БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Проректор по учебной работе и образовательным инновациям

Э.Н. Здрок

«09» августа 2021 г.

Регистрационный № УД – 10389/уч.

АЛГЕБРА И ТЕОРИЯ ЧИСЕЛ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 07 Прикладная информатика (по направлениям)

направление специальности: 1-31 03 07-01 Прикладная информатика

(программное обеспечение компьютерных систем)

Учебная программа составлена на основе типового учебного плана G 31-1-030/пр-тип от 01.07.2021, учебного плана G 31-1-034/уч. от 23.07.2021.

составители:

Г.П. Размыслович, доцент кафедры высшей математики Белорусского государственного университета, кандидат физико-математических наук, доцент.

А.В. Филипцов, доцент кафедры высшей математики Белорусского государственного университета, кандидат физико-математических наук, доцент.

РЕЦЕНЗЕНТЫ:

Кафедра высшей алгебры и защиты информации Белорусского государственного университета;

Красовский С.Г., ведущий научный сотрудник Института математики Национальной академии наук Беларуси, кандидат физико-математических наук

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой высшей математики Белорусского государственного университета (протокол № 12 от 26.05. 2021 г.);

Научно-методическим Советом Белорусского государственного университета (протокол № 9 от 09.08.2021).

Заведующий кафедрой высшей математики доктор физико-математических наук

May

М.М. Васьковский

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная программа по дисциплине «Алгебра и теория чисел» разработана в соответствии с учебным планом и образовательным стандартом первой ступени высшего образования по специальности 1-31 03 07 Прикладная информатика (по направлениям), направление специальности 1-31 03 07-01 Прикладная информатика (программное обеспечение компьютерных систем).

Учебная дисциплина «Алгебра и теория чисел» знакомит студентов с основными понятиями высшей алгебры и теории чисел.

Цели и задачи учебной дисциплины

Основными целями преподавания учебной дисциплины «Алгебра и теория чисел» являются:

- дать глубокие знания по одному из основных разделов курса высшей математики, имеющего тесную связь с многочисленными прикладными проблемами и богатые приложения;
- сформировать одну из основных частей банка знаний специалистов университетского уровня в избранной области деятельности.

Основные задачи, решаемые при изучении учебной дисциплины «Алгебра и теория чисел»:

- изучение основ теории чисел;
- изучение основ линейной алгебры.

При изложении курса важно показать возможности использования аппарата алгебры и теории чисел при решении как чисто теоретических, так и прикладных задач, возникающих в различных областях науки, техники, экономики и др. Целесообразно выделить моменты построения алгоритмов полученных результатов с целью их реализации при помощи средств вычислительной техники.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Учебная дисциплина «Алгебра и теория чисел» является базовой математической дисциплиной и непосредственно связана с основными учебными дисциплинами государственного компонента «Аналитическая геометрия», «Математический анализ», «Дифференциальные уравнения». Методы, излагаемые в учебной дисциплине «Алгебра и теория чисел», используются при изучении учебных дисциплин «Методы вычислений», «Математические методы компьютерной графики».

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина «Алгебра и теория чисел» является дисциплиной государственного компонента и входит **в модуль** «Высшая математика» для специальности 1-31 03 07 Прикладная информатика (по направлениям), направление специальности 1-31 03 07-01 Прикладная информатика (программное обеспечение компьютерных систем).

Требования к компетенциям

Освоение учебной дисциплины должно обеспечить формирование следующей **базовой профессиональной** компетенции:

БПК-1. Применять аппарат дифференциального и интегрального исчисления, методы аналитической геометрии и линейной алгебры для построения математических моделей и решения прикладных задач.

В результате изучения дисциплины студент должен:

знать:

- основы теории чисел и ее применение в информатике;
- основные понятия высшей алгебры;
- основы линейной алгебры;

уметь:

- применять аппарат алгебры при решении задач специальности;
- решать основные задачи теории векторных, евклидовых пространств.

владеть:

- навыками решения основных задач теории чисел и линейной алгебры;
- методами алгебры и теории чисел при решении задач специальности.

Структура учебной дисциплины

Учебная дисциплина «Алгебра и теория чисел» изучается в первом и втором семестрах дневной формы получения высшего образования. Всего на изучение дисциплины отведено 216 учебных часов, в том числе 136 аудиторных часа, из них лекции - 68 часов, практические занятия –60 часов, управляемая самостоятельная работа - 8 часов.

Трудоемкость учебной дисциплины составляет 6 зачетных единиц.

 Φ орма текущей аттестации — зачет в первом семестре, зачет и экзамен во втором семестре.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел I. Теория чисел

Тема 1.1. Введение

Предмет дисциплины «Алгебра и теория чисел». Исторические сведения о развитии этого раздела математики. Роль и место теории чисел и алгебры в системе математического образования.

Тема 1.2. Делимость чисел

Свойства отношения делимости целых чисел. Деление с остатком. Наибольший общий делитель и наименьшее общее кратное. Алгоритм Евклида.

Тема 1.3. Простые и составные числа

Простые числа и их свойства. Взаимно простые числа, критерий взаимной простоты. Свойства взаимной простоты. Разложение числа в произведение элементарных делителей.

Тема 1.4. Числовые сравнения

Сравнения целых чисел по данному модулю и их свойства. Кольцо вычетов по данному модулю. Приведенная группа вычетов. Функция Эйлера. Теорема Эйлера, малая теорема Ферма.

Тема 1.5. Сравнения с одним неизвестным и системы сравнений первой степени

Решение сравнений первой степени. Существование первообразного элемента по простому модулю. Системы сравнений первой степени. Китайская теорема об остатках.

Тема 1.6. Приложения теории чисел

Разделение секрета и пороговая схема. Протокол Диффи-Хелмана. RSAкриптосистемы и система цифровой подписи на её основе.

Раздел II. Алгебра

Тема 2.1. Алгебраическая операция. Группа, кольцо, поле

Бинарное отношение. Отношения эквивалентности и порядка, классы эквивалентности. Алгебраическая операция. Группа, кольцо, поле и их простейшие свойства.

Тема 2.2. Комплексные числа

Построение поля комплексных чисел. Алгебраическая, тригонометрическая и экспоненциальная формы комплексных чисел. Возведение в степень и извлечение корня n-ой степени из комплексного числа. Корни из единицы.

Тема 2.3. Многочлены

Кольцо многочленов над полем. Деление с остатком. Алгоритм Евклида. Теорема Безу. Схема Горнера. Корни многочлена. Разложение многочленов на неприводимые многочлены. Интерполяция.

Тема 2.4. Матрицы и определители

Матричная алгебра. Определители. Теорема Лапласа. Обратная матрица. Системы линейных уравнений. Правило Крамера. Метод Гаусса. Матричные уравнения.

Тема 2.5. Векторные пространства

Векторное (линейное) пространство. Линейная зависимость и независимость систем векторов. Базис и размерность. Подпространства. Линейные оболочки. Сумма и пересечение подпространств. Ранг системы векторов. Ранг матрицы и теорема о ранге матрицы и следствия из нее.

Тема 2.6.Системы уравнений

Критерий совместности систем линейных уравнений над полем. Подпространство решений однородной системы уравнений. Связь между решениями неоднородной системы уравнений и соответствующей однородной системы уравнений.

Тема 2.7. Линейные отображения

Матрица линейного отображения. Подобные матрицы. Ядро и образ линейного отображения. Собственные векторы и собственные значения. Характеристическая матрица и характеристический многочлен. Аннулирующий многочлен, минимальный многочлен матрицы. Теорема Гамильтона-Кели. Матрица Жордана.

Тема 2.8. Квадратичные формы

Каноническая квадратичная форма. Метод выделения полных квадратов приведения квадратичной формы к каноническому виду. Критерии эквивалентности квадратичных форм над полем R и над полем C. Критерии знакоопределённости вещественных квадратичных форм.

Тема 2.9. Евклидовы пространства

Свойства скалярного произведения в евклидовых пространствах. Длина вектора. Свойства. Матрица Грама и матрица скалярного произведения. Процесс ортогонализации Грама-Шмидта.

Тема 2.10. Изометрические и симметрические преобразования

Изометрический оператор, связь с ортогональными матрицами. Самосопряжённый оператор. Существование ортонормированного базиса из собственных векторов самосопряженного оператора. Приведение вещественной квадратичной формы к каноническому виду при помощи ортогонального преобразования переменных.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения образования с применением электронных средств обучения (ДО)

<u>5</u>		Количество аудиторных часов		оных часов	
Номер те-	Название раздела, темы	Лекции	Практи- ческие занятия	Количе- ство часов УСР	Форма контроля знаний
1	2	3	4		9
I	Теория чисел				
1.1	Введение. Предмет дисциплины «Алгебра и теория чисел». Исторические сведения о развитии этого раздела математики. Роль и место теории чисел и алгебры в системе математического образования.	1			
1.2	Делимость чисел. Свойства отношения делимости целых чисел. Деление с остатком. Наибольший общий делитель и наименьшее общее кратное. Алгоритм Евклида.	3	4		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
1.3	Простые и составные числа. Простые числа и их свойства. Взаимно простые числа, критерий взаимной простоты. Свойства взаимной простоты. Разложение числа в произведение элементарных делителей.	4	2		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа

1.4	Числовые сравнения. Сравнения целых чисел по данному модулю и их свойства. Кольцо вычетов по данному модулю. Приведенная группа вычетов. Функция Эйлера. Теорема Эйлера, малая теорема Ферма.	4	4		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа коллоквиум
1.5	Сравнения с одним неизвестным и системы сравнений первой степени Решение сравнений первой степени. Существование первообразного элемента по простому модулю. Системы сравнений первой степени. Китайская теорема об остатках.	4	6		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа.
1.6	Приложения теории чисел. Разделение секрета и пороговая схема. Протокол Диффи- Хелмана. RSA-криптосистемы и система цифровой подписи на её основе.	2	2		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой,
II	Алгебра				
2.1.	Алгебраическая операция. Группа, кольцо, поле. Бинарное отношение. Отношения эквивалентности и порядка, классы эквивалентности. Алгебраическая операция. Группа, кольцо, поле и их простейшие свойства.	2	2		собеседование
2.2	Комплексные числа. Построение поля комплексных чисел. Алгебраическая, тригонометрическая и экспоненциальная формы комплексных чисел. Возведение в степень и извлечение корня <i>n</i> -ой степени из комплексного числа. Корни из единицы.	4	2	2	Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа

2.3	Многочлены. Кольцо многочленов над полем. Деление с остатком. Алгоритм Евклида. Теорема Безу. Схема Горнера. Корни многочлена. Разложение многочленов на неприводимые многочлены. Интерполяция.	4	4		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
2.4	Матрицы и определители. Матричная алгебра. Определители. Теорема Лапласа. Обратная матрица. Системы линейных уравнений. Правило Крамера. Метод Гаусса. Матричные уравнения.	6	4	2	Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
2.5	Векторные пространства. Векторное (линейное) пространство. Линейная зависимость и независимость систем векторов. Базис и размерность. Подпространства. Линейные оболочки. Сумма и пересечение подпространств. Ранг системы векторов. Ранг матрицы и теорема о ранге матрицы и следствия из нее.	8	6	2	Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
2.6	Системы уравнений. Критерий совместности систем линейных уравнений над полем. Подпространство решений однородной системы уравнений. Связь между решениями неоднородной системы уравнений и соответствующей однородной системы уравнений.	2	2		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
2.7	Линейные отображения. Матрица линейного отображения. Подобные матрицы. Ядро и образ линейного отображения. Собственные векторы и собственные значения. Характеристическая матрица и характеристический многочлен. Аннулирующий многочлен, минимальный многочлен матрицы. Теорема Гамильтона-Кели. Матрица Жордана.	10	10		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа, Коллоквиум

2.8	Квадратичные формы. Каноническая квадратичная форма. Метод выделения полных квадратов приведения квадратичной формы к каноническому виду. Критерии эквивалентности квадратичных форм над полем <i>R</i> и над полем <i>C</i> . Критерии знакоопределённости вещественных квадратичных форм.		4		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
2.9	Евклидовы пространства. Свойства скалярного произведения в евклидовых пространствах. Длина вектора. Свойства. Матрица Грама и матрица скалярного произведения. Процесс ортогонализации Грама-Шмидта.	6	4	2	Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа
2.10	Изометрические и симметрические преобразования. Изометрический оператор, связь с ортогональными матрицами. Самосопряжённый оператор. Существование ортонормированного базиса из собственных векторов самосопряженного оператора. Приведение вещественной квадратичной формы к каноническому виду при помощи ортогонального преобразования переменных.		4		Отчеты по аудиторным и домашним практическим упражнениям с их устной защитой, контрольная работа

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Беняш-Кривец В.В., Мельников О.В. Лекции по алгебре: группы, кольца, поля. Изд-во БГУ, Минск, 2008 г. 116с.
- 2. Ильин В.А., Позняк Э.Г. Линейная алгебра. -М: "Физматлит", 2014 г., 280c.
 - 3. Курош А.Г. Курс высшей алгебры. C-Пб., "Лань", 2021 г., 432c.
 - 4. Нестеренко Ю.В. Теория чисел. М., «Академия», 2008 г., 272с.
 - 5. Размыслович Г.П. Элементы высшей алгебры. Мн: БГУ, 2015. 55 с.
- 6. Размыслович Г.П. Геометрия и алгебра. В 5 ч. Ч.1. Матрицы, определители. Системы линейных уравнений. Ч. 2. Векторные пространства. Ч. 3. Линейные и билинейные отображения векторных пространств. Ч. 4. Полиномиальные и нормальные формы матриц. Евклидово и унитарное пространства. Минск, 2010, 2013, 2014.
- 7. Размыслович Г.П., Филипцов А.В., Ширяев В.М. Геометрия и алгебра. Практикум. Мн., "Выш. школа", 2018 г., 382с.

Перечень дополнительной литературы

- 1. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.: "Наука", 1984 г., 320с.
 - 2. Воеводин В.В. Линейная алгебра. М., "Наука", 1990, 400с.
 - 3. Гантмахер Ф.Р. Теория матриц. М.: "Наука", 1967 г., 575с.
- 4. Кострикин А.И., Манин Ю.И. Линейная алгебра и геометрия. М.: "Наука", 1986 г., 304с.
- 5. Милованов М.В., Тышкевич Р.И., Феденко А.С. Линейная алгебра и аналитическая геометрия. І. Мн., "Выш. школа", 1976 г., 544с.
- 6. Милованов М.В., Тышкевич Р.И., Феденко А.С. Линейная алгебра и аналитическая геометрия. II. Мн., "Выш. школа", 1984 г., 302с.
- 7. Проскуряков И.В. Сборник задач по линейной алгебре. М.: "Наука", 1978 г., 384с.
- 8. Размыслович Г.П., Феденя М.М., Ширяев В.М. Геометрия и алгебра. Мн., "Университетское", 1987 г., 350с.
- 9. Размыслович Г.П., Феденя М.М., Ширяев В.М. Сборник задач по геометрии и алгебре. Мн., "Университетское", 1999 г., 384с.
- 10. Фаддеев Д.Н., Соминский И.С. Сборник задач по высшей алгебре. М.: "Наука", 1977, 188с.
- 11. Ширяев В.М. Прикладная алгебра. Теория чисел. Сборник задач. Мн: Изд-во БГУ, 2009 г., 152с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Текущая аттестация проводится в соответствии с документами:

- Постановление Министерства образования Республики Беларусь № 53 от 29 мая 2012 г. «Об утверждении Правил проведения аттестации студентов, курсантов, слушателей при освоении содержания образовательных программ высшего образования»;
- Положение о рейтинговой системе оценки знаний обучающихся по учебной дисциплине в Белорусском государственном университете (приказ ректора БГУ № 189-ОД от 31.03.2020);
- Критерии оценки уровня знаний и компетенций студентов по 10-балльной шкале (Письмо Министерства образования Республики Беларусь № 21-04-1/105 от 22 декабря 2003 г.).

Для аттестации обучающихся на соответствие их персональных достижений поэтапным и конечным требованиям образовательной программы создаются фонды оценочных средств, включающие следующие формы:

Устные формы:

- собеседование.

Письменные формы:

- коллоквиум;
- контрольная работа.

Устно-письменные формы:

- отчеты по аудиторным практическим упражнениям с их устной защитой;
- отчеты по домашним практическим упражнениям с их устной защитой;
- зачет;
- экзамен.

Оценочными средствами предусматривается оценка способности обучающихся к творческой деятельности, их готовность вести поиск эффективного решения новых задач.

Формой текущей аттестации по дисциплине «Алгебра и теория чисел» учебным планом предусмотрен зачет и экзамен.

При формировании итоговой оценки используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:

Формирование оценки за текущую успеваемость:

- отчеты по аудиторным и домашним практическим упражнениям с их устной защитой -33,3%;

контрольные работы 66,7%.

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов. Вес оценки по текущей успеваемости составляет 40%, экзаменационной оценки -60%.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 2.2. Комплексные числа

Примерный перечень заданий:

Возведение в степень и извлечение корня n-ой степени из комплексного числа.

Вывести формулы степеней тригонометрических функций от α через тригонометрические функции углов, кратных α . Выразить тригонометрические функции углов, кратных α , через тригонометрических функций от α .

Форма контроля: отчеты по аудиторным практическим упражнениям с их устной защитой.

Тема 2.4. Матрицы и определители

Примерный перечень заданий:

Определители.

Вычисление определителей n-го порядка методом рекуррентных соотношений

Форма контроля: отчеты по аудиторным практическим упражнениям с их устной защитой.

Тема 2.5. Векторные пространства

Примерный перечень заданий:

Сумма подпространств.

Доказать, что пространство квадратных матриц является прямой суммой подпространства симметрических матриц и подпространства кососимметрических матриц.

Форма контроля: отчеты по аудиторным практическим упражнениям с их устной защитой.

Тема 2.9. Евклидовы и унитарные пространства

Примерный перечень заданий:

Процесс ортогонализации Грамма-Шмидта.

Представить действительную невырожденную матрицу в виде произведения ортогональной и верхней треугольной матриц.

Форма контроля: отчеты по аудиторным практическим упражнениям с их устной защитой.

Примерная тематика практических занятий

Практические занятии проводятся в соответствии с учебнометодической картой дисциплины.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

На лекционных занятиях по учебной дисциплине «Алгебра и теория чисел» возможно использование элементов эвристического обучения: проблемное изложение некоторых аспектов, использование частично-поискового метода.

На практических занятиях по учебной дисциплине «Алгебра и теория чисел» рекомендуется использовать **индивидуальный**, **творческий подход**. Студенты получают от преподавателя задания, разрабатывают методы решения задач.

Методические рекомендации по организации самостоятельной работы обучающихся

Условия для самостоятельной работы студентов, в частности, для развития навыков самоконтроля, способствующих интенсификации учебного процесса, обеспечиваются:

наличием и полным доступом обучающегося к библиотечным фондам, электронным средствам обучения, доступностью электронных (и бумажных) вариантов лекций, учебно-методических пособий и сборников задач по основным разделам учебной дисциплины, указаниями к решению типовых задач.

Для организации самостоятельной работы студентов в электронной библиотеке БГУ размещен учебно-методический комплекс (https://elib.bsu.by/handle/123456789/219726), содержащий учебно-программные материалы, материалы для теоретического изучения дисциплины, методические указания к практическим занятиям, материалы текущего контроля и текущей аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, в т.ч. вопросы для подготовки к зачету, экзамену, задания, тесты, вопросы для самоконтроля, список рекомендуемой литературы и информационных ресурсов.

Примерный перечень вопросов к экзамену

1. Делимость чисел. Свойства отношения делимости целых чисел. Деление с остатком.

- 2. Наибольший общий делитель и наименьшее общее кратное. Алгоритм Евклида.
- 3. Простые и составные числа. Простые числа и их свойства. Взаимно простые числа, критерий взаимной простоты. Свойства взаимной простоты. Разложение числа в произведение элементарных делителей.
- 4. Числовые сравнения. Сравнения целых чисел по данному модулю и их свойства.
- 5. Кольцо вычетов по данному модулю. Приведенная группа вычетов. Функция Эйлера. Теорема Эйлера, малая теорема Ферма.
- 6. Решение сравнений первой степени. Существование первообразного элемента по простому модулю.
 - 7. Системы сравнений первой степени. Китайская теорема об остатках.
- 8. Приложения теории чисел. Разделение секрета и пороговая схема. Протокол Диффи-Хелмана. RSA-криптосистемы и система цифровой подписи на её основе.
- 9. Бинарное отношение. Отношения эквивалентности и порядка, классы эквивалентности.
- 10. Алгебраическая операция. Группа, кольцо, поле и их простейшие свойства.
 - 11. Комплексные числа. Построение поля комплексных чисел.
- 12. Тригонометрическая и экспоненциальная формы комплексных чисел. Возведение в степень и извлечение корня *n*-ой степени из комплексного числа. Корни из единицы.
- 13. Кольцо многочленов над полем. Деление с остатком. Алгоритм Евклида.
 - 14. Теорема Безу. Схема Горнера. Корни многочлена. Интерполяция.
 - 15. Разложение многочленов на неприводимые многочлены.
- 16. Матрицы. Линейные операции над матрицами. Умножение матриц. Транспонирование.
 - 17. Определители. Теорема Лапласа.
 - 18. Обратная матрица.
- 19. Системы линейных уравнений. Правило Крамера. Метод Гаусса. Матричные уравнения.
- 20. Векторное (линейное) пространство. Линейная зависимость и независимость систем векторов.
 - 21. Базис и размерность.
 - 22. Подпространства. Линейные оболочки.
 - 23. Сумма и пересечение подпространств.
- 24. Ранг системы векторов. Ранг матрицы и теорема о ранге матрицы и следствия из нее.
- 25. Системы уравнений. Критерий совместности систем линейных уравнений над полем. Подпространство решений однородной системы уравнений. Связь между решениями неоднородной системы уравнений и соответствующей однородной системы уравнений.

- 26. Линейные отображения. Матрица линейного отображения.
- 27. Подобные матрицы.
- 28. Ядро и образ линейного отображения.
- 29. Собственные векторы и собственные значения. Характеристическая матрица и характеристический многочлен.
- 30. Аннулирующий многочлен, минимальный многочлен матрицы. Теорема Гамильтона-Кели.
 - 31. Матрица Жордана.
- 32. Квадратичные формы. Каноническая квадратичная форма. Метод выделения полных квадратов приведения квадратичной формы к каноническому виду. Критерии эквивалентности квадратичных форм над полем R и над полем C.
 - 33. Критерии знакоопределённости вещественных квадратичных форм.
- 34. Евклидовы пространство. Свойства скалярного произведения в евклидовых пространствах. Матрица Грама и матрица скалярного произведения.
 - 35. Длина вектора.
 - 36. Процесс ортогонализации Грама-Шмидта.
 - 37. Изометрический оператор, связь с ортогональными матрицами.
- 38. Самосопряжённый оператор. Существование ортонормированного базиса из собственных векторов самосопряженного оператора.
- 39. Приведение вещественной квадратичной формы к каноническому виду при помощи ортогонального преобразования переменных.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола) ¹
Математический анализ	Кафедра высшей ма- тематики	нет	Вносить изменения не требуется (протокол № 12 от 26.05.2021г.)
Дифференциальные уравнения	Кафедра высшей ма- тематики	нет	Вносить изменения не требуется (протокол № 12 от 26.05.2021г.)

17

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ на 2022/23 учебный год

N_0N_0	Дополнения и изменения		Основание
Пп			
Учебн	ная программа пересмотрена и	олобрена	а на заседании кафедры высшей
	атики (протокол № от	-	2 г.)
1,1651 01,	or or	-	
Завед	ующий кафедрой		
	ризмат.наук,		М.М.Васьковский
	ная степень, звание)	(подпись)	(И.О. Фамилия)
УТВЕ	РЖДАЮ		
Декан	а ФПМИ		
докт.т	техн.наук,		А.М.Недзьведь
(vue	еная степень, звание)	(полпись)	(И.О.Фамилия)