3. Conclusions We propose a constructive solution for the genera-
tion of collision-free trajectories between two points in an environment
containing multiple obstacles in a d-dimensional space. This builds on
the geometry of the obstacles and the convex lifting procedure describing
a graph around the obstacles. This graph represents a key element in
order to generate collision-free trajectories employing MPC controllers
with recursive feasibility guarantees and convergence in between an ini-
tial and a final position.
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ADAPTIVE SENSORLESS INDUCTION MOTOR
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The sensorless (without speed sensor) induction motor vector control
synthesis is an actual problem [1] for industrial applications. This paper
proposes a modified cost criterion which improve the speed computation,
based on model reference adaptive control (MRAC).

In the stationary frame (a,b) the induction motor with the state
vector x = (W,, Uy, i4,4)7 and the control vector (ug,, up) is described by
the equations

U, = —a¥, — o0, + al;2i,,
U, = —aWUy, + @U, + al,2i,

di, . i
diy, . ;

Yy = Z.ab-
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The electromagnetic torque depends on the current vector (i,, i) and
the flux vector as follows:

M = Far(Woiy — Tyia). (2)

There are the unknown, not measured speed @ and the flux vector
[W,, U] to be computed from the system’s measurable output y = 44, =
(14,1p). So, the induction motor equations (1), (2) can be considered as
a model for the speed and flux computing. Let § = 44 = (ia,) be the
model output, then e = (iy) — y is the system tracking error. All the
variables from the model are marked with (A).

The conventional gradient method [2] is based on form V = zTAx,
minimization, with the state vector error x. However, this approach has
some disadvantages, if the flux vector is not measurable. The improved
criterion to minimize is as follows

V = (1o —ia)? + 15 — )2+ MM — M)?, (3)

where (M —M)? contributes to the flux and current oscillation reduction.
The Lyapunov function V' derivative takes a form

~

d(ig —ia) -~ . d(iy— i)

V =2l —da) ==+ 21— i) = 2NN — M) (M~ M), (4)

Therefore, its gradient is determined by the expression

0 d’Lb (M M) oM

VV—Q( — i) == 55 di 55

(5)

In order to make the Lyapunov function (3) decreasing, the estimated
speed must satisfy the resulting equation

o= —TV.V.

The expression (5) must realize the adaptation such as the model
dynamics becomes similar to the induction motor dynamics. In equation
(5) I' is a positive constant.

The sensorless model reference adaptive vector control simulation is
executed for 2.2 KW induction motor. The simulation demonstrates the
successful speed estimation with (3)-(5).
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1. Problem Statement. The problem of reconstructing unknown
inputs in a quasi-linear stochastic differential equation (SDE) is inves-
tigated on the basis of the approach of the theory of dynamic inversion
suggested in the works by Kryazhimskii, Osipov, and their colleagues,
see [1] and its bibliography. We consider the statement when the simulta-
neous reconstruction of disturbances in the deterministic and stochastic
terms of the equation is performed with the use of discrete incomplete
information on a number of realizations of the stochastic process. The
work actually continues studies [2], where a similar problem was solved
for a linear SDE via a partially observed system of linear ordinary dif-
ferential equations (ODEs) obtained by the method of moments.

A SDE with diffusion depending on the phase state is of the form

de(t,w) = (A(t)x(t,w)+ Bt ur(t)+ f(t)) dt +Us(t) x(t,w) d€(t, w). (1)

Here, t € T = [0,9], * € R", (0,w) = x is a known deterministic or
random (normally distributed) vector; w € €, (2, F, P) is a probabil-
ity space, £(t,w) € R is a standard scalar Wiener process; A(t), B(t),
and f(t) are continuous matrix functions of dimension n X n, n x r,
and n X 1, respectively. Two external disturbances act on the system:
vectors uy(t) € R" and wus(t) € R" (the main diagonal of a diagonal
matrix Us(t) € R™") with values from given convex compact sets; both
functions are of bounded variation. The input u; enters into the deter-
ministic term and influences the mathematical expectation of the desired
process, whereas the vector uy regulates the amplitude of random noises.
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