Theorem 1. The pair of r-strategies exists @’ (Uy), 0" which forms
the equiltbrium situation and gives birth to the equilibrium trajec-
tory 2°(t).

The number of the moments of the information receipt for the mo-
tion 2°(t) is a finite number.

Let Uy (z°(T)) > Upe(2*(T)) > 0. The pair @’(Up), 7" forms the
equilibrium situation and gives birth to the equilibrium trajectory x°(¢)

as well as the pair 4°(Ups), 0.

Theorem 2. Let the pair 4 (Uy ), " gives birth to the motion z°(t).
The amount of the moments of the information receipt by the player 1
about the motion z%(t) is not more than the amount of the moments of
information receipt for the same motion 2°(t) which is born by the pair
Z_LO(U()Q), V.
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In this lecture we discuss recent applications of advanced variational
analysis and generalized differentiation to the design, justification of
numerical algorithms of nonsmooth optimization with applications to
practical modeling. Our main attention is paid to developing general-
ized Newton-type algorithms to solve nonsmooth optimization problems
and subgradient systems that are based mainly on constructions and
results of second-order variational analysis. Solvability of these algo-
rithms is proved in rather broad settings, and then verifiable conditions
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for their local and global superlinear convergence are obtained. We con-
sider in more detail problems convex composite optimization for which a
generalized damped Newton algorithm exhibiting global superlinear con-
vergence is designed. The efficiency of the designed algorithm is demon-
strated by solving a class of Lasso problems that are well-recognized in
applications to machine learning and statistics. For this class of non-
smooth optimization problems, we conduct numerical experiments and
compare the obtained results with those achieved by using other first-
order and second-order methods.

This talk is based on recent joint works with P. D. Khanh (HCMUE,
Vietnam), V. T. Phat (WSU), M. E. Sarabi (Miami Univ., USA), and
D. B. Tran (WSU).
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Consider the three time-scale singularly perturbed linear time-
invariant control system with state delays (TSPLTISD):

l
x(t) = Z Allj:c(t — jh) + Algy(t) + Algz(t) + Blu(t), T € Rnl, u € Rr,
=0
l
e1y(t) = Y Aoyt — jh) + Apy(t) + Agsz(t) + Byul(t), y € R™,
7=0

l
522(15) = Z Agljx(t — ]h) + Aggy(t) -+ AggZ(t) + Bgu(t), z € Rn3,t 2 0,
Jj=0

where A;j, Ap, A, B, 1 = 1,3, j = 0,1 are constant matrices with
appropriate dimensions, h = const > 0 is a delay, 0 < e K 1 <
i—f < 1 are the small parameters, that describe the time-scale separation,

u(t) ia a piecewise continuous on 7' r-vector control function. Let p 2
% be the differentiation operator, e " the delay operator: e ?'w(t) =
v(t — h). Similar to [1],[2] a generalization of Chang’s non-degenerate
decoupling transformation [3], under change of variables T'(ey, i, e7P"),
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