$$+\left(\int\limits_{s_{1}^{(0)}}^{s_{1}^{(0)}}\Pi_{0}q(s)\,ds-\int\limits_{s_{1}^{(0)}}^{s_{2}^{(0)}}\Pi_{0}q(s)\,ds+...+(-1)^{p}\int\limits_{s_{p}^{0}}^{0}\Pi_{0}q(s)\,ds\right)\operatorname{sgn}\Delta^{(0)}(t_{m}^{(0)})$$
]. При достаточно малых μ коуправление $\Delta^{(1)}(t,\mu)$, кроме опорных моментов, обращается $\frac{\mathrm{B}}{\mathrm{B}}$ нуль только B точках $t^{*}+\mu s_{i}^{(1)}(\mu),\ i=\overline{1,\ p}.$ Функции $s_{i}^{(1)}(\mu),\ i=\overline{1,\ p},$ разлагаются B асимптотические ряды $s_{i}^{(1)}(\mu)=s_{i}^{(0)}+\sum\limits_{k=1}^{\infty}\mu^{k}s_{ik}^{(1)}.$ Нам понадобятся коэффициенты $s_{i1}^{(1)},\ i=\overline{1,\ p},$ определяемые формулами $s_{i1}^{(1)}=-\left[\frac{d}{ds}=\Pi\Delta^{(0)}(s_{i}^{(0)})\right]^{-1}\left[\Delta^{(0)}(t^{*})s_{i}^{(0)}+\Delta_{1}^{(1)}(t^{*})+\Pi_{1}\Delta^{(1)}\times \times (s_{i}^{(0)})\right],\ i=\overline{1,\ p}.$

В задаче (1)—(4) с достаточно малым μ существует допустимое управление $u_{\mu}^{(2)}(t), t \in T$ вида (12), где $t_j = t_i^{(2)}(\mu), j = \overline{1, m}, s_i = s_i^{(0)} + \mu s_{i1}^{(1)}, i = \overline{1, p}$. Функции $t_i^{(2)}(\mu), j = \overline{1, m}$, являются корнями векторного алгебраического уравнения $R^{(2)}(t_1, ..., t_m, \mu) = 0$, левая часть которого имеет вид (13), но теперь $s_i = s_i^{(0)} + \mu s_{i1}^{(1)}, i = \overline{1, p}$. Имеет место асимптотическое разложение $R^{(2)}(t_1, ..., t_m, \mu) = r_0(t_1, ..., t_m) + \mu r_1^{(1)}(t_1, ..., t_m) + \sum_{k=2}^{\infty} \mu^k r_k^{(2)}(t_1, ..., t_m)$. Соответственно функции $t_i^{(2)}(\mu), j = \overline{1, m}$, так-

же разлагаются в асимптотические ряды $t_j^{(2)}(\mu) = t_j^{(0)} + \mu t_{j1}^{(1)} + \sum_{k=2}^\infty \mu^k t_{jk}^{(2)}.$

Коэффициенты $t_{jk}^{(2)}$, $j=\overline{1,m}$, $k=\overline{2,n}$, находятся из уравнений, аналогичных (11). Допустимое управление $u_{\mu}^{(2)}(t)$, $t\in T$, будет 2-оптимальным, но тогда управление $u_{\mu n}^{(2)}(t)$, $t\in T$, вида (12) с точками переключения $t_j=t_j^{(0)}+\mu t_{j1}^{(1)}+\sum_{k=2}^n \mu^k t_{jk}^{(2)}$, $j=\overline{1,m}$, $t^*+\mu s_i^{(0)}+\mu^2 s_{i1}^{(1)}$, $i=\overline{1,p}$, является

2-оптимальным n-допустимым управлением в задаче (1)—(4). Если достигнутая точность приближения недостаточна, можно перейти к построению 3-оптимального n-допустимого управления и т. д. по изложенной выше схеме.

Список литературы

1. В асильева А. Б., Бутузов В. Ф. Асимптотические разложения решений сингулярно возмущенных уравнений. М., 1973.

сингулярно возмущенных уравнений. М., 1973. 2. Биби М., Костюкова О. И. // Докл. АН БССР. 1986. Т. 30. № 1. С. 16. 3. Калинин А. И., Романюк Г. А. Конструктивная теория экстремальных задач. Минск, 1984. С. 100. Поступила в редакцию 26.12.85.

УДК 517.51

Л. И. ШЛОМА

ВОССТАНОВЛЕНИЕ ФУНКЦИИ ПО ФОРМУЛАМ ПРЯМОУГОЛЬНИКОВ

Пусть f(t) непрерывная 1-периодическая функция $(f(t) \in \tilde{C})$, которой поставлен в соответствие ее ряд Фурье:

$$f(t) \sim I(f) + \sum_{m=1}^{\infty} a_m \cos 2m\pi t + b_m \sin 2m\pi t, \tag{1}$$

 $I\left(f\right)=\int\limits_{0}^{1}f(t)\,dt,\;a_{m},\;b_{m},\;m$ \in N, — коэффициенты Фурье f(t). Для f(t) \in C введем функционалы

$$I_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right), \ n = 1, 2, \dots$$
 (2)

— формулы прямоугольников. Поставим задачу: восстановить f(t) по ее

арифметическим средним значений (2).

Прежде всего отметим, что если f(t) имеет период 1 и f(1-t) = -f(t) (т. е. $f(t) \in \tilde{C}_-$), то $I_n(f) = 0$ при всех $n \in N$. Следовательно, однозначного определения функции через функционалы $I_n(f)$ можно ожидать только в классе четных функций \tilde{C}_+ . Для этого мы используем биортогональный ряд

$$f(t) \sim I(f) + \sum_{n=1}^{\infty} [I_n(f) - I(f)] \overline{g}_n(t),$$
 (3)

где $\overline{g}_n(t) = \sum_{d \searrow n} \mu\left(\frac{n}{d}\right) \cos 2d\pi t; \;\; \mu\left(n\right)$ — функция Мёбиуса (см. [1]); $d \backslash n$

означает, что суммирование ведется по всем делителям d натурального числа n. Разложение (3) получается из соответствующего алгебраиче-

ского случая (см. [2]) заменой переменных.

Для восстановления $f(t) \in \widehat{\mathcal{C}}_-$ можно использовать (см. [3, 4]) биортогональную систему $\{h_n; B_n\}_{n=1}$, однако в данном случае необходимо знать значения функции на других равномерных сетках периода. Иной подход возможен, если в точках $\left\{-\frac{k}{n}\right\}_{k=0}^{n-1}$ заданы значения f'(t). Тогда из (3) (считаем f(0) = 0) получаем биортогональное разложение $f'(t) \sim \sum_{n=1}^{\infty} I_n(f') \overline{g}_n(t)$, которое после интегрирования в [0, t], 0 < t < 1 дает

$$f(t) \sim \sum_{n=1}^{\infty} I_n(f') \overline{h}_n(t), \tag{4}$$

где $\overline{h}_n(t) = rac{1}{2\pi} \sum_{d \sim n} rac{1}{d} \, \mu\left(rac{n}{d}
ight) \sin 2d\pi t.$

На основании (3) и (4) любой f(t) \in \tilde{C} может быть поставлен в соответствие ряд

$$f(t) \sim I(f) + \sum_{n=1}^{\infty} [I_n(f) - I(f)] \overline{g}_n(t) + I_n(f') \overline{h}_n(t).$$
 (5)

Изучение сходимости (5) совместим с изучением возможности его почленного дифференцирования. Тем самым будет решена более общая задача восстановления не только самой функции, но и ее производных, исходя из значений f(t) и f'(t) на равномерных сетках периода.

Продифференцировав (5) r раз (r- некоторое натуральное число),

получаем соответствие

$$f^{(r)}(t) \sim \sum_{n=1}^{\infty} [I_n(f) - I(f)] \overline{g}_n^{(r)}(t) + I_n(f') \overline{h}_n^{(r)}(t), \tag{6}$$

где

$$\bar{g}_{n}^{(r)}(t) = \sum_{m \geq n} \mu\left(\frac{n}{m}\right) T_{m}(r, t),$$

$$\bar{h}_{n}^{(r)}(t) = \sum_{m \geq n} \mu\left(\frac{n}{m}\right) \widetilde{T}_{m}(r, t),$$
(7)

$$T_{m}(r, t) = \begin{cases} (-1)^{\left\lceil \frac{r+1}{2} \right\rceil} (2\pi)^{r} m^{r} \cos 2m\pi t, & \text{если } r \text{ четное,} \\ (-1)^{\left\lceil \frac{r+1}{2} \right\rceil} (2\pi)^{r} m^{r} \sin 2m\pi t, & \text{если } r \text{ нечетное.} \end{cases}$$
(8)

 $\left(\left[\frac{r+1}{2}\right]\right)$ означает целую часть числа $\frac{r+1}{2}$), функция $\widetilde{T}_m(r,t)$ тригонометрически сопряжена с $\frac{(-1)^r}{2\pi}\cdot\frac{T_m(r;t)}{m}$. Полагая по определению $f^{(0)}(t)==f(t)-I(f)$, будем считать, что (6) содержит как частный случай разложение (5).

Отметим вначале, что с помощью арифметических формул обращения рядов доказывается

Лемма. Для любых натуральных m, n, r=0, 1, 2, . . . и любого действительного t \in [0, 1) верны формулы

$$T_m(r, t) = \sum_{n \le m} \overline{g}_n^{(r)}(t), \ \widetilde{T}_m(r, t) = \sum_{n \le m} \overline{h}_n^{(r)}(t).$$
 (9)

Приведем две теоремы, указывающие достаточные условия сходимости (6) в зависимости от того, какому классу принадлежит f(t).

Теорема 1. Пусть при некоторых r = 0, 1, 2, ... и δ > 0 выполнено ограничение

$$\sum_{m=1}^{\infty} m^r \cdot 2^{\frac{(1+\delta)}{\ln \ln m}} (|a_m| + |b_m|) < \infty.$$
 (10)

Тогда 1) ряд (6) сходится к $f^{(r)}(t)$ абсолютно и равномерно; 2) для любого натурального m верны формулы:

$$a_m = \sum_{k=1}^{\infty} \mu(k) \left[I_{km}(f) - I(f) \right], \quad b_m = \frac{1}{2\pi m} \sum_{k=1}^{\infty} \mu(k) I_{km}(f'). \tag{11}$$

Доказательство. Условие (10) означает, что (1) допускает почленное дифференцирование r раз, в результате чего получается ряд

$$f^{(r)}(t) = \sum_{m=1}^{\infty} a_m T_m(r, t) + 2\pi m b_m \widetilde{T}_m(r, t),$$
 (12)

сходящийся к $f^{(r)}(t)$ абсолютно.

Преобразуем частичные суммы (6), используя при этом формулы связи $I_n(f)$ и коэффициентов Фурье (см. [5], с. 63), а также формулы (9).

$$\sum_{n=1}^{k} [I_n(f) - I(f)] \overline{g}_n^{(r)}(t) + I_n(f') \overline{h}_n^{(r)}(t) = \sum_{n=1}^{k} \left[\sum_{d=1}^{\infty} a_{dn} \overline{g}_n^{(r)}(t) + \frac{1}{2\pi} \sum_{d=1}^{\infty} d \cdot n b_{dn} \overline{h}_n^{(r)}(t) \right] = \sum_{m=1}^{\infty} \left[a_m \sum_{\substack{n \geq m \\ n < k}} \overline{g}_n^{(r)}(t) + 2\pi m b_m \sum_{\substack{n \geq m \\ n < k}} \overline{h}_n^{(r)}(t) \right] = \sum_{m=1}^{k} \left[a_m \sum_{\substack{n \geq m \\ n < k}} \overline{g}_n^{(r)}(t) + 2\pi m b_m \sum_{\substack{n \geq m \\ n < k}} \overline{h}_n^{(r)}(t) \right] + R_k(r, t) = S_k(r, t) + R_k(r, t),$$
 где $S_k(r, t) = \sum_{m=1}^{k} a_m T_m(r, t) + 2\pi m b_m T_m(r, t),$

$$R_{k}(r, t) = \sum_{m=k+1}^{\infty} \left[a_{m} \sum_{\substack{n \geq m \\ n \leq k}} \overline{g}_{n}^{(r)}(t) + 2\pi m b_{m} \sum_{\substack{n \geq m \\ n \leq k}} \overline{h}_{n}^{(r)}(t) \right].$$

Так как из (7) и (8) следует, что

$$|R_k(r, t)| \leq (2\pi)^r \sum_{m=k+1}^{\infty} m^r (|a_m| + |b_m|) \tau^2(m),$$

где $\tau(m)$ — количество делителей натурального числа m, то, используя полученную в [6] оценку для функции $\tau(m)$ и учитывая (10), заключаем, что $R_k(r, t)$ абсолютно и равномерно стремится к нулю с ростом k. А так как $S_k(r, t)$ представляет собой частичную сумму ряда (12), то первое утверждение теоремы доказано.

Соотношения (11) получаются при r=0 последовательным умножением (6) на $\cos 2m\pi t$ и $\sin 2m\pi t$, интегрированием в [0, 1), применением

свойств функции Мёбиуса.

При замене (10) более слабым ограничением

$$\sum_{m=1}^{\infty} m^{r}(|a_m|+|b_m|)<\infty, \tag{13}$$

равносильным абсолютной сходимости к $f^{(r)}(t)$ ряда (12), нельзя гарантировать ни равномерной, ни абсолютной сходимости (6), что подтверждается следующей арифметической теоремой (доказательство см. в [4]).

Теорема 2. Существуют последовательности чисел $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$

и
$$\beta_1,\,\beta_2,\,\ldots,\,\beta_n,\,\ldots$$
 такие, что выполняется условие $\sum_{m=1}^\infty |\alpha_m| < \infty$, а ряд

$$\sum_{n=1}^{\infty} \mu(n) \, \beta_n$$
, где β_n определяются по формулам $\sum_{n=1}^{\infty} \alpha_{n} = \beta_n, \, n = 1, 2, \, ..., \,$ рас-

ходится. Однако в этом случае возможна равномерная суммируемость (6) специальным арифметическим способом, впервые указанным в [3]. Отметим без доказательства, что справедлива

Теорема 3. Пусть при некотором r = 0, 1, 2, ... выполнено условие (13). Тогда 1) равномерно на периоде выполняется равенство $f^{(r)}(t)$ =

 $=\lim_{n o\infty}\sum_{k\sim [n]}[I_k(f)-I_k(f)]\overline{g}_k^{(r)}(t)+I_k(f')\overline{h}_k^{(r)}(t),$ где [n]— общее наимень-

шее кратное чисел $1, 2, \ldots, n; 2$) для любого натурального m справедливы формулы

$$a_{m} = \lim_{n \to \infty} \sum_{k \setminus \frac{[n]}{m}} \mu(k) \left[I_{km}(f) - I(f) \right],$$

$$b_{m} = \frac{1}{2\pi m} \lim_{n \to \infty} \sum_{k \setminus \frac{[n]}{m}} \mu(k) I_{km}(f').$$

Замечание. Алгебраический аналог теорем 1 и 3 в частном случае r=0 (т. е. исследование сходимости разложения (3) в периодическом варианте) содержится в [2]. Однако в упомянутой работе абсолютная и равномерная сходимость ряда, а также формулы (11) установлены для более узкого класса функций. Кроме того, в [2] не содержится обоснования того факта, почему нельзя гарантировать абсолютной или равномерной сходимости (3) при расширении класса функций до представимых абсолютно сходящимся рядом Фурье.

Список литературы

1. Виноградов И. М. Основы теории чисел. М., 1981. 2. Жолдасова К. Биортогональные ряды, связанные с многочленами Чебышева, 2. Ж. Ол да сова К. Виоргогональные ряды, связанные с многочиснами теомисьа, и некоторые их применения: Автореф. дис. ... канд. физ.-мат. наук. Ташкент, 1986. 14 с. 3. Киселев А. А., Он у фриева Л. А. // Исследования по современным проблемам конструктивной теории фрикций. М., 1961. С. 183.

4. Шлома Л. И. Некоторые свойства рядов, связанных с биортогональной систе-

мой Чебышева и Маркова. // Редкол. ж. «Весці АН БССР. Сер. фіз.-мат. навук». Минск, 1985. 21 с. Деп. в ВИНИТИ 20.05.86. № 3637-В86.

5. Зигмунд А. Тригонометрические ряды. М., 1965. Т. 1. 6. Ramanujan S. // Proc. Lond. Math. Soc., 1915. V. 2. N 14. P. 347. Поступила в редакцию 01.11.85.

УДК 517.968

С. В. РОГОЗИН, Ф. В. ЧУМАКОВ

ОБОБЩЕННОЕ УРАВНЕНИЕ КАРЛЕМАНА на симметричном отрезке

Рассмотрим на вещественном отрезке $\{-a; a\}$ интегральное уравнение первого рода с суммарно-разностным ядром

$$\int_{a}^{a} \left(\frac{A(x)}{|x-t|^{\alpha}} + \frac{B(x)}{|x+t|^{\alpha}} \right) \varphi(t) dt = f(x), \quad 0 < \alpha < 1.$$
 (1)

Будем предполагать, что известные вещественнозначные функции A(x), B(x), f(x) удовлетворяют условиям:

$$A(x), B(x) \in H_{\lambda}[-a; a] \quad (\lambda > 1 - \alpha),$$
 (2)

$$f(x) = (a^2 - x^2)^{\varepsilon - \alpha} f^*(x), \quad (\varepsilon > 0), \quad f^*(x) \in H_{\lambda}. \tag{3}$$

Решение уравнения (1) ищем в классе функций

$$\varphi(x) = (a^2 - x^2)^{\varepsilon - i} \varphi^*(x),$$
 (4)

где $\phi^*(x)$ — гельдеровская на [-a; a] функция. Приведенное уравнение является обобщением известного уравнения Карлемана [1, с. 580], часто встречающегося в различных областях математики и механики. Дадим решение этого уравнения в замкнутой форме и приложение его к исследованию одной четырехэлементной краевой задачи.

Пусть

$$I(x) = \int_{-a}^{a} \frac{\varphi(t) dt}{|x - t|^{\alpha}}.$$
 (5)

Запишем тогда уравнение (1) в виде

$$A(x)I(x) + B(x)I(-x) = f(x)$$
(6)

(см. [3, 4]). Заменяя x на -x в (6), получаем систему двух функциональных уравнений:

$$\begin{cases} A(x)I(x) + B(x)I(-x) = f(x), \\ B(-x)I(x) + A(-x)I(-x) = f(-x). \end{cases}$$
 (7)

Решение (6) ищем в классе (3). Система (7) равносильна функциональному уравнению (6) в том смысле, что каждое решение I(x) уравнения (6), удовлетворяющее условию (3), является решением системы (7) и наоборот. Функцию $\varphi(x)$ находим, решая уравнение Карлемана (5), которое при сделанных предположениях безусловно разрешимо.

Рассмотрим возможные случаи.

1°. Пусть определитель системы (7)

$$\Delta(x) = A(x)A(-x) - B(x)B(-x) \neq 0, x \in [-a; a].$$
 (8)

Из (7) находим

$$I(x) = \frac{f(x) A(-x) - f(-x) B(x)}{\Delta(x)}.$$
 (9)

Очевидно, I(x) удовлетворяет условию (3).

Решая уравнение (5) [1, с. 580], находим ф в классе (4), которая определяется по формуле

$$\varphi(x) = \frac{\operatorname{ctg} \frac{\alpha \pi}{2}}{2\pi} \frac{d}{dx} \int_{-a}^{x} \frac{I(t) dt}{(x-t)^{1-\alpha}}$$