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BEPOATHOCTHAS MOAEAD MAPIITAAAA — OAKHHA,
ITIOPOXAEHHASA PACIIPEAEAEHVEM TEUCCBE,
AAA OIINCAHUA AAHHBIX BPEMEHMU )KXU3HUAU

Jloe. T. ST BEPHIOV

Ddeoepanvuviii ynusepcumem nepmanvix pecypcos 6 dpdypyne, wim. Jenvma, Huzepus

ToyHOCTh MaTEMaTHYCCKUX BHIBOIOB 3aBHCHUT OT IJIAHA YKCIIEPUMEHTA U MPUHSTON Moaenu. B HacTosieM uccieno-
BaHUM JUTs ONMCAHMS JAHHBIX BPEMCHH KH3HH UCIIOJIb30BAaHO 0000IICHHOE paclpeieliecHUe BeposITHOCTe Mapriasia —
OJKUHA, TOPOXKICHHOE pacipe/esieHueM Telicche. XapaKTepUCTHKH MPEIIOKCHHOW MOJCITH H3Y9CHBI U IIPEICTABICHBI
B 3aBepiieHHo# Gopme. [TokazaHo, YTO B YACTHBIX CITydasiX HHTEHCUBHOCTh OTKA30B MOXeT UMeTh (opmbl J u U, yObI-
BaTh M BO3pacTaTh. [IpecTaBiIeHbl pe3yIbTaThl IMUTAIIMOHHOTO MOJIEIIMPOBAHKS C HCIOIb30BaHHEM MeToia MoHTe-
Kapiio yist pa3nu4Hbix KOHGHUTYpaIHii HapaMeTpoB NPU MEHSIFOLIMXCS pa3Mepax BbhiOopku. Ha ocHOBaHMH MOMy4YeHHbBIX
PE3YIBTATOB UMUTAITUOHHOT'O MOJACIIUPOBAHUS U ITPOBEACHHOI'O aHAJIM3a Ka4€CTBA COOTBETCTBUA MOACJIN pC€aIbHBIM JIaH-
HBIM BPEMCHH JKU3HU YCTAHOBJICHO, YTO MCCIICOBAaHHAS B PA0OTE MOJIEIb SIBIISCTCS THOKOM, XOPOIIIO HHTEPIPETHPYEMOH
Y TIPUMCHUMOM B CPAaBHCHHH C IPYTUMHU [[BYXITAPAMETPHUYCCKUMHE PACIIPEICIICHISIMA BEPOSITHOCTEH.

Knroueswie cnosa: pactipenenenue l'ommepria; pacrpenenenne Mapmamia — OJIKHHA; pacIpeieeH s, HTOPOKICHHbIC
pacnpenenenuem Telicebe; pacnpenenenue Telicebe.
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An accurate mathematical inference depends on the experimental design and the model adopted in the process. Thus, in
this study Marshall — Olkin Teissier generated distribution was used to present the distribution of the true nature of lifetime
data. The characteristics of the proposed model were examined in a closed form. The behaviour of the new model indicated
that the hazard rate of the submodels could be J- and U-shaped, decreasing and increasing. Monte Carlo simulations were
presented for different configurations of parameters with varying sizes. The results of the simulation and goodness-of-fit of
the real lifetime data show that the Marshall — Olkin Teissier generated model is flexible, tractable and applicable when
compared to some classical two parameters distributions.
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Introduction

An accurate mathematical conclusion is drawn when an accurate, flexible and applicable statistical dis-
tribution is used to express the true nature of the data set obtained from the scenario. However, many statistical
distributions have been used in the fields of survival analysis, quality control, reliability theory, ecology, econo-
mics, medical sciences, actuarial science and others in modelling the behaviour of lifetime processes. Of utmost
importance is the use of probability in ascertaining the quality, quantity and control of random processes. This
is the result of the inherent stochastic nature of random processes. Thus a classical probability generator is
a probability distribution that can generate several other recent probability densities.

The Teissier distribution is one of the statistical distributions with a parsimonious parameter like the expo-
nential distribution in modelling lifespan scenarios and mean residual life functions with Gompertz, exponen-
tial and Weibull characteristics in modelling stochastic processes. Thus the Teissier model has been used in
modelling failure and mortality from wear and ageing [1]. The Teissier distribution has an inherent monotone
increasing function. However, lifetime processes are increasing non-monotone in nature (see [2—4]). Hence,
there is a need to extend the classical Teissier distribution to account for the pitfall of the constant failure rate
embedded in the Gompertz, Weibull and exponential distributions in modelling stochastic processes. The Teis-
sier distribution does not account for a non-monotone increasing hazard rate such as the unimodal failure rates
and the U-shaped rates that are commonly encountered in medical sciences, reliability theory, stochastic pro-
cesses, thanatology and genealogy. Thus there is an urgent need to improve the Teissier distribution so that it
can reflect the non-monotone increasing feature.

However, adding additional parameters to the existing classical statistical distribution has helped to im-
prove the flexibility of many statistics models. Thus providing a very rich satisfactory statistical inference is
germane to making good and reliable decisions. One of such interesting methods in stochastic modelling is the
Marshall — Olkin model [5].

Nevertheless, for a random variable # and parameter L the probability density function (PDF) of the Mar-
shall — Olkin is specified as

f(W, u):%’ u>1, w>0.

[1 - ﬁG(w)]

The cumulative distribution function (CDF) of the Marshall — Olkin generated model is designated as
G(w)

[1-HG(w)]

where g(w, 1) = d(;(w) is the baseline and parent PDF, i = (1 — u) and G (w) = (1 — G(w)) with the CDF G(w).
W

F(w, )= u>1 w>0,

Thus, the transformed transformer (7— X)) method [6] of generating a flexible family of classical distribution with
a link function —log[ 1 — G(w) ] can be adopted to obtain the Teissier generated family as the PDF and the CDF as

£(0) =B ()1~ () [ b ()] 1) 0T for >
and
G(w)=1— (1= M(w) P40 gor B,
where m(w) and M (w) = [ m(w)dw are the parent classical distribution PDF and CDF.

The development of a generahsed family of distribution models that provides a parameterised mathematical
function, a simple and efficient algorithm for the parameter estimation of data sets of various characteristics,
has become an interest to researchers. Thus several Marshall — Olkin methods of adding parameters in the
researched studies such as [7; 8—15] and alpha power Teissier in [16] were examined.

In this article the Marshall — Olkin Teissier (MT) generator is introduced with the prefix MT to improve
the performance and flexibility of the parsimonious Teissier distribution. The MT generated model hazard rate
function could be J- and U-shaped, decreasing and increasing in nature. Thus the proposed model extends
and pushes forward the frontier of knowledge in many applied areas in statistics. However, few methods of
improving the Teissier distribution has been in the existing literature. These methods include the Teissier dis-
tribution proposed in [17], the exponentiated Teissier distribution proposed by [18] and the bivariate Teissier
distribution proposed by [19].
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The Marshall — Olkin Teissier generated distribution

Let W be a random variable for w € R. Then the PDF and CDF of the MT generated distribution can be
defined as

upm(w)(1- M (w)) P* 1)((1 ~M(w) " - 1)e‘ (1=

f(wauaB): B 2 fOI'H,B>O,W>0
[1 _ ﬁ(l _M(W))—Belf(lfM(w)) }
and
B 1-(1-Mmw) P
1-(1-M
F(w, W, B)= ( (W)> ¢ for u, >0, w>0,
1—afl- —B 7(17M(w))7B
H(1=M(w) e
dM(w) . Y
where m(w) = r and M (w) are the parent classical distribution and p and B are the scale and threshold
w

parameters respectively. The MT generated hazard rate function can take the form
~(B+1) B 1= (1= M(w) P
() (1= ()] (1= M () = 1)l M)

[l ) T

h(w, 1, B)=
B (1)
1-(1-M(w)) e
B - (1= m(w)) P
=R w P

The MT generated hazard rate is increasing function if § > 1 and p > 1, while it is decreasing if f < 1 and
W < 1. It can be observed that when L = 1, we obtain the Teissier generated family of distributions.

The quantile function of the MT generated model for a uniform interval p € (0, 1) can be obtained using the
Lambert function /¥ that satisfies the equation I (¢)=exp (W (t)) =t € [~1, ). Then for (1- M (w))_B >0 we

1-—

(PH-1)e

-1 - . .
have W_, (p—] = (1 -M (w)) B. Thus the quantile function of the MT generated model can be defined as

o bl

where W, is the negative branch of the Lambert function .

Estimation

Parameter estimation. Several approaches for obtaining the parameter estimate of models have been pro-
posed in the literature. However, the maximum likelihood method is one of the most commonly employed
methods. Hence the maximum likelihood method was employed to obtain the parameter estimate of the pro-
posed MT generated model in this section.

Let the likelihood of the MT generated model be denoted by ®. Then the log-likelihood of ® can be specified as

k k
log® = nlogy + nlogB + Y logm(w,, €)= (B+1), log(l -M(w,, 8))+
d=1 d=1

k k k
+210ng(wd)— ZRd(wd)— ZlogTd,
d=1

d=1 d=1
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where R, :(1 —M(wd)) P_
N el—(l—M(Wd))_B Hz

The parameters estimate of the MTG model can be obtained by taking the partial derivative of the log® and
equating it to zero. We have

I; € is the parameter vector; 7, z[u— (u—l)[l— (1 - (1 —M(Wd))’ﬁ) X

_zk“Td/,u(Wd’g)_o (0

k kT’ ,
’—_ZR;,B(WWE)_ZM:O Q)

and

alogszimé(wd,e)JF(BH)i MYy e) o Rie(w:)

k
= D R (wpn8) = Y = 3)
d=1
However, in all cases symbol ” represents partial derivative of the corresponding parameter estimate. Equa-
tions (1)—(3) are non-linear. Thus the model parameters in the equations can be obtained using the Newton —
Raphson method in R [20] and MatLab.

Special model

The performance of the MT generated model is assessed using the Weibull, Gompertz and Lomax distribu-
tions. Plots of equations (4)—(9) for some selected parameter values are given in fig. 1-3. The plots in fig. 1
show the density, hazard rate function and CDF of the MTG generated model. The plots in fig. 2 show the den-
sity, hazard rate function and CDF of the MTW generated model. More so, the plots in fig. 3 show the density,
hazard rate function and CDF of the MTL generated model. The plots in fig. 1, @; 2, a, and 3, a, indicate that
the MT generated model is very adaptable and flexible with the value of o having a weighty effect on the mo-
del kurtosis and skewness. On the plots in fig. 1, b; 2, b, and 3, b, we observe that MTG model can be used in
solving a variety of statistical problems in modelling reliability data, because its hazard rate function can be ex-
pressed as U-shaped, increasing, decreasing, or initially increasing, then decreasing and eventually increasing.

The MTG distribution. Suppose for a random variable X the PDF and CDF of the Gompertz distribution

P

Ox — ~{e™ -1 L
is given as m(x) = pe e( ) and M (x) =l-e e( ) respectively for positive parameters p and 0. Then
the PDF and hazard rate function of the MT generated model is specified as

(o0 B)= e R e o

et o oo T
(el gewa) o)

oo e 1]

h(w, W, B) = > X

w—(u- 1)[1 - [exp(—S(exp(Gx) - 1))]B ]el ) (e""(‘%(e"p(ex) “)D_B

and
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‘ ([exp(—%(exp(ex) _ 1)))_5 _ 1}‘ ~(oo{-Beowon-0) "

(ol o)
‘ o T T
w— (- 1)[1 - [exp(-e(exp(ex) -1))} ]e

The MTW distribution. Suppose for a random variable X the PDF and CDF (for x > 0), say m(x)=

=p0°xP~ 16—(ex)p and M (x) =1- e—(ex)P respectively (for 6 > 0, p > 0) of the Weibull distribution. Then the PDF
and hazard rate function of the MT generated model is specified as

0= 000 e o -(007 )| (el )1 )

fetimy]

uBp6°xP ~'exp (—(Ox)p )(exp(—(@x)p ))_(B . ((exp(—(ex)p ))_B - 1)

B o\ TP 1—(exp(—(6x)p))_[3 2 8
[u—(u—l)(l[exp((ex) )} ]e }

- -

®)

1- (exp(—(ex)p ))

X e

and

B 1—(exp(—(9x)p)) P

1—(exp(—(6x)p))_B 1- (exp(—(ex)p)) e

1= _
{M —(u- 1)[1 - [exp(_(ex)p)]ﬁ]el —(exp(—(ex)p)) B }

(7

The MTL distribution. Suppose for a random variable X the PDF and CDF (for x = 0), say m(x) =

—-(0+1) -0
= g{l + g} and M (x) =1- [1 + g} respectively (for a scale parameter p > 0 and a shape parameter 6 > 0)

p
of the Lomax distribution. Then the PDF and hazard rate function of the MT generated model is specified as

N ISR

S(wu,B)= ; ®)

oo T
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and

h(ow, . B) = i _ 4, )

General statistical properties

In this section the statistical properties of the MT generated model are discussed. However, simplification is
carried out on the proposed model to enable the proposed model to be presented in a simple manner.

Let |s|<1and ¢ > 0. Then the expression (1—s) " can be simplified as

- T
(1-s°=Y L(c+d) 57
/=0 T(c)a!
where F() is the gamma function. Thus the PDF of the MT generated family can be specified as a linear com-
bination of the Teissier generated distribution as
= I(d+2
f(w)= z %u(l - ].L)dg(w, B(d+ 1)), u>0, w>0.
d=0 :

Also the CDF can be expressed as
F(w)=3,
t=0

Moments. The MT generated » moment can be obtained as

u; =§O¥M(l— W)’ K (),

I(r+1

" )(1 - u)tG(w)(_?’(w).

where K (r)= jwr g(w, B(d +1))dw. The mean of the MT generated model is obtained when r = 1. Various
0

moments can be obtained by varying the values of 7.
Probability generating function. Let w,, w,, ..., w, be the random variable sampled from the MT gene-
rated model. Then the MT generated probability generating function is given as

u(1-p)'B(a)

o (log?)'T'(d +2)

!
dazo ald!

where
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Probability weighted moments. The parameters and quantile of the MT generated model can be obtained
using the probability weighted moments (PWM). Thus the MT generated PWM for » > 1 and s > 0 can be

obtained as
o T(d+2)[T(e+1)] -
- 3 T -y vt )

1!
where

R(t,d)= jowrg(w, B(d+ 1)) G*(w) G”(w) dw.

Moment of the residual. The » moment of the residual life of the MT generated model, say d,(t)z
= E[(W— t)r| W > t} forr=1,2, 3,4, ... can be obtained uniquely as

R P W s B )

where

However, the » moment of the reversed residual life, say D, (¢)= E [(t - |w< t} for £ > 0 can be defined as

I(d+2)

where t
R(a, d) =Iw“g(w, B(d + 1))dw.

Entropy. Entropy is the measure of uncertainty. Thus the Renyi entropy is expressed as

R.(v)= (l_lu)log[i WAL R u)"} D(v)

d=0

whereD jg d+1)d

Order statlstlcs Let W\, W,, ..., W, be MT generated random samples of size n and W(l), W(z), ey W(n) the
order statistics of the processes. Then the PDF of the j order statistic W > say f; ( ) is defined as

P T G
i (=D (n =) [1—a(l—M(W))‘BeI-U—M(w))‘BT

J=1 n=Jj

L (1= () PO

-8

(1 B 1—(1—M(w))‘B
! (1-M(w)) "e

w>0,3>0.

The minimum and maximum order statistics are obtained when j = 1 and j = n respectively.

Application

An application to demonstrate the tractability and flexibility is given in this section. The MT generated
submodels are compared with some existing generating models of Weibull, Gompertz and Kumaraswamy.
A simulation and real-life applications are considered in this section.
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Fig. 1. MT generated plots
for the Gompertz model with various parameter values:
a— MTG density; b — MTG hazard rate function; c — MTG CDF
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a—MTW density; b — MTW hazard rate function; c — MTW CDF
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Simulation study. A simulation is used to examine the tractability, flexibility and performance of the pro-
posed model with the submodels, Gompertz, Weibull and Lomax distributions. In the simulation study the es-
timated mean estimate is denoted by ME, the bias is denoted by Bias and mean squared errors by MSE [20],
software is used to obtain the simulation results. Random sample sizes of 5, 10, 20, 50, 100, 200, 250, 300,
450, 500 and 600 are used. The sample sizes are replicated 6000 times for the value of the estimated parameter
u=0.25,B=1.50,p=1.25and 6 = 2.00 for the Gompertz model, u = 2.50, f = 1.60, p = 0.60 and 6 = 0.70 for
the Weibull model and p=0.50, B = 0.40, p = 0.70 and 6 = 0.70 for the Lomax model using the quantile function.

Table 1 shows the results of the simulation.

The mean estimates, biases and mean
squared errors Monte Carlo simulation results

Table 1

Model

ME

Bias

MSE

Gompertz

1.0157, 1.1885,2.0465, 1.3275

0.0157,0.1885, 0.5465,—-0.1725

2.2387,0.5569, 1.1076, 1.5291

10

0.5503, 1.2813, 1.6780, 1.7002

-0.4497,0.2813,0.1780, 0.2002

1.1246,0.4875,0.4573,0.6351

20

0.3554,1.3426, 1.4933, 1.8498

—0.644 6, 0.3426,-0.0067, 0.3498

0.7829,0.4013, 0.2439, 0.384 8

50

0.2592,1.4001, 1.3639, 1.8996

—-0.7408, 0.4001,-0.136 1, 0.3996

0.6683,0.3312,0.1260, 0.272 1

100

0.2456,1.4397,1.3071, 1.8912

—-0.7544,0.4397,-0.1929, 0.3912

0.0220,0.1862,0.0319,0.1096

200

0.2433,1.4656,1.2763,1.8766

—-0.7567,0.4656,-0.2237,0.3766

0.0163,0.1779,0.0275,0.0316

250

0.2437,1.4746,1.2671, 1.8721

—-0.7563,0.4746,-0.2329,0.3721

0.0108,0.0162,0.0154, 0.0240

300

0.2422,1.4744,1.2657,1.8710

—0.7578,0.4744,-0.2343,0.3710

0.0093,0.0143,0.0140, 0.0210

450

0.2452,1.4860, 1.2562, 1.8682

—0.7548,0.4860,—-0.2438, 0.368 2

0.0077,0.0134,0.0127,0.0171

500

0.2474,1.4938,1.2521, 1.8678

—-0.7526,0.4938,-0.2479, 0.367 8

0.0059, 0.0099, 0.0058, 0.0158

600

0.2495, 1.5006, 1.2478, 1.865 1

—-0.7505, 0.5006,-0.2522, 0.3651

0.0019,0.0037,0.0041, 0.0136

Weibull

3.0984,1.8692,0.7350, 0.724 8

2.0984,0.8692,0.2350,0.2248

1.5445,0.3159,0.1937,0.1211

10

3.2731,1.7685, 0.5964, 0.724 3

2.2731,0.7685,0.0964, 0.224 3

1.4101,0.2169,0.0537,0.1063

20

3.2434,1.7141,0.5627,0.7238

2.2434,0.7141,0.0627,0.223 8

1.1715,0.1583,0.0275,0.0917

50

3.0367,1.7106, 0.5590, 0.673 4

2.0367,0.7106, 0.0590, 0.1734

0.8990,0.0981, 0.0161, 0.0532

100

2.8336,1.7070, 0.5812, 0.644 8

1.8336,0.7070, 0.0812, 0.144 8

0.6782,0.0722, 0.0122, 0.0292

200

2.6601, 1.6648,0.6073,0.6492

1.6601,0.6648,0.1073,0.1492

0.4692,0.0497,0.0092, 0.0145

250

2.6203, 1.6505,0.6157,0.6412

1.6203,0.6505,0.1157, 0.1512

0.3899, 0.0432,0.0085,0.0120

300

2.5085, 1.6336,0.6211,0.6401

1.5885,0.6336,0.1111,0.1501

0.3364,0.0399, 0.0075, 0.0105

450

2.5038, 1.6023,0.6156, 0.6694

1.5338,0.6023,0.1356,0.1694

0.2147,0.0298, 0.0058, 0.0074

500

2.5024,1.5966, 0.6040, 0.6717

1.5354,0.5966, 0.1380, 0.1717

0.1949,0.0287, 0.0054, 0.0069

600

2.5005,1.5859, 0.6005, 0.6745

1.5235,0.5859, 0.1435,0.1745

0.1649,0.0255, 0.004 8, 0.006 1

Lomax

1.1175, 1.8662,0.7310, 0.718 8

2.1175,0.8662, 0.2310,0.2188

1.5439,0.2928, 0.1876, 0.1158

10

1.2638, 1.7546,0.5955,0.736 4

2.2638,0.7546,0.0955,0.236 4

1.3417,0.2172,0.0556,0.1102

20

1.2585,1.7148,0.5596, 0.723 6

2.2585,0.7148,0.0596, 0.223 6

1.1901, 0.1568, 0.0272, 0.0908

50

1.0350,0.7174, 0.5579, 0.6710

2.0350,0.7174,0.0579,0.1710

0.9278,0.0361,0.0163,0.053 1

100

0.8403,0.7092, 0.5806, 0.6420

1.8403,0.7092, 0.0806, 0.1420

0.2769,0.0292, 0.0126, 0.0277

200

0.6719,0.6662, 0.6079, 0.6477

1.6719,0.6662, 0.1079, 0.1477

0.1852,0.0194, 0.0093,0.0144

250

0.6215,0.6490, 0.6159, 0.6526

1.6215,0.6490, 0.1159, 0.1526

0.0958,0.0132, 0.0082,0.0113

300

0.5030,0.6357,0.6218, 0.658 1

1.5930,0.6357,0.1218,0.158 1

0.0428,0.0103,0.0077,0.0104

450

0.5052,0.5052,0.6342,0.6680

1.5452,0.6052,0.1342,0.1680

0.0139, 0.0096, 0.0060, 0.007 7

500

0.5005, 0.4009, 0.6385,0.6716

1.5305,0.5959,0.1385,0.1716

0.008 6, 0.0084, 0.0056, 0.0070

600

0.5002, 0.4002, 0.6424, 0.6757

1.5202,0.5842,0.1424,0.1757

0.0020, 0.0059, 0.0050, 0.0062
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The bias is calculated (for X) by
6000

BiaSW=m VVI—W)
i=1

Also the MSE is obtained as
6000

~ 1 “
MSszmg(Wi—W)

In table 1 the performance of the proposed model is examined. The mean estimated value tends to the true
values in all cases considered as the sample sizes increase. More so, the MSE decrease as the sample size in-
creases.

Real-life. A real-life dataset is used to illustrate the performance of the MT generated model. In the illustrations
given the goodness-of-fit of the submodels is classified using their p-values, Kolmogorov — Smirnov (KS)
test statistic, negative log-likelihood (log-lik), Cramér-von Mises statistic (W) and Anderson — Darling sta-
tistic (A). Figures 4—6 show the empirical densities and CDFs of the first, second and third dataset. Several
models are compared with the MT generated models of Gompertz, Weibull, Frechet, Burr XII and Lomax.
These include Gompertz — Weibull (GW), Weibull — Gompertz (WG), Gompertz — Lomax (GL), alpha power
Gompertz (APG), Weibull — Burr XII (WB), Kumaraswamy — Burr XII (KB), Kumaraswamy — Frechet (KF),
Kumaraswamy — Gompertz (KG), Kumaraswamy — Lomax (KL), Weibull — Frechet (WF), Gompertz expo-
nential (GE), gamma (Ga), Gompertz — Lomax and Gompertz — Burr XII (GB).

The first real data set refers to the stress-rupture life of kevlar 49 and epoxy strands subjected to constant
sustained pressure at the 90 % stress level until all had failed. This data set was studied by [21-25]. The data
are as follows

1.8, 1.8, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.2, 4.69, 7.89, 0.01, 0.01, 0.02,
0.02,0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.1, 0.1, 0.11, 0.11, 0.12, 0.13,
0.18,0.19, 0.2, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.4, 0.42, 0.43, 0.52, 0.54, 0.56, 0.6,
0.6, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.8, 0.8, 0.83, 0.85, 0.9, 0.92, 0.95,
0.99,1,1.01,1.02,1.03,1.05, 1.1, 1.1, 1.11, 1.15, 1.18, 1.2, 1.29, 1.31, 1.33, 1.34, 1.4, 1.43, 1.45,
1.5,1.51,1.52,1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64.

Table 2 shows the MLEs with standard errors in parentheses and the measures A, W, AIC, KS, negative
log-likelihood and p-values with the stress-rupture data.

2

Table 2

MLEs and the test statistic for first data

Distribution Estimates Log-lik KS W A p-Value

fl=5.8857 (0.2620)
MTW P=32885 (0.8062) 82.56 | 0.0035 | 0.0003 | 0.0019 | 0.9814
6=1.0513 (0.776 7)

$=0.4481(0.079 5)

[l =0.074 5 (0.040 3)
B=0.2209 (0.1639)

MTG . 89.41 | 0.0054 | 0.0008 | 0.0022 | 0.9548
6=0.6518 (0.2371)
® =0.3355 (0.000 2)
L=0.102 4 (0.082 6)

MTE B =0.5816 (0.277 0) 92.81 | 0.0704 | 0.0452 | 0.0160 | 0.8741
6=0.1058 (0.098 3)

L=0.399 0 (0.1653)
B =0.740 0 (0.000 0

MTL p ( ) 93.28 0.0906 | 02510 | 0.3536 | 0.7775
6=1.3804 (0.656 1)

$=0.0745 (0.000 0)
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Continuation of the table 2

Distribution

Estimates

Log-lik

KS

W

A

p-Value

MTF

[L=0.9338 (0.069 3)
B=0.4721(0.1891)
6=0.1653 (0.020 5)
$=0.6363 (0.102 3)

96.08

0.0932

0.3503

0.5016

0.7639

MTB

L =1.0961 (0.684 5)
B =0.066 0 (0.000 0)

6=1.9499 (0.0001)
$=0.5214 (0.0911)

100.00

0.0995

0.3894

0.6024

0.7522

KB

6=0.114 6 (0.052 3)
B =0.3254 (0.097 2)

6=1.4251(0.9151)
$=4.5665 (1.6679)

101.12

0.0999

0.4904

0.6198

0.6443

WG

fL=0.369 6 (0.232 6)
B =0.6902 (0.147 4)
§=2.0139 (1.2141)

$=-0.4921(0.1481)

101.15

1.0028

0.0805

0.7378

0.6205

WB

6=0.9141(0.1039)
B=0.1369 (0.0118)

6=1.2445 (0.1057)
$=6.1457 (0.073 0)

102.42

1.0821

0.1412

0.8443

0.5030

KG

[1=0.792 0 (0.1829)
B =0.2521(0.044 6)
6=3.7911(0.3021)
$=-0.027 4 (0.085 2)

102.58

1.0883

0.1680

0.9658

0.4093

GL

[l =0.266 6 (0.437 0)
B =0.7889 (0.179 5)
6=2.8184 (5.2237)
$=13583(0.4577)

102.59

1.1788

0.8639

1.0043

0.4063

GB

L=0.8795 (0.201 4)
B=0.3509 (0.3214)

6=1.2267 (0.3202)
$=2.4355(2.2372)

102.68

1.1842

0.9214

1.1573

0.4014

GW

[L=1.7833 (12.012 4)
B=4.7085 (9.8791)

6=0.0442 (0.129 7)
$=0.1470 (0.3557)

102.87

1.1854

1.0038

1.1598

0.4003

KL

{L=0.9253 (0.055 6)
B=5.7165 (0.000 0)
6 =0.029 4 (0.049 6)
$=5.2205 (0.000 0)

102.94

1.1926

1.1030

1.1804

0.3509
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Ending table 2

Distribution Estimates Log-lik KS W A p-Value
L =20.2781 (4.604 0)
B=-0.2 :
WF P 02712 (0.0306) 102.97 1.1937 1.1187 1.1917 0.3760
0=-3.4104 (0.2777)
¢ =25.6038 (0.2329)

=24.9400 (65.1117)
0.908 6 (0.086 8) 103.00 | 1.2894 | 1.1201 | 1.2739 | 0.3539
0.028 6 (0.074 7)

o
GE B
)

6.=1.4727 (1.189 0)
APG B=1.1825(0.336 4) 103.10 | 1.3886 | 1.1483 | 1.2828 | 0.3053
6=-0.0955(0.1127)

1=5.5352 (3.126 7)
B =324.1089 (327.764 8)
6=0.1450 (0.024 4)
$=12144 (4.4818)

106.67 1.4297 1.4038 2.1526 0.0666

The second data set below is obtained from [26] as used in [27]. It represents the time to failure (103 h) of
the turbocharger of one type of engine. The data are

2.0,39,5.0,5.6,6.1,6.5,7.1,7.3,7.8, 8.1, 8.4, 2.6,
8.3,8.5,3.0,4.6,5.3,6.0,8.7,8.8,1.6,3.5,4.8,54,

The results of the goodness-of-fit are given in table 3.

2 2

45,5.1,58,63,6.7,7.3,7.7,7.9,
6.0,6.5,7.0,7.3,7.7, 8

3,77,

Table 3
MLEs and the test statistic for second data

Distribution Estimates Log-lik KS w A p-Value

{l = 0.486 4 (0.028 9)
B=0.7589 (0.929 3)
6=0.3904 (0.2390)
$=1.6277 (0.4479)

MTW 62.61 0.0108 0.0037 0.0291 0.9957

fL=0.969 8 (0.776 6)
B =0.7918 (0.499 3)
6=0.0122 (0.005 5)
$=02731(0.142 3)

MTL 64.94 0.0203 0.0138 0.1397 0.9679

L=1.2063 (1.399 7)
B=0.3300 (0.125 2)
6=0.2543 (0.0001)
$=0.176 6 (0.000 1)

MTG 69.76 0.0879 0.0283 0.2168 0.9165

[L=5.8081(0.4091)

B=2.8726(0.1930)
6=0.097 7 (0.009 3)
$=3.5877 (0.4220)

MTB 73.20 0.0928 0.0877 0.6326 0.8807
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Continuation of the table 3

Distribution Estimates Log-lik KS W A p-Value

L=0.7649 (0.3309)
B =0.4293 (0.030 4)
6 =0.494 2 (0.239 6)
$=1.782 6 (0.247 4)

MTF 74.79 0.1025 0.1186 0.8320 0.7944

& =0.3016 (0.000 0)
B =1.3109 (0.000 0)
6 =0.1550 (0.000 0)

$=2.2756 (0.887 7)

GW 79.15 0.1796 0.2234 09714 0.7613

L=0.7554 (0.3957)
B =0.3872 (0.488 6)
6 =0.0097 (0.012 4)
$=0.7163 (0.1619)

KG 79.81 0.1826 0.2327 1.1237 0.7474

6.=1.7842 (2.369 8)
APG B=0.0108 (0.0102) 79.94 | 0.1871 | 0.6125 | 1.2327 | 0.7213
6=0.5841(0.1158)

fL=0.0111(0.0122)
GE B=0.9725(1.1608) 79.95 | 0.1961 | 0.6229 | 12625 | 0.7045
6=0.6476 (0.7419)

[L=0.044 5 (0.058 7)
B=6.5649 (7.9237)
6 =0.039 4 (0.000 0)
$=3.0837 (3.6737)

GL 80.22 0.2929 0.6431 1.2667 0.5795

[L=0.8038 (5.066 5)
B=19.0220 (31.5247)
6=0.6571(0.186 7)

$=18.2216 (40.7352)

GF 80.28 0.3180 0.7364 1.2841 0.5368

[L=0.022 2 (0.049 0)
B=109855(1.2425)
6 =0.028 8 (0.000 0)

$=11.1181 (8.658 4)

WL 80.51 0.3297 0.8395 1.3061 0.5306

{L=0.0069 (0.004 7)
B =0.9576 (0.6158)
6=3.8599 (2.5857)
$=1.7927 (0.376 8)

WF 82.59 0.4105 0.8888 1.6505 0.5125

{L=0.0040 (0.0019)
B=2.8798 (2.0136)
6 =0.6563 (0.278 0)
$=1.6107 (1.2637)

WB 83.39 0.4222 0.9009 1.7298 0.5079
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Ending table 3
Distribution Estimates Log-lik KS W A p-Value

L=4.9797 (1.074 2)
B=33.6129 (25.9336)

KL P 84.49 | 0.5089 | 09269 | 1.8130 | 0.5007
6=0.014 0 (0.006 6)
$=7.3936 (3.509 7)
{L=6.262 5 (0.000 0)
B=581.3908 (351.452 6
KF p 208 ( )| s6.18 0.6110 | 1.0731 | 19007 | 04078

6 =0.486 8 (0.067 5)
¢ =7.099 7 (0.000 0)

i = 43.913 3 (0.000 0)
B=85.7011(54.587 7

KB p ( ) 86.67 | 06114 | 1.1034 | 22040 | 0.4034
6=1.8023 (0.000 0)

¢ =0.509 2 (0.000 0)

&.=7.718 (1.689 1)
G ¢ 8741 | 07201 | 02051 | 13607 | 03239
a B=1234 (02790)

The third data consists of the lists of the number of deaths caused as reported by the Centers for Disease
Control and Prevention on 6 February 2015 in ten of thousands (www.cdc.gov) (see [28, p. 6]). The data are
as follows

61.1105, 58.488 1, 13.0557, 12.8978, 8.4767, 7.5578, 5.6979, 4.1149.

Table 4 shows the MLEs with standard errors in parentheses and the measures A, W, AIC, KS, negative
log-likelihood and p-values with the lists of number of deaths data for the MT generated models and some
classical statistical distribution models.

Table 4
MLEs and the test statistic for third data

Distribution Estimates Log-lik KS W A p-Value

{L=0.696 0 (0.172 0)
MTF p=0.1200(0.0831) 2842 | 0.1679 | 0.0332 | 02590 | 0.9508
6=1.0843 (0.2830)

$=3.3191(0.042 8)

L=0.1288 (0.0115)
B=1.6198 (0.1285)
6=0.0223 (0.004 1)

$=1.4292 (0.0838)

MTL 28.54 0.2013 0.0732 0.4999 0.8429

l=2.5840 (1.5241)
B =0.8732 (0.250 4)
6=0.3290 (0.0779)
$=5.8648 (2.7369)

MTB 29.56 0.2027 0.0739 0.5033 0.8371

L=0.0657 (0.199 5)
B=0.1176 (3.046 8)
6 =0.2982 (8.329 4)
$=0.9293 (0.2828)

MTW 29.61 0.2050 0.0834 0.5567 0.8274
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Continuation of the table 4

Distribution Estimates Log-lik KS W A p-Value

{L=0.024 2 (0.095 3)
B =0.0431(0.4355)
6=0.4551(4.7291)

$=0.0129 (0.025 6)

MTG 29.71 0.2071 0.0957 0.5759 0.8179

&= 4.090 4 (0.000 0)
KF p=00854(0.0302) 3093 | 02539 | 0.1068 | 0.5856 | 0.7759
6=10.0374 (0.1181)

$=3.5943(0.1132)

fL=0.9088 (0.937 6)
B=0.2686 (0.166 4)
6=2.3470 (1.738 5)
$=11.7384 (8.9583)

WF 31.11 0.2691 0.1374 0.6188 0.5820

L =16.0638 (0.567 6)
B =0.1098 (0.063 3)
6=0.7655 (0.109 2)
$=-0.0170 (0.0210)

KG 31.22 0.2769 0.1463 0.6233 0.5805

fL=11.1513 (75.020 3)
B=2.5241(1.005 4)
6=0.013 4 (0.000 0)
$=8.3168 (0.000 0)

GB 31.42 0.2858 0.1880 0.5762 0.5759

[1=5.3909 (22.7691)
B =2.3987 (0.826 3)
6=0.0289 (0.1102)
$=4.7381(16.6691)

WB 31.44 0.2944 0.1889 0.5810 0.5525

[l =44.0261 (104.661 4)
B=0.5269 (0.655 4)
6=0.3317 (3.5855)
$=6.3291(68.262 6)

31.56 0.2988 0.1950 0.5901 0.4491

[L=5.9856 (24.872 6)
B=23249(1.8700)
6=0.5917 (1.796 6)
$=0.1505 (0.206 8)

GL 31.82 0.3004 0.1999 0.6591 0.4376

6.=0.1887 (0.594 5)
APG B=0.0258 (0.0315) 3238 | 03108 | 02297 | 0.8018 | 0.4342
6=0.007 6 (0.022 3)

1=7.5695 (17.8991)
B=1.1883(0.6145)
6=0.0099 (0.016 6)

$=-0.0187 (0.0352)

WG 32.48 0.3159 0.2305 0.8465 0.4188
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Ending table 4
Distribution Estimates Log-lik KS W A p-Value

0= 6.297 7 (9.968 3)
GE B=0.9516 (0.2607) 3259 | 03173 | 02438 | 0.8748 | 0.4162
6 =0.0059 (0.007 7)

0.1534 (1.3781)
6.062 9 (14.095 6)
=0.0118 (0.0379)
=0.1129 (0.2816)

GW

X
g 32.64 0.3221 0.2459 0.8859 0.3695
G

[L=37.8065 (79.7357)
B=0.2458(0.3821)
6=0.1812 (0.402 6)
$=5.7881(11.1232)

KL 32.65 0.3322 0.2510 0.8967 0.3124

In the three datasets illustrated the MT generated models have the highest p-values and with the smallest
Akaiki information criteria. Thus it is chosen to be the best model for the data under consideration.

Conclusions

A family of distribution models that provides a parameterised mathematical function, simple and efficient, has
been the trend. Thus a model with the algorithm for the parameter estimation of data sets of various characteristics
and decision making has become an interest to researchers. However, Marshall — Olkin [5] proposed a major
transformation for adding a parameter to a classical statistical distribution. Thus a two-parameter method is
introduced for generating efficient, improved, and flexible classical models in distribution theory. The Lam-
bert ¥ function is implored to obtain the MT generated quantile function. The parameter of the proposed model
is acquired using the maximum likelihood. The outcomes of the real-life and simulation study show the rele-
vance and performance of the MT generated model. The results indicated that the MT generated is flexible and
tractable in terms of their goodness-of-fit. Thus stochastic processes in quality control and reliability studies can
be modelled using the MT generated distribution because of its U- and J-shaped hazard rate function.
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