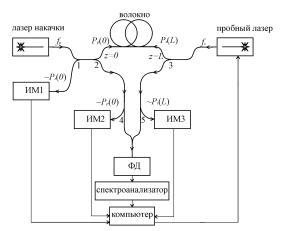
МОДЕЛИРОВАНИЕ РАБОТЫ ОПТОВОЛОКОННОГО СЕНСОРА ТЕМПЕРАТУРЫ И ДЕФОРМАЦИИ С ИСПОЛЬЗОВАНИЕМ РАССЕЯНИЯ МАНДЕЛЬШТАМА-БРИЛЛЮЭНА

Т. П. Янукович, А. С. Исмайилова

БГУ, Минск, Республика Беларусь E-mail: YanukovichTP@bsu.by

Рассмотрено моделирование вынужденного рассеяния Мандельштама-Бриллюэна с учетом усиления и его зависимости в оптическом волокне от температуры и давления. Рассмотрена модель распределенного сенсора температуры и деформации. Описан метод разделения температурного и деформационного сигнала.


Ключевые слова: *оптоволоконный распределенный сенсор, вынужденное рассеяние Мандельштама-Бриллюэна.*

В настоящее время создание автономных измерительных систем приобретает большое значение. Использование оптоволоконных сенсоров позволяет обеспечить малые размеры чувствительных участков, большую протяженность, независимость от электромагнитных полей, создание распределенных сенсоров. Существуют различные подходы к созданию сенсоров физических величин, например силы тока [1].

В настоящей работе рассмотрено вынужденное рассеяние Мандельштама-Бриллюэна в оптическом волокне. Эффект может быть описан как взаимодействие трех волн: оптической волны накачки, оптической волны пробного сигнала и акустической волны, частота которой зависит от температуры и давления [2].

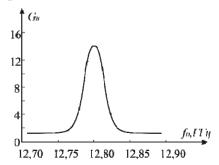
Вынужденное рассеяние Мандельштама-Бриллюэна носит резонансный характер по отношению к разности частот накачки и пробного сигнала. При этом характеристическая частота рассеяния, которая определяет максимальное усиление мощности пробного сигнала, зависит от параметров оптического волокна. Проанализируем характер зависимости усиления мощности пробного сигнала от разности частот накачки и пробного сигнала. Принципиальная схема для измерения данной зависимости представлена на рис. 1.

На вход волокна при координате z=0, вводится излучение узкополосного лазера накачки с мощностью $P_p(0)$ с частотой накачки f_p , а на выход, где координата z=L, вводится излучение узкополосного пробного лазера с мощностью $P_s(L)$ с частотой пробного сигнала f_s . Мощность обоих лазеров остается постоянной. Волокно находится при постоянной температуре и без деформации, так что характеристическая частота вынужденного рассеяния по всей длине остается постоянной.

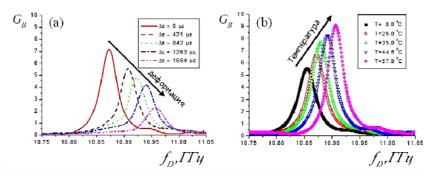
Рис. 1. Принципиальная схема для регистрации вынужденного рассеяния Мандельштама-Бриллюэна в оптическом волокне

Регулировка разности частот накачки и пробного сигнала происходит при изменении частоты пробного сигнала. Частота пробного сигнала f_s подбирается так, чтобы она была ниже частоты f_p накачки.

Разность частот накачки и пробного сигнала регистрируется с помощью фотодиода Φ Д (InGaAs), спектроанализатора с последующей обработкой на компьютере.


Постоянные во времени мощности лазера накачки $P_p(0)$ при z=0 и пробного лазера $P_s(L)$ при z=L измеряются с помощью измерителей мощности ИМ2 и ИМ3. Мощность пробного сигнала регистрируется в точке z=0 с помощью измерителя мощности ИМ1 для регулируемой разности частот $f_D=f_p-f_s$.

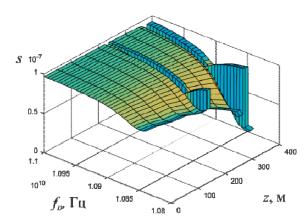
Мощность стоксовой компоненты излучения $P_s(z)$ увеличивается при прохождении по волокну за счет рассеяния. G_B - усиление модности пробного сигнала за счет рассеяния, которое зависит от разности частот накачки и пробного сигнала f_D , представлено на рис. 2. Для кварцевых оптических волокон усиление не зависело от величины температуры и деформации волокна.


Для оптических волокон с добавлением ${\rm GeO}_2$ усиление стоксовой волны изменяется в зависимости от величины температуры и деформации волокна. При увеличении деформации усиление падает, а при увеличении температуры, усиление растет (рис. 3).

Используя данные об изменении усиления было проведено моделирование работы сенсора на основе рассеяния Мандельштама-Бриллюэна и получена его передаточная функция [3] (рис. 4). Зависимость передаточной функции от координаты z волокна позволяет определить положение

и длину участка оптического волокна, подверженного изменению температуры Δt , °C или деформации ε .

Рис. 2. Зависимость усиления мощности пробного сигнала от разности частот накачки и пробного сигнала


Puc. 3. Зависимость усиления мощности пробного сигнала от разности частот накачки и пробного сигнала при деформационном (а) и температурном (b) воздействии на оптическое волокно с добавлением ${\rm GeO}_2$.

Чтобы получить информацию о величине этого воздействия необходимо проанализировать зависимость передаточной функции от f_D . Было проведено моделирование температурного и деформационного воздействия на одном и том же участке. Величина передаточной функции различна для изменения температуры и деформации из-за различных коэффициентов усиления (рис. 5).

Величина изменения температуры и деформации определяется по формулам:

$$\varepsilon = \frac{f_D - f_{D0}}{\partial f / \partial \varepsilon} \cdot 100\%, \ \Delta t = \frac{f_D - f_{D0}}{\partial f / \partial t}$$
 (1)

где $f_{D0}=10,85\,\Gamma\Gamma$ ц — разность частот накачки и пробного сигнала для оптического волокна без воздействий, $\partial f/\partial \varepsilon=500\,$ М Γ ц - деформационный коэффициент изменения f_D , $\partial f/\partial t=1,2\,$ М Γ ц/°C - температурный коэффициент изменения f_D . Тогда, в данной модели, согласно (1), $\varepsilon=10\%$, $\Delta t=41$ °C.

Puc. 4. Моделирование передаточной функции распределенного сенсора температуры и деформации

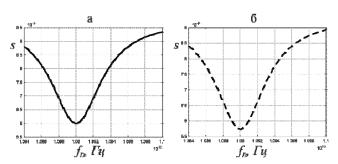


Рис. 5. Зависимость передаточной функции от разности частот накачки и пробного сигнала в случае деформационного (а) и температурного (б) воздействия

Рассмотрено моделирование вынужденного рассеяния Мандельштама-Бриллюэна. Компьютерное моделирование используется для предварительной оценки параметров работы сенсоров [4]. Рассмотрена модель распределенного сенсора температуры и деформации. Построенная модель демонстрируем различие значений передаточной функции для температурного и деформационного воздействия.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Polyakov A. V., Ksenofontov M. A. High-voltage monitoring with a fiber-optic recirculation measuring system // Measurement Techniques. 2020. Vol. 63, № 2. P. 117–124. DOI: 10.1007/s11018-020-01759-3
- 2. Yanukovich T. P. Numerical model of three wave Brillouin scattering in an optical fiber // J. of optical technology 2002. Vol. 69, № 7. P. 49–54. DOI: 10.1364/JOT.69.000518
- 3. Янукович Т. П., Поляков А. В. Компьютерное моделирование взаимодействия при вынужденном рассеянии Мендельштама-Бриллюэна в оптическом волокне // Компьютерные технологии и анализ данных: Матер. II Междунар. науч.-практ. конф. Мн: БГУ, 2020. С. 116-120.
- 4. Янукович Т. П., Поляков А. В. Моделирование распределенного измерителя силы тока на основе деформации оптического волокна // Приборы и методы измерений. 2019. Т. 10, № 3. С. 243-252. DOI: 10.21122/2220-9506-2019-10-3-243-252