ACTIVE CONTROL OF AN IMPROVED BOUSSINESQ
SYSTEM

K. Yildirim

Mus Alparslan University, Mus, Turkey
k.yildirim@alparslan.edu.tr

Introduction. In this study, optimal control of excessive water
waves in a canal system, modeled by a nonlinear improved Boussinesq
equation, is considered. Suppressing of the waves in the canal system is
successfully obtained by means of optimally determining of canal depth
control function via Pontryagin’s maximum principle, which transforms
to optimal control problem to solving an initial-boundary-terminal value
problem. In order to show effectiveness and robustness of the control ac-
tuation, a numerical example is given in the table form.

1. Mathematical Formulation of the Control Problem. Con-
sider two lakes/two separate seas in a region. Due to several reasons,
designers need to open a canal between two lakes/two separate seas. As
estimated, this canal will have the some effects, simply, such as econom-
ically due to digging cost and physically due to excessive waves. Canal
system, in Fig. 1, is fully filled with water and subject to wind as an
external excitation. In order to prevent excessive water waves and un-
necessary cost, we need to optimally determine the depth of the canal.
The main aim of the present control problem is to damp out the excessive
water waves via optimal control of the canal depth.
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Figure 1 — A Canal System
Consider the system of equation in general form as follows [1, 2]

= f(t,z) + H(t, x),
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where state variable u is the elevation of the free surface of water at
(t,x) € Q= {t € (0,tf),z € (0,0)}, t is time variable, ¢ is predeter-
mined terminal time, x is space variable, £ is the length of the canal, « is
a constant in R, 8 > 0 is an internal damping constant, v > 0 is a con-
stant depending on the depth of water, N is a nonlinear function of u, f
is an external excitation function, H (¢, z) = A(t)0(z) in which A(t) is the
optimal canal depth control function and 6(z) is a function, affecting on
canal depth function. Equation (1) is subject to the following boundary
conditions u(t,z) = 0, u,,(t,x) = 0 at * = 0,¢, and initial conditions
u(t,x) = ug(x), u(t,r) = ui(x) at t = 0. Then, the performance index
functional of the system to be minimized on the control duration is given
by as follows;
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in which 1,99 > 0, ¥, + 19 # 0 and ¥3 > 0 are weighting constants.
First integral on the left-hand side in equation (2) represents the modified
dynamics response of the water waves system. First and second terms
in this integral are quadratic functional of the displacement and velocity
of the water wave, respectively. Second integral on the left-hand side in
equation (2) is the measure of the total canal depth on the (0,%y).

2. Numerical Results. By using the Pontryagin’s maximum prin-
ciple, optimal canal depth function is obtained as follows;

in which w is the solution of the following system:;
Wiy + a(wttmx - wttwmxm) - Bwtmx + YWrrra + Wyy = 07

w(t,x) =0, wy(t,x)=0atz=0,¢,
—20u(ty, x) = wi(ty, ) + (Wi (tf, T) — Wipgao (tr, )] — Bwaa(ty, ),
209us(tp, ) = w(ty, ) + Wy (tf, ) — Wegea Ly, 7))

Before giving the numerical example, consider the optimal canal depth
control function given by equation (3), in which, it is clear that as the
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value of ¥3 is decreasing, the value of the canal depth is increasing. As
a conclusion of this situation, dynamic response of the excessive water
waves given by first integral on the left side of equation (2) is minimized
by using minimum canal depth. Also, in numerical computations, N(u) is
considered as 0 due to difficulties on solving system of equations (1) with
the respective initial and boundary conditions. Weighted coefficients are
taken into account as ¥12 = 1 and v3 = 10* and 95 = 1074 for uncon-
trolled and controlled case, respectively. Numerical values are computed
on the middle of the canal, x = 0.5. The introduced control algorithm is
valid for all coefficients in the system but due the stability of the solu-
tions of equations (1), following coefficients are imposed. In the numer-
ical example, followings are taken into account: a = 0.01, 8 = 0.001,
= 0.0001, ¢ =1, ty = 3, O(x) = 1, f(t,x) = te*, up(r) = cos(mx),
uy(r) = v/2sin(mz).
Let us give the dynamic response of the wave in the canal system
and used canal depth accumulates over (0,¢s), respectively, as follows;

ty
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The dynamic response of the wave in the canal system is given by
table form and it seemed from Table 1 that as weighted coefficient ¥J3 in
canal depth control function decreases, dynamic response of the wave de-
creases due to an increasing in the value of canal depth control function.
These results indicate that introduced control actuation is very effective
and applicable to other waves control system including nonlinear terms.

Table 1 — The values of J(u) and J(h) for different values of 95
Js  dw)  4(h)
100 1.8e3 2769
10 5.0e4 22e-3
107" 3.9¢10 6.0 e-2
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