межсекторального сетевого взаимодействия между реальным сектором экономики, высшими учебными заведениями и научными учреждениями.

Литература

- 1. Головенчик, Г.Г. Цифровая экономика [Электронный ресурс]: учеб.-метод. Комплекс / Г.Г. Головенчик. Минск: БГУ, 2020.-143 с.
- 2. Гулина, О.В. Особенности дигитилизации экономического университета в рамках задач цифровой экономики // Креативная экономика. 2022. Том 16. № 1. С. 27–44.
- 3. Ковалев, М.М. Образование для цифровой экономики / М.М. Ковалев // Цифровая трансформация. -2018. -№ 1. C. 37–42.

ОСОБЕННОСТИ ПРИМЕНЕНИЯ КРИТЕРИЯ МАННА – УИТНИ В КУРСЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» ДЛЯ СТУДЕНТОВ ЕСТЕСТВЕННОНАУЧНЫХ СПЕЦИАЛЬНОСТЕЙ

Гутор А. Г., Сташулёнок С. П.

Белорусский государственный университет, г. Минск

Пусть $X=(X_1,\ldots,X_n)$ и $Y=(Y_1,\ldots,Y_m)$ — две независимые выборки из непрерывных распределений случайных величин, функции распределения которых $F_1(x)$ и $F_2(x)$. Рассмотрим объединённую выборку $(X_1,\ldots,X_n,Y_1,\ldots,Y_m)$ и построим её вариационный ряд. Пусть R_1,\ldots,R_n — ранги величин (номера мест) X_1,\ldots,X_n в общем вариационном ряду. Обозначим $T=R_1+\ldots+R_n$. Таким образом, T — сумма номеров мест, которые занимают элементы первой выборки в общем вариационном ряду.

Введём случайную величину

$$Z_{rs} = \begin{cases} 1, \ X_r < Y_s \\ 0, \ X_r \ge Y_s \end{cases}.$$

Тогда случайная величина $U = \sum_{r=1}^n \sum_{s=1}^m Z_{rs}$ равна общему числу тех случаев, когда элементы выборки X предшествуют в общем вариационном ряду элементам выборки Y. Между случайными величинами U и T существует следующая связь:

$$T+U=n\cdot m+\frac{n(n+1)}{2}.$$

В качестве основной гипотезы рассмотрим гипотезу однородности

$$H_0: F_1(x) \equiv F_2(x).$$

Найдём критическое множество для статистики U. Математическое ожидание

$$EU = E(\sum_{r=1}^{n} \sum_{s=1}^{m} Z_{rs}) = n \ mP(X_{1} < Y_{1}) = n \ m \int_{-\infty}^{+\infty} F_{1}(y) dF_{2}(y) \ [1, c. 129].$$

Обозначим $P(X_1 - Y_1 < 0) = a$. Тогда

$$EU = nma$$
.

При выполнении гипотезы однородности $a=\frac{1}{2}$. Таким образом, возникает более общая, чем H_0 , гипотеза H_{01} : $a=\frac{1}{2}$.

При выполнении гипотезы однородности

$$EU = m n \frac{1}{2}$$
, $DU = \frac{1}{12} nm(n + m + 1)$ [2, c. 205, 215-217].

Также известно, что если выполняется гипотеза H_0 и $n,m\to\infty$, то распределение L статистики U асимптотически нормально, то есть

$$L(U \mid H_0) \sim N(\frac{n \cdot m}{2}, \frac{n \cdot m(n+m+1)}{12}).$$

Таким образом, для заданного уровня значимости α , критическое множество статистики U имеет следующий вид

$$\left(-\infty, \frac{m \cdot n}{2} - t_{\alpha/2} \sqrt{\frac{m \cdot n(n+m+1)}{12}}\right) \cup \left(\frac{m \cdot n}{2} + t_{\alpha/2} \sqrt{\frac{m \cdot n(n+m+1)}{12}}, +\infty\right),$$

где $-t_{\alpha/2}$ — это $\alpha/2$ -квантиль стандартного нормального распределения (с параметрами 0, 1), т. е. $\Phi(-t_{\alpha/2}) = \alpha/2$, где Φ — это функция распределения стандартного нормального распределения.

Рассмотрим примеры в пакете Statistica.

Пример 1. В качестве F_1 выберем функцию из нормального распределения с

параметрами 0 и 1: $F_1(x) = \int_{-\infty}^x \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$. В качестве F_2 рассмотрим ту же функцию распределения. Объёмы обеих выборок равны $100 \ (n=m=100)$.

В пакете *Statistica* 20 раз были смоделированы выборки X и Y из указанных распределений. С помощью критерия Манна — Уитни проверялась гипотеза однородности H_0 . Результаты проверки (истинные уровни значимости) содержатся в $Taблииe\ I$.

Таблица 1. Истинные уровни значимости (p-value) критерия Манна – Уитни для проверки гипотезы однородности

0,178599	0,018685	0,189900	0,714898	0,804131
0,346231	0,121651	0,963946	0,412355	0,971738
0,622477	0,617306	0,840246	0,705800	0,311164
0,101362	0,954211	0,840246	0,993177	0,190727

Как видно из таблицы, на уровне значимости $\alpha = 0.05$ гипотеза однородности отвергается только в одном случае.

Пример 2. В качестве F_1 выберем функцию из нормального распределения с параметрами 0 и 1: $F_1(x) = \int_{-\infty}^x \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$. А в качестве F_2 — функцию распределения

равномерной на отрезке [-1,1] случайной величины:
$$F_2(x) = \begin{cases} 0, & x < -1, \\ \frac{x+1}{2}, & x \in [-1,1], . \text{ Объёмы} \\ 1, & x > 1. \end{cases}$$

обеих выборок равны 100 (n = m = 100).

В пакете *Statistica* 20 раз были смоделированы выборки X и Y из указанных распределений. С помощью критерия Манна — Уитни проверялась гипотеза однородности H_0 . Результаты проверки (истинные уровни значимости) содержатся в *Таблице* 2.

Таблица 2. Истинные уровни значимости (p-value) критерия Манна – Уитни для проверки гипотезы однородности

0,164072	0,009362	0,676973	0,584999	0,971738
0,346231	0,027444	0,682344	0,158950	0,930878
0,930878	0,070401	0,187435	0,678761	0,100347
0,636359	0,330211	0,375765	0,809808	0,352522

Как видно из *Таблицы 2*, критерий Манна — Уитни в большинстве случаев не выявляет статистически значимых различий (α =0,05) между нормальными с параметрами 0, 1 и равномерно распределёнными на [-1, 1] случайными величинами. Заметим, что в этом случае, как и в примере 1,

$$a = \int_{-\infty}^{+\infty} F_1(y) dF_2(y) = \frac{1}{2}.$$

Литература

- 1. Ивченко Г.И. Математическая статистика / Г.И. Ивченко, Ю.И. Медведев М.: Высшая школа, 1984. 248 с.
- 2. Лагутин М.Б. Наглядная математическая статистика / М.Б. Лагутин Москва: БИНОМ. Лаборатория знаний, 2007.-472 с.

ПРЕЕМСТВЕННОСТЬ МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ В ПРИКЛАДНЫХ УЧЕБНЫХ ДИСЦИПЛИНАХ С КОМПЬЮТЕРНОЙ СОСТАВЛЯЮЩЕЙ НА ХИМИЧЕСКОМ ФАКУЛЬТЕТЕ БГУ Дегтяренко Н. А., Семёнов А. В.

Белорусский государственный университет, г. Минск

Одной из непременных составляющих качественного фундаментального образования будущих специалистов-химиков является хорошая математическая подготовка. Фундаментальные дисциплины используют абстракции математического языка, математические модели и методы для описания и изучения законов природы. С развитием вычислительной техники возрастает прикладное значение математических дисциплин, важных для естественных наук. Основой физико-математической подготовки студентов химического факультета БГУ на первой ступени высшего образования