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Vcnonp30BaHbl HEOMIUPUIECKIE (PYHKIIMA MTOTEHIIMAIBHON SHEPTUH M KIACCHUECKON KHHETHYEeCKoi Teopuu. B 3a-
BHCHUMOCTH OT TeMIIepaTyphl ra3oBoii cmecu (Bmiothk 10 3000 K) paccuntanbl HEKOTOpBIE TPAHCIOPTHBIE CBOWCTBA (KO-
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n3 aromoB paaust u aromos rajorena (F, Cl, Br, I). PacueTs! BBIIONHEHBI HA OCHOBE MOCIIEA0BATEIBHOTO aHAINTHYC-
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pabotaHa opoOHas METOIMKA pacueTa TPAHCIIOPTHBIX CBOWCTB C MCIONBh30BaHMEM MoTeHIata Mop3e. PaccmoTpeHsr
HEKOTOpPbIC YHCICHHBIC TPYIHOCTH, BO3HUKAIONINE U3-32 OCOOCHHOCTEH MOABIHTETPATIBHBIX BBIPAKCHUN U Pa3pBIBHOTO
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TEHIMaJIa B3aUMOJCHCTBUSI MEX /Ly aToMaMH. [1orydeHHbIe pe3yabTaTbl MOTYT OBITh HCIOJIB30BAaHbI IIPH IJIAHUPOBAHUN
AKCTIIEPUMEHTOB TI0 IPSIMOMY JIa3€PHOMY OXJIAXKICHUIO MOHOTAJIOTCHUIOB IIET0YHO3EMETbHBIX METAJLIOB.
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Based on state-of-the-art ab initio potential energy functions and classical kinetic theory, some transport properties (dif-
fusion, viscosity and thermal conductivity coefficients) of two-component dilute gas media of radium and halogen (F, Cl, Br, I)
atoms were predicted as functions of the translation temperature up to 3000 K. Calculations were performed by sequen-
tial analytical and (or) numerical computations of deflection angle, cross-section and collision integrals. A detailed
methodology for the calculation of the transport properties using the Morse potential was developed. Some numerical
difficulties arising due to the singularity of the integrands and discontinuous character of the variable of integration
are considered. The dependence of transport properties on isotope mass is also shown. Possible errors introduced by
using the model Morse potential function instead of the real potential for the interaction between atoms are estimated.
These data can be useful for the planning of the experiments on the direct laser cooling of the monohalides of alkaline
earth metals.
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Introduction

Laser cooling is one of the effective techniques to obtain ultracold molecules [1; 2]. Among possible appli-
cations of ultracold molecules, such as the creation of a Bose — Einstein condensate, quantum information pro-
cessing, controlled chemical reactions, a new promising application of ultracold molecules containing heavy
nuclei, namely, research for electron’s electric dipole moment, was recently proposed [3].

The monohalides of alkaline earth metals are promising diatomic molecules for the direct laser cooling due
to the coincidence of the equilibrium internuclear distances of potential energy curves (PECs) involved in the
cooling scheme states and, as a consequence, highly diagonal Franck — Condon factors. Other essential fea-
tures required for effective direct laser cooling are strong transition dipole moment between the states involved
in the cooling scheme and the absence of intervening electronic states between them in order to avoid leaks in
the cooling cycle [2]. Generally, the monohalides of alkaline earth metals possess the mentioned key factors.
Recently, the strontium monofluoride (SrF) [4—6] and calcium monofluoride (CaF) [7-9] molecules were suc-
cessfully cooled and caught into a magneto-optical trap.

Among all monohalides of alkaline earth metals, the radium ones are least studied, possibly due to the high
radioactivity of the radium. Nevertheless, the radium monofluoride (RaF) molecule is considered the most pro-
mising candidate for direct laser cooling in order to use it for measuring molecular parity violation [10]. In the
recent experimental studies [11; 12] numerous molecular spectroscopic parameters for the lowest states of the
RaF molecule with different radium isotopes were obtained for the first time. The method used in [11; 12] pro-
vides breakthrough possibilities for the high-precision studying short-lived radioactive molecules, including
the development of laser cooling schemes. The latter task has different sides. On the one hand, it is necessary to
calculate at the high level of theory the PECs involved in the cooling scheme states, spectroscopic and radiative
characteristics of the vibronic states, etc. Another aspect of the problem under consideration is the calculation
of the transport properties of alkaline earth metal atoms and halogen atoms under conditions of dilute gaseous
media at various particle concentrations and temperatures. These data can be useful for the planning of the
experiments. The most important transport properties that determine the dynamics of pair collisions in a gas
medium are the coefficients of viscosity (pure gases and mixtures), thermal conductivity, diffusion, and effec-
tive collision cross-sections [13].

Lately, we performed the state-of-the-art FS-RCCSD (Fock-space relativistic coupled cluster singles and
doubles) [14] calculations for the RaF [15], RaBr [16], and Ral [17] molecules. The results of these studies
show that radium monohalides can be used for direct laser cooling. In this study, we use the classical Chap-
man — Enskog kinetic theory [13] in order to predict the transport properties of the dilute radium — halogen gas
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media. The transport properties are evaluated in the terms of reduced collision integrals, and some numerical
difficulties arise due to the singularity of the integrands and discontinuous character of the variable of integra-
tion [18; 19].

The main goals of the work are to develop a consistent scheme for the calculation of transport properties
of the dilute gas media based on the classical kinetic theory [13] and Taylor’s algorithm [18] and to evaluate
some transport properties of the dilute radium — halogen media based on the Morse potential function for the
interaction between atoms and modern possibilities of the numerical methods.

Theoretical details

It is convenient to consider the problem of two colliding particles with masses m, and m, in the center-of-
mass system. In other words, the above-mentioned three-dimension problem turns into the two-dimension one

i the spherically symmetric potential field

for the motion of only one particle with reduced mass | =
m; + m,

<I)(r). In this case, the collision process can be characterised by the following parameters: the total energy of
1
particles £, which is equal to their relative initial kinetic energy E = Euvi; the deflection angle ; the impact

parameter b (fig. 1). According to definition of the deflection angle, its value varies from 0 to 1, excluding the
orbiting case (see below). The value of © corresponds to the situation of head-on collision with zero impact
parameter, and the value of 0 corresponds to the situation with avoiding collision at very large values of 5.

Reduced mass

Deflection
angle

Distance of closest Impact
approach 7, parameter b

Fig. 1. The two particles collision in the center-of-mass system

Moreover, the two-dimension colliding problem can be reduced to the one-dimension one for the motion

of the particle with reduced mass L in some effective potential field ® eff(r), which is given by the following
equation: ‘

2
q>eﬁ,(r)=q>(r)+E’;—2. (1)

According to the classical kinetic theory of gases [13], the diffusion coefficient D, the viscosity coeffi-
cient 1 and the thermal conductivity coefficient A for low-density atomic gases at the first approximation are

373
5| kT

: 2

e i LI ()
(
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32m6” Q> (1)
where kj is the Boltzmann constant; ¢ is the collision diameter, its value is equal to the distance between parti-
cles, for which @ (r)=0; Q® l)(T *) and Q% 2)(T *) are reduced collision integrals as functions of the reduced

25

A=

“4)

« kgT . . . . . . L
temperature 7" = BT; € is a parameter having the dimension of energy, its value is chosen as dissociation
energy D, for the potential energy function ® (r) of interacting particles.

The collision integrals o) (T *) are expressed in the terms of cross-section integrals Q(l)(E ):

o E

(Z,8) () _ T s +1 (1)
Q(r )_—(s+1)!T”1 Je E** 0" (E)dE. (5)
In its turn, the cross-section integrals Q(l)(E ) are
O(E)=——2[(1= cos'y)belb. (6
0" () _1+(—1)’0( x) )
2(1+1)
The integral for the deflection angle X(E , b) is determined as follows:
¢ ar

E,b)=nn-2b| ——, 7
X(E, b)=m irzm) (M)

where r,, is the distance of closest approach, the function ¥ (r) is

) 2
0z

The distances b, r and r,, are expressed in the units of the collision diameter 6, while the energies £ and
®(r) are expressed in the units of the parameter €.
For the given energy the impact parameter b and the distance of the closest approach r,, are related accor-

F(r)= 1-

ding to formula (8), where F (rm) =0,or
Ery —®(r, ), —b’E=0. )
The last equation should be solved numerically. As a result, the dependence of the distance of closest ap-
proach r,, on relative kinetic energy £ and impact parameter b can be obtained. The function 7, (E , b) allows to

calculate integral (7) and to find the dependence of the deflection angle % on the same parameters.
From the other hand, the equation (9) provides the relationship between b and r,, for a fixed energy:

E - CI)(rm)
b=r,\|————. (10)
E
The minimal 7, value can be found using the condition b = 0, which corresponds to the head-on collision.
In this case the equation (9) is reduced to

E=®(r,), (11

and the solution of the equation (11) is denoted as 7.
Generally, the dependence of the distance of closest approach 7, on b and E has non-trivial character. Fi-
gure 2 shows the effective potential energy function @ (r), evaluated by formula (1), for a fixed energy and

for three different values of the impact parameter. The difference between £ and @, results in the relative
kinetic energy for a given point:

1
E-®(r, b):Ekzzuvz, (12)
where Vv is relative radial velocity.

55



ZKypnaa Besopycckoro rocyrapcrBeHHOro ynusepcurera. ®usuxa. 2022;1:52-64
Journal of the Belarusian State University. Physics. 2022;1:52—64

Energy

~
=
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2 r

Distance

Fig. 2. Effective potential energy function:
the oblique collision (/), the orbiting effect (2), the head-on collision (3)

If the left side of the equation (12) is equal to zero:
E-®,,(r,b)=0, (13)

it corresponds to the turning point (v = 0) or to the distance of closest approach 7,,.

One can see that for some impact parameter b = b, the condition (13) is satisfied at the point r =7, (see fig. 2,
curve 2). The second solution of the equation (13) for the case b = b, lies in the region r < 7, and is denoted
as 7. For the case b > b, (see fig. 2, curve /) there are also two values for the distance of closest approach 7,

namely r,ﬁll) <rand r,ff) < 1,. The only last one has physical meaning since a particle cannot penetrate to the re-
gion 7 <7,. For the case b < b, (see fig. 2, curve 3) the equation (13) has only one solution, and its value 7,, < 7.

To find the 7, value, it is necessary to consider the joint solution of the equation (13) and the extremum
condition (14): JD

off
—=0. 14
dr (19
Elimination of the impact parameter b for the system (13), (14) gives equation
do
2(E-D)—r—=0, 15
(E-@)-r— (15)

which can be solved numerically for 7,. The 7; is a smaller root of the equation (13).

So, for b > b, the distance of closest approach is greater than 7, and for b < b, the distance of closest ap-
proach is less than 7. It means that the distance of closest approach as a function of the impact parameter is
discontinuous for b = b,, and distances of closest approach in the interval 7; < r,, < 7, are physically impossible.

From the physical point of view, values b > b, correspond to rather oblique collisions, for which deflection
of particles occurs with fairly small angles, and attractive forces between particles dominate over repulsive ones.
Case b < b, corresponds to almost head-on collisions, deflection occurs with large angles, and repulsive forces
play main role. Case b = b, is characterised by the orbiting effect, or the formation of quasi-bound state of two
particles. In this case particles long time orbit each other at a distance 7,.

The critical energy E,, for which the orbiting occurs and below which r,, has discontinuous character, can
be found according to following. Based on equation (15) one can obtain the expression for energy:

Ezlrod—q)+¢)(r0). (16)
2 7 dy

Extremum of the energy corresponds to the critical energy E:
dE _1(.d®  d'®
dry, 2
So, the solution of the equation (17) gives value of the critical distance of closest approach r,. Substitution
of the 7, into the equation (16) gives the critical energy E...
Thus, for the calculation of the deflection angle ) for energies E < E, the integral (7) should be divided

into two parts: the integral over r;(E) to rj(E) and the integral over 7,(E) to infinity. For energies E > E, the
integral (7) is over rE(E ) to infinity.

— +1,— |=0. 17
dr, "’ dry (a7
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Since the orbiting effect corresponds to the formation of a quasi-bound state of interacting particles, they
orbit each other like a bound system. Therefore, the deflection angle increases continuously, and its value tends
to infinity (fig. 3).

Fig. 3. The two particles collision in the orbiting case at energies less
than £, where the deflection angle y varies from zero to infinity

Figure 4 represents the dependence of the (1 — cos ) function on the impact parameter b for several values

of reduced energy E. Figure 4, a, corresponds to relative energy £ = 0.014, which is less than the critical ener-
gy (E. = 0.284), and, therefore, it demonstrates the orbiting effect. In addition, figure 4, b, represents energy

E =0.324 near-critical one, and (1 — cos x) function rapidly oscillates between values zero and two. Figure 4, ¢
and d, correspond to energy values, which are greater (£ = 0.490) or much greater (£ = 42.0) than critical ener-
gy. The latter one demonstrates monotonic dependence of the (1 —cos x) function on the impact parameter b.

The exact empirical potentials for interaction between radium atom and halogen atoms (F, Cl, Br and I)
are unknown. In order to calculate the required transport properties, we have used the ab initio PECs for the
ground state of the RaF [15], RaCl [20], RaBr [16] and Ral [17] molecules. These PECs have been calculated
at the FS-RCCSD [14] level of theory, which is one of the most successful tools for predicting the electronic
structure and properties of molecular compounds containing heavy atoms. It provides the most accurate data
on PECs and other characteristics of complex molecular systems [15; 20].

The ground state PECs were calculated near their minima and were extrapolated to the larger internuclear
distance via the Morse potential [21]:

@(;»):De(l—e‘“("re))z—/)e, (18)

where D, is the dissociation energy; 7, is the equilibrium internuclear distance; a depends on PEC’s parameters:

0
a=—"% B ,
2n \} 2D,
where ®, is a harmonic frequency.

Besides, the ground state PECs, obtained by formula (18), for the radium monohalides are shown in fig. 5.
Since the real PEC can significantly differ on the Morse potential function, for comparison we have also cal-
culated the transport properties for the potassium — rubidium medium. In contrast to radium monohalides,
the ground state PEC for the KRb molecule has been obtained through both experimental [22] and theoreti-
cal [23; 24] methods. We have performed the calculations of the transport properties for the K — Rb medium
using exact empirical potential [22] and the model Morse potential. It allows us to estimate possible errors
introduced by using the model potential function instead of the real one.

The transport properties as well as the Morse potential, depend on the reduced mass of interacting parti-
cles. The radium does not have stable isotopes. The longest-lived isotope of radium is *°Ra with a half-life
of about 1600 years. The fluorine has only one stable isotope, namely '°F. The chlorine has two stable isotopes
(**Cl and *’Cl) with abundances of 75.77 and 24.23 %, respectively. The bromine also has two stable isotopes ("Br
and *'Br) with abundances of 50.69 and 49.31 %, respectively. The iodine has only one stable isotope, namely
127]The potassium has two stable isotopes (*’K and *'K) with abundances of 93.26 and 6.73 %, respectively.
The rubidium has only one stable isotope (*’Rb) and one long-lived isotope (*’Rb) with abundances of 72.17
and 27.83 %, respectively. We calculated the transport properties for the *Ra — '°F, *°Ra — *°Cl, ***Ra —*'Cl,
2°Ra — PBr, *°Ra — '*"I and *’K — *Rb dilute gas media.
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Fig. 4. The dependence of the (1 — cos x) function on the impact parameter b
for £=0.014 (a), 0.324 (), 0.490 (c) and 42.0 (d)
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Energy, cm
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Fig. 5. Potential energy curves of the ground state
of the RaF (7), RaCl (2), RaBr (3), Ral (4) and KRb (5) molecules

Calculation details

All calculations were performed in relative units described in the previous section using the package Wol-
fram Mathematica [25]. At the first stage of calculations, a critical distance 7. and critical energy E, were
determined according to formulas (16) and (17). Optimal steps in selected ranges for energies £ and impact
parameter b were defined.

In the energy range E < E, the values of 7, and b, were evaluated by using formulas (15) and (10), respec-
tively. The angle % was calculated for the given energies for the values of b belonging to five different intervals:
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I, 11, 1L, IV and V (fig. 6). To calculate the deflection angles using (7) in the intervals I and IV one needs the
distances of closest approach r,, to be numerically evaluated using (13) according to the approach described

previously. For b < b, the smallest positive root lying near distance where (I)(r) =0 was chosen as a solution.

For b > b, the largest positive solution of equation (13), being usually located to the right of the potential in-
flection point, was taken as 7,,. In intervals II and III near the point b = b, where the orbiting occurs, the angle ¥
tends to negative infinity. Taking into account this asymptotic behaviour, the angle ) was found as a function

b*— by

b =b,, where c and ¢’ are positive coefficients determined for each value of £. In the interval V the angle x takes
negative values, slowly increasing tending to zero as b approaches infinity. Considering this tendency, a func-

in interval II to the left of the critical point and as a function szc—bz in interval III to the right of
— b

tion of the form C—g + %8 + % was used as function ¥ (b), where C,, Cy and C), are coefficients determined
b b b
for each value of E.
For energies E > E, the integrals for deflection angles x were calculated numerically exactly by using for-

mula (7) after evaluating r,, according to (13). As for each value of £ deflection angles x(b) — 5= 0and

are negative in the asymptotic region, so for curve-fitting was used the same function as for interval V (E < E).
For energies £ slightly larger than £, in the vicinity of the minimum of the angle , where the function changes
very rapidly, a more frequent step of b was used to obtain more points for the further interpolation. For the
interpolation of the calculated % points Hermite polynomials of third order were used.

11 111 v A%

\

T TN N T N N TN TN T NN TN T T AT N T TN N T TN S SN I S S NN
by
Impact parameter b

:

/

Deflection angle .

Fig. 6. The dependence of deflection angle y
on impact parameter b: [-V are intervals

The integrals Q(l)(E ) for the scattering cross-sections were calculated according to (6) for /=1 and / = 2.
For energies E < E, the values of Q(l)(E ) were calculated as Q(l) = QI(I) + QI(II) + QI(III) + QI(\Z,) + Qg), where Qi(l),
i=1,5,are integrals over b belonging to intervals [-V. Integrals QI(I), QI(\I,) and Qg) were calculated numerically,
integrals Ql(ll ) and QI(III) were evaluated analytically. For energies £ > E, the values of Q(l)(E ) were obtained as
sum of two integrals over b in the intervals of numerically and analytically defined  data.

Besides, the Q(l)(E ) function values for all energies were interpolated by Hermite 3" order interpolation
method. To describe the scattering cross sections Q(l)(E ) in the regions £ — 0 and £ — +oo the curve-fitting

functions of the form of A/E p(l)e_k(l)E were applied with the coefficients A(l), p(l) ( p(l) > 0) and ) being de-
fined separately for the discussing regions for different values of /.

The collision integrals Q%) were calculated by substituting the obtained integrals for the scattering cross-sec-
tions Q(l)(E ) into (5) for / = 1, 2. The range of relative temperatures 7" for these integrals was chosen to cor-

respond to the real temperatures 7 from 5 to 3000 K for each of the gaseous media under study. As Q(l)(E )
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and Q(z) (E ) were obtained for three ranges of energy: £ — 0, values £, selected for the numerical calculation and

E — +oo, than Q%) were evaluated as sum of three integrals over E. The integrals over second range were
obtained numerically. The rest integrals in the sum were calculated analytically as integrals of gamma func-
tions.

The described calculation technique was tested on the Lennard-Jones potential. The integrals calculated by

us occurred to be in full agreement with the already known Q") collision integrals [13], being widely used
for predicting transport properties of gases.
All calculations were performed at a pressure of 1 atm.

Results and discussion

The calculated transport properties for the two-component radium — halogen dilute gas media as functions
of the translation temperature in the range 5-3000 K are shown in fig. 7, a, 8, a, and 9, a. The dependencies of the
transport properties on chlorine isotope mass are presented in fig. 7, b, 8, b, and 9, b, where inserts demonstrate
mentioned functions for high temperatures. Figures 7, ¢, 8, ¢, and 9, ¢, show calculated transport properties for
the K — Rb medium using exact empirical (curve §) and model Morse (curve 7) PECs.

The difference in behaviour of the diffusion D and thermal conductivity A functions and viscosity 1 function
is due to the following reasons. The dependencies of the D, A and 1 coefficients on medium’s characteristics are

(see also equations (2)—(4))
f
p- Yt (19)

f
O Ll (20)

e2y)

Since the dependencies of the collision integrals QY and 0?2 on temperature have the same character,
namely, they monotonically decrease when temperature increases, the reduced mass and the PEC’s parameters
are crucial in differences of the coefficients for different media. For the diffusion coefficient D (see fig. 7, a) and
thermal conductivity coefficient A (see fig. 8, @) for the Ra — Cl and Ra — Br media mentioned dependencies
partly compensate each other (see also fig. 5). As a result, D and A functions for the Ra — Cl and Ra — Br media
are similar. The diffusion coefficient D (19), in fact, differs from the thermal conductivity coefficient A (20)
only by a factor of temperature, which results in a faster rise of corresponding dependencies for high tempe-
rature. Wherein, a character of rising of the functions remains the same.

Generally, the transport properties are weakly dependent on isotope mass (see fig. 7, b, 8, b, and 9, b). For
low temperatures, this dependence almost vanishes at all.

The viscosity coefficient 1 (21), in fact, is the thermal conductivity coefficient A (20), which is multiplied
by the reduced mass [. As a result, a character of rising of the n function drastically differs on A function
(comp. fig. 8, a, and 9, a). It is reflected in dependencies of the thermal conductivity coefficient A and visco-
sity coefficient 1 for the Ra — Cl medium for different chlorine isotopes (see fig. 8, b, and 9, b). The thermal
conductivity coefficient A function for the chlorine-35 isotope lies above the chlorine-37 one, wherein for the
viscosity coefficient 1| the dependencies are reversed.

However, the analysis of dependencies of the transport properties on temperature for the K — Rb medium
(see fig. 7, ¢, 8, ¢, and 9, ¢) shows that the model Morse potential energy function underestimates the D, A and
7 coefficients compared with exact empirical one [22]. Our results are in agreement with calculations of [26]
on the alkali metal (Rb, Cs) —rare gas (He, Ne, Ar, Kr, Xe) media, for which calculated transport properties using
the Morse potential are also underestimated relatively experimental values. It should be taken into account
when comparing theoretical results with future experimental data.
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Conclusions

Based on the classical kinetic theory of gaseous media, a detailed methodology for the calculation of the
transport properties using the Morse potential has been developed. The diffusion, thermal conductivity and vis-
cosity coefficients as functions of the translation temperature in the range 53000 K for the two-component ra-
dium — halogen (F, CI, Br, I) dilute gas media are calculated for the first time. The influence of an isotope mass
on the transport properties is defined. Possible errors introduced by using the model Morse potential function
instead of the real potential for the interaction between atoms are estimated. Calculated data can be useful for
the planning of the experiments on the direct laser cooling of the monohalides of alkaline earth metals.
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