к спеканию благодаря пространственному разделению его частиц. Кроме того, при обновлении поверхности катализатора за счет истирания струк-

тура поверхности сохраняется.

- 2. Стабилизация дисперсности металла должна сохраняться на определенном уровне, достаточно высоком, чтобы обеспечить минимально необходимую поверхность серебра. Это условие выполняется при равномерном нанесении уже готовых частиц серебра, например, из коллоидных растворов, когда агрегации частиц серебра препятствуют геометрические барьеры на поверхности носителя. При нанесении пропиткой растворами солей серебра и последующем их разложении возможно интенсивное спекание металла, однако оно может быть заторможено путем одновременного формирования серебряных частиц и термостойких оксидов.
- 3. Свободная поверхность носителя не должна инициировать процессы глубокого окисления, для чего носитель должен обладать выраженными кислотными свойствами.

Список литературы

- 1. Брайловский С. М., Трофимова И. В., Темкин О. Н., Дыскина Л. И. // Хим. пром. 1978. № 7. С. 490.
- 2. Атрощенко В. И., Кленышева Л. Д. // Катализ и катализаторы. 1970. Вып. 6. С. 70.
- 3. Матвейчук С. В., Макатун В. Н. // Докл. АН БССР. 1984. Т. 28. № 8. С. 733.
- 4. Браницкий Г. А. Вести. Белорусского ун-та. Сер. 2: Хим. Биол. Геогр. 1982. № 3. С. 20.

5. Натансон Э. М. Коллондные металлы. Киев, 1959.

6. Борисова Н. М., Браницкий Г. А., Макатун В. Н., Матвейчук С. В., Потапович А. К. // Тез. науч. конференц. проф.-препод. состава, посвященной 60-летию БГУ имени В. И. Ленина. Минск, 1982. С. 124.

УДК 536.42

Л. М. ВОЛОДКОВИЧ, Г. С. ПЕТРОВ, Р. А. ВЕЧЕР, А. А. ВЕЧЕР

ТЕПЛОЕМКОСТЬ И ЭНТАЛЬПИЯ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ТЕТРАФТОРОБОРАТОВ НАТРИЯ И АММОНИЯ

Тетрафторобораты щелочных металлов и аммония, существующие при комнатной температуре в орторомбической модификации, при повышении температуры могут переходить в кубическую [1—4]. Исключение составляет NaBF₄, для которого высокотемпературная фаза является ромбической [5]. Проведенное в работе [3] сопоставление данных различных авторов по температуре и энтальпии фазовых превращений тетрафтороборатов щелочных металлов и аммония показывает, что они заметно различаются. Одним из методов, позволяющих достаточно надежно определять температуру и энтальпию фазового превращения соединения, является измерение теплоемкости. Ранее нами измерена теплоемкость и энтальпия фазового превращения тетрафторобората калия [6]. Для тетрафтороборатов других щелочных металлов данные по прямому определению теплоемкости выше комнатной температуры отсутствуют. Известна лишь работа [7] по измерению низкотемпературной теплоемкости соединения NH₄BF₄.

Целью настоящей работы явилось измерение теплоемкости $NaBF_4$ и NH_4BF_4 методом тройного теплового моста и определение энтальпии фазовых превращений этих соединений методом дифференциального термического анализа.

Образцы соединения NaBF₄ готовили перекристаллизацией реактива марки ч. д. а. из подкисленного плавиковой кислотой водного раствора. Тетрафтороборат аммония получали аналогично [8] взаимодействием

бифторида аммония с борной кислотой (оба реактива марки ч. д. а.) с последующей термообработкой продукта реакции на воздухе при 523 К в течение 3—4 ч. Рентгенограммы обоих препаратов показали хорошее согласование с литературными данными.

Конструкция установки для измерения теплоемкости описана в работе [9]. В качестве эталона использовали медь чистотой 99,95 %. Значения теплоемкости меди брали из работ [10, 11]. Измерения проводили в атмосфере осущенного аргона при скорости нагрева образцов 2,2 град/мин. При расчетах использовали следующие значения молекулярных масс соединений: $M_{\rm NaBF_4} = 109,7934$; $M_{\rm NH_4BF_4} = 104,8419$. Согласно результатам предварительной калибровки установки, погрешность в определении теплоемкости не превышает 3 %.

Установка количественного дифференциального термического анализа (ДТА) описана в [12]. Работу проводили в атмосфере осущенного аргона при скорости нагрева образцов 5 град/мин. Эталоном служил оксид алюминия.

Экспериментальные результаты измерения теплоемкости показали (табл. 1—2), что в исследованных температурных интервалах для обоих соединений наблюдается аномальное возрастание теплоемкости с максимумом при 520 ± 2 K для $NaBF_4$ и 480 ± 2 K — для NH_4BF_4 . Эти аномалии связаны с протеканием полиморфных фазовых превращений соединений,

 ${\sf T}\ {\sf a}\ {\sf б}\ {\sf л}\ {\sf и}\ {\sf ц}\ {\sf a}\ \ 1$ Теплоемкость, ${\it C}_{\nu}$ (Дж/моль·К), соединения ${\sf NaBF}_4$

т, к	C_p	т, қ	C_{ρ}	т, к	C_p	т, қ	<i>C</i> _p
260	105,1	460	146,7	512	176,9	564	139,6
270	106,1	462	147,6	514	179,2	566	139,7
273	106,7	464	148,5	516	646,7	568	140,1
280	108,2	466	149,3	518	666,0	570	140,1
290	110,3	468	150,2	520	646,2	572	140,4
298	112,0	470	151,0	522	596,0	574	140,5
300	112,4	472	151,6	524	542,7	576	140,5
310	114,1	474	152,4	526	466,2	578	140,7
320	115,7	476	152,9	528	394,1	580	141,0
330	117,5	478	153,6	530	335,1	582	141,1
340	119,1	480	154,3	532	298,0	584	141,1
350	120,9	482	155,0	534	244,5	586	141,3
360	123,1	484	156,0	536	213,2	588	141,6
370	125,2	486	156,7	538	188,3	590	142,6
380	126,7	484	157,9	540	170,2	592	142,9
390	129,2	490	159,2	542	160,3	594	142,9
400	131,2	492	160,5	544	153,3	596	142,9
410	133,5	494	161,9	546	148,9	598	142,8
420	135,3	496	163,0	548	145,7	600	142,9
430	137,3	598	164,7	550	143,5	605	144,9
440	140,1	500	166,0	552	141,8	610	146,4
450	143,1	502	167,6	554	140,7	615	147,4
452	143,9	504	169,4	556	140,1	620	149,4
454	144,6	506	171,3	558	139,7		
456	145,2	508	173,1	560	139,6		
458	145,9	510	175,0	562	139,6		

т, к	C_p	т, қ	C_{p}	т, қ	c_p	т, к	c_p
340	132,9	458	149,7	484	810,7	514	159,1
350	133,3	460	150,1	486	758,2	516	157,7
360	134,5	462	150,5	488	684,4	518	156,8
370	135,8	464	151,0	490	595,6	520	156,7
380	137,3	466	151,3	492	501,6	522	156,7
390	139,0	468	151,8	494	419,8	524	157,1
400	140,9	470	152,3	496	349,8	526	157,6
410	142,2	472	152,7	498	293,9	528	158,3
420	143,4	474	153,3	500	249,8	530	159,3
430	144,8	476	159,2	502	217,7	532	160,1
440	146,5	478	454,6	504	196,0	534	160,8
450	148,2	479	676,0	506	181,3	536	161,4
452	148,6	480	777,0	508	171,3	538	162,4
454	149,0	481	822,0	510	165,4	540	163,4
456	149,4	482	834,2	512	161,5		â

а температуры максимумов теплоемкости хорошо согласуются с известными литературными данными [3]. Проведение повторных измерений на тех же образцах подтвердило обратимый характер зафиксированных фазовых превращений.

Интегрированием зависимостей C_p и (C_p/T) от температуры в интервалах температур 440—562 К для NaBF₄ и 472—518 К для NH₄BF₄ рассчитаны значения энтальпии и энтропии фазовых превращений этих соединений:

$$\Delta H_{\text{превр.}}$$
 (NaBF₄) = 8,4 \pm 0,4 кДж/моль; $\Delta S_{\text{превр.}}$ (NaBF₄) = = 16,3 \pm 0,8 Дж/моль К. $\Delta H_{\text{превр.}}$ (NH₄BF₄) = 10,0 \pm 0,4 кДж/моль; $\Delta S_{\text{превр.}}$ (NH₄BF₄) = = 20,7 \pm 0,8 Дж/моль К.

Энтальпия фазовых превращений тетрафтороборатов натрия и аммония определена нами также методом количественного ДТА (в режиме нагрева):

$$\Delta H_{\text{превр.}}$$
 (NaBF₄) = 8,1 \pm 0,6 кДж/моль. $\Delta H_{\text{превр.}}$ (NH₄BF₄) = 9,2 \pm 0,7 кДж/моль.

Видно, что для обоих соединений значения энтальпии превращений, определенные различными методами, совпадают в пределах экспериментальных погрешностей.

Полученное нами значение Δ $H_{\text{превр.}}$ (NaBF₄) отличается от величины 6,74 кДж/моль, приведенной в работе [13]. Отметим, однако, что использованный авторами [13] метод калориметрии смешения не всегда точно характеризует процессы, идущие с небольшой скоростью. Рассчитанная из данных [13] стандартная теплоемкость ($C_{p\,298}^0 = 111,3$ Дж/моль К) хорошо согласуется с результатами настоящей работы.

Авторами [5] обнаружен гистерезис величины энтальпии и температуры фазового превращения тетрафторобората натрия при исследовании его методом ДСК в режимах нагрева и охлаждения. Нами показано, что подобное поведение характерно и для тетрафторобората аммония: по данным ДТА значение температуры фазового превращения NaBF₄ состав-

ляет при нагреве 520 ± 10 K, а при охлаждении — 480 ± 10 K. Для соединения NH_4BF_4 температура фазового превращения изменяется от $480\pm10~{\rm K}$ (нагрев) до $450\pm10~{\rm K}$ (охлаждение). Различие в величине энтальпии фазового превращения достигает для обоих соединений 1,5—2 кДж/моль.

Отмеченный гистерезис энтальпии фазовых превращений может быть одной из возможных причин отличия наших данных от результатов (13). Другой причиной может явиться некоторая неопределенность выбора пределов интегрирования при нахождении величины энтальпии превращения из данных по теплоемкости.

Список литературы

1. Clark M. J. R., Lynton H. // Canad. J. Chem. 1969. V. 47. P. 2579.
2. Caron A. P., Ragle J. L. // Acta Crystallogr. 1971. V. B27. P. 1102.
3. Stromme K. O. // Acta Chem. Scand. 1974. V. A28. P. 546.
4.Weiss A., Zohner K. // Phys. status solidi. 1967. V. 21. P. 257.
5. Amirthalingam V., Karkhanavala M. D., Rao U. R. K. // Z. Kristal-

logr. 1980. B. 152. S. 57. 6. Володкович Л. М., Петров Г. С., Вечер Р. А., Козыро А. А., Гусаков А. Г., Вечер А. А. // Вестн. Белорусского ун-та. Сер. 2: Хим. Биол. Геогр. 1980. № 1. С. 68.

7. White M. A., Green N. H., Staveley L. A. K. // J. Chem. Thermodyn. 1981. V. 13. P. 283.

8. Чернышев Б. Н., Щетинина Г. П., Колзунов В. А., Ипполитов Е. Г. // Ж. неорган. химии. 1980. Т. 25. С. 1468.

9. Вечер А. А., Гусаков А. Г., Козыро А. А. Теплоемкость медно-никелевых сплавов в интервале 45—700 К. П. Термографическая установка для измерения теплоемкости методом тройного теплового моста. / Редкол. «Ж. физ. хим.» АН СССР. М., 1978. Деп. в ВИНИТИ 15.08.78. № 2782-78.

М., 1978. Ден. В БИГИТИ 15.06.76. № 2702-78.
10. Martin D. L. // Canad. J. Phys. 1960. V. 38. P. 17.
11. Pawel R. E., Stansbury E. E. // J. Phys. Chem. Solids. 1965. V. 26. P. 607.
12. Володкович Л. М., Вечер Р. А., Вечер А. А. // VI Всесоюз. совещ. по термич. анализу: Тез. докл. М., 1976. С. 56.
13. Dworkin A. S., Bredig M. A. // J. Chem. Eng. Data. 1970. V. 15. № 4.

P. 505.

УДК 541.144.8+772.7

Н. В. ЛОГИНОВА, Г. П. ШЕВЧЕНКО, В. В. СВИРИДОВ, И. Л. ЯКОВЛЕВА

О ПРИМЕНЕНИИ ЖЕЛАТИНЫ В КАЧЕСТВЕ СВЯЗУЮЩЕГО В ФОТОГРАФИЧЕСКИХ СЛОЯХ НА ОСНОВЕ ОКСИБРОМИДА ВИСМУТА

Известны фотографические процессы, сходные с процессами на галогеносеребряных фотослоях при использовании физического, а в отдельных случаях химического проявления [1]. К их числу относится фотографический процесс на слоях с соединениями висмута [2—6]. В качестве связующего в таких слоях используется поливиниловый спирт. Заметим, что поливиниловый спирт в качестве связующего в галогеносеребряных слоях в чистом виде не применяется, поскольку он образует плотную адсорбционную оболочку на кристаллах светочувствительного компонента и тормозит их рост при физическом созревании, без которого невозможно обеспечить уникальную высокую чувствительность галогеносеребряных фотоматериалов [7].

Фотографические свойства галогеносеребряных слоев существенно зависят от природы связующего и условий физического и химического созревания [7]. В связи с этим представляло интерес выяснить пригодность желатины в качестве связующего для висмутсодержащих фотослоев и возможность повышения их фотографической чувствительности (ФЧ) при созревании.

Исследовались фотографические слои, полученные поливом фото-