where the matrix operator parameters are calculated iteratively.

Corollary 1. Let the Assumptions be satisfied. For sufficiently small $\varepsilon_1, \varepsilon_2 > 0$, the decoupled system (1) is $O(\mu)$ -close to degenerate (reduced), ε_2 - and ε_1 -boundary-layer systems [1] for the TSPLTISD.

Acknowledgement The work of Tsekhan O.B. was partially supported under the state research program "Convergence-2025" of Republic of Belarus: Task 1.2.04.4.

References

- 1. Ladde G.S., Rajalakshmi S.G. Diagonalization and stability of multi-time-scale singularly perturbed linear systems // Applied Mathematics and Computation. 1985. Vol. 16. Issue 2. P. 115–140. DOI:10.1016/0096-3003(85)90003-7.
- 2. Tsekhan, O.B. Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation // Axioms. 2019. Vol. 8. No. 71. P. 1–19. DOI: 10.3390/axioms8020071.
- 3. Chang, K. Singular perturbations of a general boundary value problem // SIAM J. Math. Anal. 1972. No. 3. P. 520–526.

OPTIMAL MOTION PLANNING IN CLUTTERED ENVIRONMENT

S. Olaru, D. Ioan

University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systémes (L2S), Gif-sur-Yvette, France {sorin.olaru, daniel.ioan}@l2s.centralesupelec.fr

1. Introduction. In both control and robotics communities the interest in the navigation through multi-obstacle environments is constantly growing due to its vast domain of applications, e.g., [1]. From a mathematical point of view, the main difficulty arises from the non-convexity of the feasible regions in the motion space and consequently in the lack of connectivity in the solution space.

Our solution exploits the *convex lifting* notion, which has been previously employed in constrained control and PWA (piecewise affine) control implementations [2]. Our work establish a link between the convex lifting involving the obstacles, the polyhedral partitions and the path selection in the navigation space. The technique can be understood as a convexification procedure for the characterization of the non-convex motion space.

The effective motion planning strategy is divided into two stages. Basically, in a first stage we neglect the dynamical constraints and the physical limitations that may appear in the motion planning in order to generate a feasible geometric path. As stated, the resulting path ensures the avoidance of obstacles and has the potential to explicitly describe a feasible corridor. At a second stage, using the geometric path and the corridor as starting points, we find some appropriate trajectory respecting the agent's dynamics and constraints using a MPC strategy.

2. Contribution

Definition 1. Given a collection of obstacles $\mathbb{P} = \bigcup_{j=1}^{N_o} P_j$ with $P_i \cap P_j = \emptyset$, $\forall i \neq j$, and a partition of the environment $\mathbb{X} \supset \mathbb{P}$ induced by \mathbb{P} , the function $z : \mathbb{X} \to \Re$ is called a PWA (piecewise affine) lifting of the cluttered environment if there exists $z(x) = a_i^\top x + b_i$, $x \in X_i$ with X_i satisfying $int(X_i) \supset P_i$, $\forall i$, $a_i \in Red$ and $b_i \in \Re$.

Theorem 1. A piecewise affine lifting for a collection of obstacles $\mathbb{P} = \bigcup_{j=1}^{N_o} P_j$ with $int(P_i \cap P_j) = \emptyset, \forall i \neq j$ is continuous and convex if (a_i, b_i) satisfy: The values $\epsilon, M > 0$ are suitably chosen and $\mathcal{V}(P_i)$ denotes the collection of extreme points of P_i .

Using Theorem 1, we are able to obtain a polyhedral partition of the navigation space w.r.t. the obstacle setting. Further, we define a graph, considering the vertices of the partition cells as nodes in that graph and the facets as edges. Applying a graph search algorithm, we can derive the shortest geometric path between any two points in the space. This path is a foundation for a corridor-constrained MPC strategy, as depicted in Figure 1.

Figure 1 — The shortest path $Path(x_i, x_f)$ and a feasible trajectory within the corridor.

3. Conclusions We propose a constructive solution for the generation of collision-free trajectories between two points in an environment containing multiple obstacles in a d-dimensional space. This builds on the geometry of the obstacles and the convex lifting procedure describing a graph around the obstacles. This graph represents a key element in order to generate collision-free trajectories employing MPC controllers with recursive feasibility guarantees and convergence in between an initial and a final position.

References

- 1. Jawad H. M., Nordin R., Gharghan S. K., Jawad A. M., Ismail M. Energy-efficient wireless sensor networks for precision agriculture: A review // Sensors. 2017. Vol. 17. No. 8. P. 1781.
- 2. Nguyen N. A., Gulan M., Olaru S., Rodriguez-Ayerbe P. Convex lifting: Theory and control applications // IEEE Transactions on Automatic Control. 2017. Vol. 63. No. 5. P. 1243–1258.

ADAPTIVE SENSORLESS INDUCTION MOTOR CONTROL SYNTHESIS WITH QUADRATIC COST CRITERIA

O.F. Opeiko

Belarusian National Technical University, Minsk, Belarus oopeiko@bntu.by

The sensorless (without speed sensor) induction motor vector control synthesis is an actual problem [1] for industrial applications. This paper proposes a modified cost criterion which improve the speed computation, based on model reference adaptive control (MRAC).

In the stationary frame (a, b) the induction motor with the state vector $x = (\Psi_a, \Psi_b, i_a, i_b)^T$ and the control vector (u_a, u_b) is described by the equations

$$\dot{\Psi}_{a} = -\alpha \Psi_{a} - \bar{\omega} \Psi_{b} + \alpha L_{1} 2 i_{a},
\dot{\Psi}_{b} = -\alpha \Psi_{b} + \bar{\omega} \Psi_{a} + \alpha L_{1} 2 i_{b},
\frac{di_{a}}{dt} = -R_{1} K_{4} i_{a} + K_{4} u_{a} - k_{2} K_{4} \dot{\Psi}_{a},
\frac{di_{b}}{dt} = -R_{1} K_{4} i_{b} + K_{4} u_{b} - k_{2} K_{4} \dot{\Psi}_{b},
y = i_{ab}.$$
(1)