12. Кажлаева Р. И., Шахтахтинский М. Г., Кулнев А. А., Вигдоро-

вич В. Н. // ЖФХ.— 1970.— Т. 44.— № 10.— С. 2460. 13. Глазов В. М., Лазарев В. Б., Жаров В. В. // Фазовые диаграммы простых веществ.— М., 1980.— С. 120, 123.

14. Савицкий А. А., Мечковский Л. А., Вечер А. А. // ЖФХ.— 1975.—

T. 49.— № 11.— C. 2921.

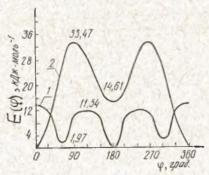
Т. 49.— № 11.— С. 2921.

15. Охотин В. С., Разумейченко Л. А., Андрианова Т. Н. // Исследование теплофизических свойств веществ и процессов теплообмена: Труды Московского энергетического ин-та.— М.— 1982.— Вып. 588.— С. 60.

16. Gronvold F. // Acta Chem. Scand.— 1975.— V. A 29.— № 10.— Р. 945.

17. Кгашег W., Nolting J. // Acta Metallurgica.— 1972.— V. 20.— Р. 1353.

18. Смнтлз К. Дж. Металлы: Справ. изд. / Пер. с англ.— М., 1980.— С. 176.
19. Itoh S., Azakami T. // J. Japan Inst. Metals.— 1984.— V. 48.— № 3.— Р. 293.


20. Вегthou Р. Е., Tougas R. // Metal Trans.— 1970.— V. 1.— № 10.— Р. 2978.

УДК 536.7.75

С. В. ПЕТРОВА-КУМИНСКАЯ, Г. Н. РОГАНОВ, Г. Я. КАБО

СТАТИСТИЧЕСКИЙ РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ 1,4-ПЕНТАДИЕНА И ТРАНС-1,3-ПЕНТАДИЕНА

Значения термодинамических функций 1, 4-пентадиена (1,4-ПД) и транс-1, 3-пентадиена (транс-1, 3-ПД), принятые в справочнике [1], найдены инкрементным методом. При этом величина энтропии газообразного 1, 4-ПД $S_{298,15}^{0} = 333,5$ Дж·моль $^{-1} \cdot \text{K}^{-1}$ [1] практически совпадает, а энтропия транс-1, 3-ПД $S_{298,15}^0 = 319,7$ Дж·моль⁻¹·К⁻¹ [1] заметно выше значений, определенных из низкотемпературных измерений теплоемкости от 11 K [2] (334,00 и 315,60 Дж·моль-1·K-1 соответственно). Статистический расчет термодинамических свойств выполнен только для транс-1, 3-ПД [3], но вклады внутреннего вращения винильной группы в этой работе вычислены по торсионной частоте, и расчет [3] дал завышенную относительно экспериментальной величину энтропии $S_{298,15}^{0} = 321,75 \, \text{Дж}$ •моль-1 • К-1. Из изучения температурной зависимости ИК спектров и спектров КР [3] сделан вывод о существовании транс-1, 3-ПД в виде плоской s-транс-формы; s-цис-форма не обнаружена, хотя исследования ЯМР-спектров [4] ее не исключают. Факт вступления этого соединения в реакцию Дильса — Альдера также указывает на реализацию s-цис-конфигурации.

Кривые потенциальной энергии вращения винильных групп $E(\phi)$ в 1,4-пентадиене (1) и транс-1, 3-пентадиене (2)

Выполненный нами статистический термодинамических 1,4-ПД и транс-1,3-ПД согласован с экспериментальными значениями \$298.15 этих соединений.

параметры 1,4-ПД Структурные взяты из работы [5], интерпретация колебательного спектра предложена в [6]. Форма кривой потенциальной энергин вращения двух винильных волчков выбрана в соответствии с расчетом ав initio, подкрепленном спектральными измерениями [5[, при условии согласования расчетной энтропии 1,4-ПД с экспериментальной: $V(\varphi)$ Дж·моль⁻¹= $=1314(1+\cos \varphi)+5439(1+\cos 3\varphi)+$ $+1925(1-\cos 6\varphi)$ (см. рисунок).

Произведение главных моментов энергии молекулы транс-1, 3-ПД и приведенных моментов инерции волчков взяты из работы [7], набор частот пормальных колебаний — из [6]. Барьер вращения метильного волчка $V_3 = 10,38$ кДж·моль [3]. Ряд упомянутых выше фактов показывает, что транс-1, 3-ПД реализуется в двух конформациях: более устойчивой

Термодинамические свойства 1,4- и транс-1,3-пентадиенов *.

т, к	s_{T}^{0}	c_p	$\frac{H_{\mathrm{T}}^{0}-H_{0}^{0}}{T}$	$-\frac{G_{\mathrm{T}}^{0}-H_{0}^{0}}{T}$	ΔH _f ⁰
1,4-пентадиен					
298,15	333,88	109,03	77,65	256,23	105,65
300	334,55	109,54	77,86	256,69	105,56
400	370,37	134,10	89,25	281,12	101,13
500	402,79	155,56	100,29	302,50	97,24
600	432,79	172,84	110,96	321,83	94,01
700	460,66	187,40	120,88	339,78	91,46
800	486,60	200,00	129,96	356,64	89,37
900	510,82	211,04	138,40	372,42	87,86
1000	533,67	220,66	146,19	387,43	86,90
транс-1,3-пентадиен					
298,15	315,85	101,92	65,65	250,20	75,81
300	316,52	102,42	65,90	250,62	75,73
400	349,82	130,12	78,58	271,24	70,58
500	381,58	154,64	91,42	290,16	66,48
600	411,62	174,89	103,68	307,94	63,39
700	439,86	191,50	115,06	324,80	61,13
800	466,39	205,18	125,52	340,87	59,54
900	491,20	216,61	135,02	356,18	58,53
1000	514,55	226,27	143,64	370,91	53,07

^{*} ΔH_{*}^{0} в кДж · моль $^{-1}$, остальные функции в Дж · моль $^{-1}$ · K^{-1} .

s-транс [3, 4, 6, 7] и менее энергетически выгодной s-цис-конформации, присутствующей, вероятно, в небольших количествах. Аналогии в конфигурации молекул 1, 3-бутадиена и транс-1, 3-ПД позволяют предположить, что функции потенциальной энергии внутренного вращения винильных групп этих соединений также сходны. Вклады в термодинамические функции внутреннего вращения винильного волчка транс-1, 3-ПД вычислялись в псевдоклассическом приближении с использованием кривой потенциальной энергии вращения винильной группы 1, 3-бутадиена [8] с несколько измененными для согласования расчета с экспериментальной энтропией параметрами: $V(\varphi)$ Дж моль = $6070(1-\cos\varphi)+13080$ $(1-\cos2\varphi)+1260(1-\cos3\varphi)-63(1-\cos4\varphi)$ (см. рисунок). При этом барьер перехода s-транс \rightarrow s-цис-конформаций 33,5 к $\hat{\mathbb{A}}$ ж моль $^{-1}$. Разность энергий между ними 14,6 кДж·моль-1. Энтальпии образования 1, 4-ПД и транс-1, 3-ПД при 298, 15 К рекомендованы в [19]. Результаты вычислений представлены в таблице.

Список литературы

1. Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений.— М., 1971.
2. Messerly J. F., Todd S. S., Guthrie G. B. // J. Chem. Eng. Data.— 1970.—

V. 15.— P. 227.

3. Compton D. A. C., George W. O., Maddams W. F. // J. Chem. Soc. Per-

kin II.— 1977.— Р. 1311.
4. Harris R. K.. Cunliffe A. V. // Org. Magn. Reson.— 1978.— V. 9.— Р. 483.
5. Gallinella E., Cadioli B. // J. Chem. Soc. Faraday II.— 1975.— Р. 781.
6. Свердлов Л. М., Ковнер М. А., Крайнов Е. П. Колебательные спектры многоатомных молекул.— М., 1970.

7. Hsu S. L., Flygare W. H. // J. Chem. Phys.—1970.— V. 52.— P. 1053.

8. Durig J. R., Bucy W. E., Cole A. R. H. // Canad. J. Phys.—1975.— V. 53.— P. 1832.

9. Cox J. D., Pilcher G. Thermochemistry of Organic and Organometallic Compounds.—London; New Jork, 1970.

УДК 541.11

А. С. СКОРОПАНОВ, И. А. БУЛГАК, Т. А. КИЗИНА, А. А. ВЕЧЕР, Ю. Н. НОВИКОВ, М. Е. ВОЛЬПИН

ТЕРМИЧЕСКИЙ АНАЛИЗ СЛОИСТОГО СОЕДИНЕНИЯ ГРАФИТА С_{7.73}CuCl₂

Задачи оптимизации процесса синтеза искусственных алмазов, получения термически расщепленного графита и слоистых соединений углеродных волокон определяют необходимость физико-химического изучения особенностей поведения слоистых соединений графита (ССГ) при повышенных температурах.

Цель настоящей работы — продолжение исследования ССГ с хлоридами d-элементов в качестве компонентов внедрения, в том числе и с дихлоридом меди [1—3, 5, 6]. Ранее нами были детально изучены свойства ССГ составов $C_{6,35}$ CuCl₂, $C_{6,97}$ CoCl₂, $C_{16.8}$ CoCl₂, $C_{7,7}$ FeCl₃ и $C_{11,83}$ FeCl₃

[1-6].

Синтез и идентификацию соединения выполняли, как и ранее в [7]: $C_{7,73}$ CuCl₂ содержит 59,15 мас. % CuCl₂ и представляет собой ССГ (со-

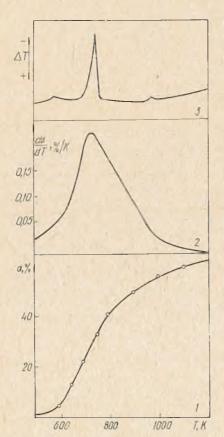


Рис. 1. ТГ (1), ДТГ(2) и ДТА(3) кривые для нагрева в вакууме соединения $C_{7,73}$ Си Cl_2

гласно результатам рентгенофазового анализа) преимущественно первой ступени с примесью (8—10 %) второй.

Исследования проводили до 1300 К методами динамической термогравиметрии (Γ Г), количественного дифференциального термического анализа (Γ ДТА), термодилатометрией и рентгенофазовым анализом (Γ ФА), экспериментальные особенности применения которых сообщались в [3, 4]. Отметим, что термодилатометрия прессованных образцов Γ _{7.73}CuCl₂ проводилась через 5—10 мин после их формирования (рис. 1—3).

Как следует из рис. 1, при скорости нагрева 5 К/мин в вакууме (1,2-1,5 Па) порошкообразных образцов CCI-CuCl₂ (дисперсностью 0,25 мм) изменение их массы фиксируется при температуре выше 460— 480 К. С ростом температуры степень разложения а и скорость убыли массы $d\alpha/dT$ резко возрастают: к 1200 К из ССГ практически полностью удаляется хлорид меди, при этом $d\alpha/dT$ при 720—730 К достигает максимума в 0,23 %/К. В эксперименте визуально наблюдалось появление в холодной зоне сосуда налета, интенсивность которого увеличивалась по мере продолжения опытов, а цвет менялся от светлосерого к желтому, а затем и к коричневому. РФА углеродного остатка фикси-