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Let us address the following state-linear control system
o(t) = A(t)z(t) + B(u(t),t) ¥Vt e T =]ty t1], x(ty) = wo; (1)

w(-) € W= {u() € L'.(T) |u(t) e U VteT). 2)

under standard assumptions ensuring the existence of the unique abso-
lutely continuous solution x (-, u) € AC,(T), x(t) = z(t,u), t € T of the
ODEs system (1) for any feasible control u(-) € U [1-5]. In addition,
consider the functionals

Ji(x,u) = p1i(x(ty)) +/gpi(x(t),u(t),t)dt, ie{0yul, I ={1,...,m},

T
(3)
where @1;() := g1i(z) —hi(x) Ve € C IR, pi(w,u,t) = gi(w,u,t)—
hi(z,t), 1 € {0} U I, with the state-convex functions gy;(x), hy;(x), and
x— gi(x,ut), v = hi(x,t) Y(u,t) e U xT.
We address now the following optimal control (OC) problem

Jo(w) = Jo(-,w), u(-)) § min, u(-) € U }

(P): Ty(u) = Ji(a(,u),u(-)) <0, i€ 1.

(4)

It is clear that this OC problem is nonconvex due to nonconvexity of the
data, which implies that in (P) there might exist a big number of locally
optimal and stationary (say, in the sense of PMP) processes that may
be rather far from the set Sol(P) of global solutions of (P).

Further, we employ the penalty function 7 (z,u) = T(u) =
max{0, Jy(u), ..., Jn(u)} and address the auxiliary (penalized) problem

(Po): Jo(u) = Jo(2(-; ), u(-)) § min, uf-) € U, ()

with the cost (merit) function as follows J,(u) := Jo(x(-,u), u(-)) +
+oT (x(-,u), u(-)), where ¢ > 0 is a penalty parameter. Recall that the
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key feature of the Exact Penalization Theory consists in the existence of
threshold value o, > 0 of the penalty parameter for which Problems (P)
and (P,) are equivalent in the sense that V(P) = = V(P,) and Sol(P) =
Sol(P,) Vo > o..

Furthermore, on account of the obvious presentation J;(u) =
Gi(z,u) — Fy(x), i € {0} U I, with the state-convex G;(-) and Fj(-),
one can decompose the merit function J,(z,u) as follows [6] J,(x,u) :=
Gy(x,u) — F,(x), where G,(z,u) and F,(x) are state-convex.

Using this decomposition, we can address the (partially) linearized
(at y(-) € AC,(T)) OC problem [6]

(PoL(y)):  Poy(u) = Gola(-), ul-))—
= {(VE(y(),2(-))) 4 min, u(-) € U, (6)

with the help of which we can formulate the so-called Global Optimality
Conditions for Problem (&P, ).

In addition, we developed a Scheme of Local and Global Searches for
the nonconvex OC Problem (P,). Combining these procedures with the
corresponding updates of the penalty parameter o > 0, we developed
Numerical Methods for the nonconvex Problem (P) that allows us not
only to escape local pitfalls of (P), but to reach the globally optimal
controls in nonconvex OC problems of the kind.
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