References

- 1. Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Dynamic Recovery Methods for Inputs of Control Systems. Yekaterinburg: UrO RAN, 2011 (in Russian).
- 2. Rozenberg V.L. Reconstruction of random-disturbance amplitude in linear stochastic equations from measurements of some of the coordinates // Comput. Math. Phys. 2016. Vol. 56. No. 3. P. 367–375.

EXACT PENALTY OF HIGH ORDER FOR EXTREME PROBLEMS OF DIFFERENTIAL INCLUSIONS

M.A. Sadygov

Baku State University, Baku, Azerbaijan misreddin08@rambler.ru

In this paper, using theorems on the continuous dependence of the solution of differential inclusions on the perturbation, we obtain high-order exact penalty theorems for nonconvex extremal problems of differential inclusions in the space of Banach-valued absolutely continuous functions.

Let X be separable Banach space, $a:[0,T]\times X\to comp\,X\,\bigcup\{\emptyset\}$, $T>0,\ R_\infty=(-\infty,+\infty],\ f:[0,T]\times X\times X\to R_\infty$ normal integrant, $\varphi:X\times X\to R_\infty$ function, $M\subset X$ nonempty compact set, $1\le p<+\infty$.

The symbol $W_p^1([0,T],X)$ denotes Banach space of absolutely continuous functions from [0,T] in X with the first derivative according to Freshet which belongs $L_p([0,T],X)$ with the norm $\|x(\cdot)\|_{W_p^1} = \|x(0)\| + \left(\int_0^T \|\dot{x}(t)\|^p dt\right)^{1/p}$.

A solution $\bar{x}(\cdot) \in W_p^1([0,T],X)$ of the system

$$\dot{x}(t) \in a(t, x(t)), \quad x(0) \in M, \tag{1}$$

minimizing functional

$$J(x) = \varphi(x(0), x(T)) + \int_{0}^{T} f(t, x(t), \dot{x}(t))dt$$
 (2)

among all solutions of (1) in $W_p^1([0,T],X)$ will be called the solution of problems (1), (2) in $W_p^1([0,T],X)$. Let's assume that $|J(\bar{x})| < +\infty$.

Let's set $\psi(s, x, y) = \inf\{\|z - y\| : z \in a(s, x)\}, \ q(x) = \inf_{y \in M} \|y - x\|,$ where $\inf \emptyset = +\infty, \ B(\bar{x}(t), \alpha) = \{x \in X : \|x - \bar{x}(t)\| \le \alpha\}, \text{ where } t \in [t_0, T], \ \alpha > 0 \text{ and (see [1])}$

$$\begin{split} J_r(x) &= \varphi(x(0), x(T)) + \int_0^T f(t, x(t), \dot{x}(t)) dt + \\ &+ r \bigg(\big[q(x(0)) + (\int_0^T \psi^\beta(t, x(t), \dot{x}(t)) dt)^{\frac{1}{\beta}} \big]^\beta + \\ &+ \|x(\cdot) - \bar{x}(\cdot)\|_{W_\beta^1}^{\beta - \nu} \left[q(x(0)) + (\int_0^T \psi^\beta(t, x(t), \dot{x}(t)) dt)^{\frac{1}{\beta}} \right]^\nu \bigg), \end{split}$$
 where $x(\cdot) \in W_\beta^1([0, T], X), \ \beta \geq \nu > 0, \ \beta \geq 1.$ Let $\gamma > e^{m(T)}(2 + m(T))^2, \ m(t) = \int_0^t k(s) ds, \ h = \max\{1, T^{\frac{\beta - 1}{\beta}}\}.$

Theorem 1. Let $a:[0,T]\times X\to comp\,X\bigcup\{\emptyset\}$ be a multiple-valued map, a(t,x) in the domain $t\in[0,T],\ x\in B(\bar x(t),\alpha)$ the nonempty compact set and is measurable on $t,\ M\subset X$ nonempty compact set, $f:[0,T]\times X\times X\to R_\infty$ normal integrant, $\varphi:X\times X\to R_\infty$ function, $\beta\geq\nu>0,\ \beta\geq1$, there exist function $k(\cdot)\in L_\beta[0,T]$ and numbers $k_1>0$ and $k_2>0$ such that $\rho_X(a(t,x),a(t,y))\leq k(t)\|x-y\|$ at $x,y\in B(\bar x(t),\alpha)$ and

$$|f(t, x_1, z_1) - f(t, x_2, z_2)| \le k_1 (||x_1 - x_2|| + ||z_1 - z_2||)^{\nu} ((||x_2 - \bar{x}(t)|| + ||z_2 - \dot{\bar{x}}(t)||)^{\beta - \nu} + (||x_1 - x_2|| + ||z_1 - z_2||)^{\beta - \nu})$$

at $x_1, x_2 \in B(\bar{x}(t), \alpha), z_1, z_2 \in X$,

$$|\varphi(u_1, v_1) - \varphi(u_2, v_2)| \le k_2(||u_1 - u_2|| + ||v_1 - v_2||)^{\nu}((||u_2 - \bar{x}(0)|| + ||v_2 - \bar{x}(T)||)^{\beta - \nu} + (||u_1 - u_2|| + ||v_1 - v_2||)^{\beta - \nu})$$

at $u_1, u_2 \in B(\bar{x}(0), \alpha)$, $v_1, v_2 \in B(\bar{x}(T), \alpha)$ and $\bar{x}(\cdot) \in W^1_{\beta}([0, T], X)$ is the solution of the problems (1), (2) in $W^1_{\beta}([0, T], X)$. Then there exists $r_0 > 0$ such that $\bar{x}(t)$ are minimized by functional $J_r(x)$ at $r \geq r_0$ in $D_{\beta} = \{x(\cdot) \in W^1_{\beta}([0, T], X) : ||x(\cdot) - \bar{x}(\cdot)||_{W^1_{\beta}} \leq \frac{\alpha}{\gamma h}\}.$

References

1. Sadygov M.A. On the exact penalty of high order for extreme problems of differential inclusions// Chronos: Multidisciplinary Sciences. 2021. Vol.6, No. 2. P. 75–86.