 230.
- 21. Ривлин Л.А., Семенов А.Т., Якубович С.Д. Динамика и спектры излучения полупроводниковых лазеров. М.: Радио и связь, 1983. 208 с.
- 22. Афоненко А.А. // Автореф. канд. дис. Минск, 1997.
- 23. Казберук А.В., Карпушко В.Ф., Синицин Г.В. // ЖПС. 1980. Т. 33. № 3. С. 561–564.