ON THE STRUCTURE OF THE LEVINSON CENTER FOR MONOTONE DISSIPATIVE NON-AUTONOMOUS DYNAMICAL SYSTEMS

D. Cheban

Moldova State University, Chişinău, Republic of Moldova cheban@usm.md, davidcheban@yahoo.com

This talk is dedicated to the study the structure compact global attractor (Levinson center) of monotone dynamical systems.

Let $W \subseteq \mathbb{R}^n$. Consider the differential equation

$$u' = f(t, u) \quad (f \in C(\mathbb{R} \times W, \mathbb{R}^d)). \tag{1}$$

Along with the equation (1) we consider its H-class, i.e., the family of the equations

$$v' = g(t, v) \quad (g \in H(f) = \overline{\{f_\tau : \tau \in \mathbb{R}\}}), \tag{2}$$

where $f_{\tau}(t, u) = f(t + \tau, u)$ and by bar is indicated the closure in the compact-open topology.

Below we will use the following conditions.

Condition (A1). The function $f \in C(\mathbb{R} \times W, \mathbb{R}^d)$ is said to be regular if for every equation (2) the conditions of existence, uniqueness and extendability on \mathbb{R}_+ are fulfilled.

We will suppose that the function f is regular. Denote by $\varphi(\cdot, v, g)$ the solution of (2) passing through the point $v \in W$ for t = 0. Then the mapping $\varphi : \mathbb{R}_+ \times W \times H(f) \to W$ satisfies the following conditions:

- 1) $\varphi(0, v, g) = v$ for all $v \in W$ and $g \in H(f)$;
- 2) $\varphi(t, \varphi(\tau, v, g), g_{\tau}) = \varphi(t + \tau, v, g)$ for each $v \in W$, $g \in H(f)$ and $t, \tau \in \mathbb{R}_+$;
- 3) $\varphi : \mathbb{R}_+ \times W \times H(f) \to W$ is continuous.

Denote by Y := H(f) and (Y, \mathbb{R}, σ) a dynamical system of translations on Y, induced by the dynamical system of translations $(C(\mathbb{R} \times W, \mathbb{R}^d), \mathbb{R}, \sigma)$. The triple $\langle W\varphi, (Y, \mathbb{R}, \sigma) \rangle$ is a cocycle over $(Y, \mathbb{R}_+, \sigma)$ with the fiber \mathbb{R}^d . Hence, the equation (1) generates a cocycle $\langle W, \varphi, (Y, \mathbb{R}, \sigma) \rangle$ and the non-autonomous dynamical system $\langle (X, \mathbb{R}_+, \pi), (Y, \mathbb{R}, \sigma), h \rangle$, where $X := W \times Y$, $\pi := (\varphi, \sigma)$ and $h := pr_2 : X \to Y$.

Condition (A2). The function $f \in C(\mathbb{R} \times W, \mathbb{R}^d)$ is Bohr/Levitan almost periodic in $t \in \mathbb{R}$ uniformly in u on every compact subset $K \subset W$.

Condition (A3). Equation (1) is monotone, i.e., the cocycle $\langle W, \varphi, (H(f), \mathbb{R}, \sigma) \rangle$ (or shortly φ) generated by (1) is monotone (this means that, if $u, v \in W$ and $u \leq v$ then $\varphi(t, u, g) \leq \varphi(t, v, g)$ for all $t \geq 0$ and $g \in H(f)$) and \mathbb{R}^n_+ is positively invariant with respect to cocycle φ $(\varphi(t, u, g) \in \mathbb{R}^n_+$ for any $(t, u, g) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ \times H(f))$.

Condition (A4). Equation (1) with regular right hand side f admits a compact global attractor (Levinson center), i.e., for any $g \in H(f)$ there exists a nonempty compact subset I_g of \mathbb{R}^n such that the family $\{I_g | g \in H(f)\}$ possesses the following properties:

- 1. there exists a nonempty compact subset K of \mathbb{R}^n such that $I_g \subseteq K$ for any $g \in H(f)$ and, consequently, $\mathbf{I} = \bigcup \{I_g | g \in H(f)\}$ is pre-compact;
- 2. $\{I_g | g \in H(f)\}\$ is invariant, i.e., $\varphi(t, I_g, g) = I_{\sigma(t,g)}$ for any $g \in H(f)$ and $t \geq 0$;
- 3. $\{I_g | g \in H(f)\}$ uniformly attracts every bounded subset of \mathbb{R}^n , i.e., for any bounded subset M of \mathbb{R}^n we have

$$\lim_{t \to +\infty} \sup_{g \in H(f)} \beta(\varphi(t, M, g), \mathbf{I}) = 0, \tag{3}$$

where $\beta(A, B) := \sup_{a \in A} \rho(a, B)$, $\rho(a, B) := \inf_{b \in B} \rho(a, b)$ and ρ is the distance defined by norm $|\cdot|$ on the space \mathbb{R}^n .

Condition (A5). For every $g \in H(f)$ and $v_0 \in \mathbb{R}^n_+$ the solution $\varphi(t, v_0, g)$ of equation (2) is positively uniformly stable, i.e., for any positive number ε there exists a positive number $\delta = \delta(\varepsilon, v_0, g)$ $(v \in \mathbb{R}^n_+)$ such that $\rho(\varphi(t_0, v, g), \varphi(t_0, v_0, g)) < \delta$ $(t_0 \geq 0)$ implies $\rho(\varphi(t, v, g), \varphi(t, v_0, g)) < \varepsilon$ for any $t \geq t_0$.

The main result of this talk we formulate in the following Theorems.

Theorem 1. Under the conditions (A1)-(A5) there exists at least two points $u \in I_f$ such that the solution $\varphi(t, u, f)$ of equation (1) belonging to compact global attractor $\{I_g | g \in H(f)\}$ and it is Bohr/Levitan almost periodic.

Condition (A6). Equation (1) has a strongly monotone first integral, i.e., there exists a function $V \in C^1(\mathbb{R}^n, \mathbb{R})$ such that $\nabla V(x) \gg 0$ (or equivalently, $V'_{x_i}(x) > 0$ for any $i = 1, \ldots, n$ and $x \in \mathbb{R}^n$).

Theorem 2. Under the conditions (A1) - (A4) and (A6) the following statements hold:

- 1. for any $u \in I_f$ the solution $\varphi(t, u, f)$ of equation (1) belonging to compact global attractor $\{I_g | g \in H(f)\}$ and it is Bohr/Levitan almost periodic;
- 2. for any $u \in \mathbb{R}^n \setminus I_f$ there exists a point $u_f \in I_f$ such that
 - (a) the solution $\varphi(t, u_f, f)$ of equation (1) belonging to compact global attractor $\{I_g | g \in H(f)\}$ and it is Bohr/Levitan almost periodic;
 - (b) the solution $\varphi(t, u, f)$ of equation (1) is asymptotic to solution $\varphi(t, u_f, f)$, i.e.,

$$\lim_{t \to +\infty} \rho(\varphi(t, u, f), \varphi(t, u_f, f)) = 0. \tag{4}$$

Denote by \mathfrak{A} (respectively, \mathfrak{B}) the family of all equations (1) satisfying conditions (A1) - (A5) (respectively, (A1) - (A4) and (A6)).

Remark. Note that

- 1. $\mathfrak{B} \subset \mathfrak{A}$;
- 2. the inclusion $\mathfrak{A} \subseteq \mathfrak{B}$ is not true even for scalar (n=1) differential equations (see [1, Ch.XII]).

References

1. Cheban D.N. Global Attractors of Nonautonomous Dynamical and Control Systems. 2nd Edition. Interdisciplinary Mathematical Sciences. Vol.18. River Edge, NJ: World Scientific, 2015, xxv+589 pp.

TIME STRETCHING IN THE GAME METHOD OF RESOLVING FUNCTIONS G.TS. Chikrii, A.A. Chikrii

V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine {g.chikrii, ark.chikrii}@gmail.com

In the development of the first direct method of L.S. Pontryagin [1], the method of resolving functions was developed [2]. These methods provide a guaranteed result without worrying about optimality that is quite justified from a practical point of view.