5. Ветохин С. С., Резников И. В.— Оптико-механическая промышленность, 1980, № 8, с. 46.

6. Александров И. Р., Дунаевская Н. В., Иванов О. И., Карнаух И. М., Остапенко А. А., Пельтек С. М., Стучинский Г. Б.— Приборы и техника эксперимента, 1977, № 2, с. 176.

Поступила в редакцию 25.12.84.

УДК 548.74

Ф. Ф. КОМАРОВ, В. В. КОРНЕЙЧИК, В. С. ТИШКОВ

ИСПОЛЬЗОВАНИЕ МЕТОДА ДИФРАКЦИИ В СХОДЯЩЕМСЯ ПУЧКЕ ДЛЯ АНАЛИЗА СТРУКТУРЫ БЛИЖНЕГО ПОРЯДКА ТОНКИХ СЛОЕВ АМОРФНОГО ВЕЩЕСТВА

На серийных электронографах в режиме коллимированного пучка дифрактограммы получают с площадей ~ 0,03—0,05 мм², что приводит к наложению дифракционных картин от отдельных структурных фрагментов с линейными размерами менее 200 мкм.

Для получения дифрактограмм с участков меньшей площади можно воспользоваться методом дифракции в сходящемся пучке 1. В этом случае электронный пучок конечной аппертуры фокусируют на образце. Если пучок ограничен круглой аппертурой, то в случае монокристаллического образца каждое пятно дифракционной картины расширяется в круглый диск. При этом изменение интенсивности в пределах центрального пятна и дисков дифракционных пятен в дифракционной картине будет соответствовать изменению интенсивности в зависимости от угла падения пучка.

Применение метода сходящегося пучка оказалось полезным также при анализе структуры ближнего порядка тонких слоев аморфных материалов, в частности, полученных имплантацией ионов средних энергий в монокристаллические и поликристаллические подложки. Подготовка таких образцов для получения дифрактограмм «на просвет» производится, как правило, посредством травления (электролитического, химического, динамического) с обратной стороны до образования сквозного отверстия, окаймленного клином вещества имплантированного слоя шириной 5—10 мкм (рис. 1).

При работе в коллимированном пучке на дифрактограмме с такого клина наблюдаются наряду с диффузными кольцами от аморфного слоя рефлексы от матрицы (см. рис. 1, *a*), усложняющие дифракционную картину.

В случае сходящегося пучка можно получить дифрактограммы с отдельных участков этого клина (см. рис. 1, б). Однако при этом происходит искажение угловой зависимости рассеянных электронов: размытие диффузных колец и расширение центрального пятна в диск диаметром *D*, представляющий собой проекцию аппертурной диафрагмы на экран.

В режиме сходящегося пучка интенсивность рассеянных электронов, в предположении прямоугольной функции источника, описывается интегралом:

$$I^{*}(s) = \frac{1}{D} \int_{s-D/2}^{s+D/2} I(s) \, ds, \tag{1}$$

где *I*(s) — интенсивность рассеянных электронов в случае коллимированного пучка.

Поскольку производная от интеграла по переменному верхнему пределу равна значению функции на этом пределе, то, дифференцируя (1) по s, получим:

$$\frac{d}{ds}I^*(s) = \frac{1}{D}\{I(s+D/2) - I(s-D/2)\}.$$
(2)

Воспользовавшись тем, что при $s \rightarrow \infty$, $I(s) \rightarrow I^*(s) \rightarrow f^2(s)$, где f(s) — атомный фактор, положим на конце интервала по s для $s \in (s_{\max} - D, s)$

 s_{\max}) $I(s) = I^*(s)$, тогда остальные значения I(s) для $s \in (s_{\min}, s_{\max}-D)$ вычисляются по формуле

$$I(s - D/2) = I(s + D/2) - D \frac{d}{ds} I^*(s).$$
(3)

Восстановленная кривая угловой зависимости интенсивности рассеянных электронов *I*(*s*) может быть использована для анализа структурного фактора [2]:

$$a(s) = \dot{I}(s)/f^{2}(s),$$
 (4)

а также для вычисления функции радиального распределения атомной плотности (ФРРАП):

$$4\pi r^{2}\rho(r) = 4\pi r^{2}\rho_{0} + \frac{2r}{\pi} \int_{0}^{\infty} s(a(s) - I) \sin srds, \qquad (5)$$

где ро --- средняя атомная плотность.

Рис. 1. Геометрия дифракции на клине структуры аморфный кремний монокристалл кремния в случаях коллиминированного (а) и сходящегося пучков (б)

Рис. 2. Функция радиального распределения атомной плотности для аморфного кремния (дифрактограмма снята в режиме сходящегося пучка)

На рис. 2 приведен график ФРРАП рассчитанной по формуле (5) для полученной в режиме сходящегося пучка интерференционной функции от тонкой пленки кремния, аморфизованного имплантацией ионов азота с энергией 40 кэВ дозой 5 · 10¹⁶ ион / см² при комнатной температуре.

Найденные из графика параметры структуры ближнего порядка для первых двух координационных сфер: $r_1 = 2,35$ Å, $Q_1 = 3,99$ и $r_2 = 3,77$ Å, $Q_2 = 13,10$ свидетельствуют о сохранении в аморфном кремнии структуры ближнего порядка, характерной для кристалла.

Список литературы

1. Қаули Дж. Физика дифракции.— М., 1979.

2. Скрышевский А. Ф. Структурный анализ жидкостей и аморфных тел.— М., 1980.

Поступила в редакцию 21.01.85.