Математическая логика, алгебра и теория чисел

Mathematical logic, algebra and number theory

УДК 512.542

КОНЕЧНЫЕ ГРУППЫ С ЗАДАННЫМИ СИСТЕМАМИ ОБОБЩЕННЫХ о-ПЕРЕСТАНОВОЧНЫХ ПОДГРУПП

В. С. ЗАКРЕВСКАЯ¹⁾

¹⁾Гомельский государственный университет им. Франциска Скорины, ул. Советская, 104, 246019, г. Гомель, Беларусь

Пусть $\sigma = \{\sigma_i | i \in I\}$ – разбиение множества всех простых чисел \mathbb{P} , а G – конечная группа. Множество \mathcal{H} подгрупп группы G называется *полным холловым* σ -*множество*м группы G, если каждый член $\neq 1$ из \mathcal{H} является холловой σ_i -подгруппой группы G для некоторого $i \in I$ и \mathcal{H} содержит ровно одну холлову σ_i -подгруппу группы G для всех i таких, что $\sigma_i \cap \pi(G) \neq \emptyset$. Группа считается σ -*примарной*, если она есть конечная σ_i -группа для некоторого i. Подгруппа A группы G называется σ -*перестановочной* в G, если G содержит полное холлово σ -множество \mathcal{H} такое, что $AH^x = H^x A$ для любого $H \in \mathcal{H}$ и любого $x \in G$; σ -субнормальной в G, если существует подгруппа цепи $A = A_0 \leq A_1 \leq \ldots \leq A_t = G$ такая, что либо $A_{i-1} \leq A_i$, либо $A_i/(A_i - 1)_{A_i}$ является σ -примарной для всех $i = 1, \ldots, t$; \mathfrak{U} -нормальной в G, если каждый главный фактор группы G между A_G и A^G циклический. Мы говорим, что подгруппа H группы G является: (i) *частично* σ -*перестановочной* в G, если существуют \mathfrak{U} -нормальной в G, если существуют частично σ -перестановочная подгруппа S и σ -субнормальная подгруппа T из G такие, что G = HT

Образец цитирования:

Закревская ВС. Конечные группы с заданными системами обобщенных σ-перестановочных подгрупп. *Журнал Белорусского государственного университета. Математика.* Информатика. 2021;3:25–33 (на англ.). https://doi.org/10.33581/2520-6508-2021-3-25-33

Автор:

Виктория Сергеевна Закревская – аспирантка кафедры алгебры и геометрии факультета математики и технологий программирования. Научный руководитель – доктор физикоматематических наук А. Н. Скиба.

For citation:

Author:

gies of programming. tory.zakreuskaya@gmail.com

Zakrevskaya VS. Finite groups with given systems of generalised σ -permutable subgroups. *Journal of the Belarusian State University. Mathematics and Informatics.* 2021;3:25–33. https://doi.org/10.33581/2520-6508-2021-3-25-33

Viktoria S. Zakrevskaya, postgraduate student at the department

of algebra and geometry, faculty of mathematics and technolo-

CC O S

БГУ — столетняя история успеха

- \$\$\$\$\$

и $H \cap T \leq S \leq H$. Мы изучаем G, предполагая, что некоторые подгруппы группы G являются частично σ -перестановочными или (\mathfrak{U}, σ)-вложенными в G. Некоторые известные результаты обобщены.

Ключевые слова: конечная группа; σ-разрешимые группы; σ-нильпотентная группа; частично σ-перестановочная подгруппа; (μ, σ)-вложенная подгруппа; μ-нормальная подгруппа.

FINITE GROUPS WITH GIVEN SYSTEMS OF GENERALISED σ-PERMUTABLE SUBGROUPS

V. S. ZAKREVSKAYA^a

^aFrancisk Skorina Gomel State University, 104 Savieckaja Street, Homiel 246019, Belarus

Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} and G be a finite group. A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $i \in I$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$. A group is said to be σ -primary if it is a finite σ_i -group for some i. A subgroup A of G is said to be: σ -permutable in G if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$; σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \ldots \leq A_t = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_i - 1)_{A_i}$ is σ -primary for all $i = 1, \ldots, t$; \mathfrak{U} -normal in G if there are a \mathfrak{U} -normal subgroup A and a σ -permutable subgroup B of G such that $H = \langle A, B \rangle$; (ii) (\mathfrak{U}, σ)-embedded in G if there are a partially σ -permutable subgroup S and a σ -subnormal subgroup T of G such that G = HT and $H \cap T \leq S \leq H$. We study G assuming that some subgroups of G are partially σ -permutable or (\mathfrak{U}, σ)-embedded in G. Some known results are generalised.

Keywords: finite group; σ -soluble groups; σ -nilpotent group; partially σ -permutable subgroup; (\mathfrak{U}, σ)-embedded subgroup; \mathfrak{U} -normal subgroup.

Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If *n* is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of *G*.

A subgroup A of G is said to be \mathfrak{U} -normal in G [1] if either $A \leq G$ or $A_G \neq A^G$ and every chief factor of G between A_G and A^G is cyclic.

Following L. Shemetkov [2], we use σ to denote some partition of \mathbb{P} . Thus $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$

and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. The symbol $\sigma(n)$ denotes the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$.

The group *G* is said to be [3-5]: σ -primary if *G* is a σ_i -group for some $i \in I$; σ -nilpotent if $G = G_1 \times \ldots \times G_n$ for some σ -primary groups G_1, \ldots, G_n ; σ -soluble if every chief factor of *G* is σ -primary.

A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -set of G [6; 7] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $i \in I$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$.

A subgroup A of G is said to be [3]: σ -permutable in G if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^x A$ for all $H \in \mathcal{H}$ and all $x \in G$; σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq ... \leq A_t = G$ such that either $A_{i-1} \leq A_i$ or $A_i / (A_i - 1)_{A_i}$ is σ -primary for all i = 1, ..., t.

Note that in the classical case when $\sigma = \{\{2\}, \{3\}, ...\}, \sigma$ -permutable subgroups are also called *S-permutable* [8; 9], and in this case *A* is σ -subnormal in *G* if and only if it is subnormal in *G*.

The σ -permutable and σ -subnormal subgroups were studied by a lot of authors (see, in particular, the papers [3–6; 10–29]).

In this paper we consider some applications of the following generalisation of σ -subnormal and σ -permutable subgroups.

Definition 1. We say that a subgroup *H* of *G* is

(i) *partially* σ -*permutable* in *G* if there are a \mathfrak{U} -normal subgroup *A* and a σ -permutable subgroup *B* of *G* such that $H = \langle A, B \rangle$;

(ii) (\mathfrak{U}, σ) -embedded in G if there are a partially σ -permutable subgroup S and a σ -subnormal subgroup T of G such that G = HT and $H \cap T \leq S \leq H$.

Note that every \mathfrak{U} -normal subgroup $A = \langle A, 1 \rangle$ and every σ -permutable subgroup $B = \langle 1, B \rangle$ are partially σ -permutable in G. Moreover, every partially σ -permutable subgroup S is (\mathfrak{U}, σ) -embedded in G since in this case we have G = SG and $S \cap G = S \leq S$, where G is a σ -subnormal subgroup of G by definition.

Now we consider the following examples, which allow you to get various applications of the introduced concepts.

Example 1. (i) A subgroup *H* of *G* is said to be *weakly* σ -*permutable* [30] or *weakly* σ -*quasinormal* [31] in *G* if there is a σ -subnormal subgroup *T* and a σ -permutable subgroup *S* of *G* such that G = HT and $H \cap T \leq S \leq H$. Every weakly σ -quasinormal subgroup is (\mathfrak{U}, σ)-embedded in the group.

(ii) A subgroup *H* of *G* is said to be *weakly S-permutable* in *G* [32] if there are an *S*-permutable subgroup *S* and a subnormal subgroup *T* of *G* such that G = HT and $H \cap T \leq S \leq H$. It is clear that every weakly *S*-permutable subgroup is (\mathfrak{U}, σ) -embedded for every partition σ of \mathbb{P} .

(iii) Recall that a subgroup M of G is called *modular* in G if M is a modular element (in the sense of Kurosh [33, p. 43]) of the lattice $\mathcal{L}(G)$ of all subgroups of G, that is (i) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \leq G$, $Z \leq G$ such that $X \leq Z$, and (ii) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$.

A subgroup *H* of *G* is called *m*- σ -*permutable* in *G* [34] if there are a modular subgroup *A* and a σ -permutable subgroup *B* of *G* such that *H* = <*A*, *B*>. In view of [33, theorem 5.1.9], every modular subgroup is \mathfrak{U} -normal in the group. Therefore, every *m*- σ -permutable subgroup is partially σ -permutable.

(iv) A subgroup *H* of *G* is called *weakly m*- σ -*permutable* in *G* [34] if there are an *m*- σ -permutable subgroup *S* and a σ -subnormal subgroup *T* of *G* such that G = HT and $H \cap T \leq S \leq H$. It is clear that every weakly *m*- σ -permutable subgroup is (\mathfrak{U}, σ)-embedded.

(v) A subgroup A of G is said to be *c*-normal in G [35] if for some normal subgroup T of G we have AT = Gand $A \cap T \leq A_G$. Every *c*-normal subgroup is (\mathfrak{U}, σ) -embedded.

Our first observation generalises corresponding results in [34; 35].

Theorem A. (i) If every non-nilpotent maximal subgroup of G is (\mathfrak{U}, σ) -embedded in G, then G is σ -soluble. (ii) G is soluble if and only if every maximal subgroup of G is (\mathfrak{U}, σ) -embedded in G and G possesses a complete Hall σ -set \mathcal{H} whose members are soluble groups.

In view of example 1 (iii), we get also from theorem A the following corollary.

Corollary 1 [34, theorem B]. *If every non-nilpotent maximal subgroup of G is weakly m-\sigma-permutable in G, then G is* σ *-soluble.*

In the case when $\sigma = \{\{2\}, \{3\}, ...\}$ we get from theorem A (ii) the following know result.

Corollary 2 [35, theorem 3.1]. If every maximal subgroup of G is c-normal in G, then G is soluble.

Now, recall that if $M_2 < M_1 < G$ where M_2 is a maximal subgroup of M_1 and M_1 is a maximal subgroup of G, then M_2 is said to be a 2-maximal subgroup of G.

Our next theorem generalises a well-known Agrawal's result on supersolubility of groups with S-permutable 2-maximal subgroups.

Theorem B. If every 2-maximal subgroup of G is partially σ -permutable in G and G possesses a complete Hall σ -set \mathcal{H} whose members are supersoluble, then G is supersoluble.

Corollary 3. If every 2-maximal subgroup of G is σ -permutable in G and G possesses a complete Hall σ -set \mathcal{H} whose members are supersoluble, then G is supersoluble.

In the case when $\sigma = \{\{2\}, \{3\}, ...\}$ we get from theorem B the following known results.

Corollary 4 [36; 37, chapter 1, theorem 6.5]. *If every 2-maximal subgroup of G is S-permutable in G, then G is supersoluble.*

Corollary 5 [38]. If every 2-maximal subgroup of G is modular in G, then G is supersoluble.

Recall that G is *meta*- σ -*nilpotent* [7] if G is an extension of a σ -nilpotent group by a σ -nilpotent group. An analysis of many open questions leads to the necessity of studying various classes of meta- σ -nilpotent groups (see, for example, the recent papers [3; 11–18; 30] and the survey [7]).

Out next result gives the following characterisation of meta-σ-nilpotent groups.

Theorem C. (i) The following conditions are equivalent:

(a) G possesses a complete Hall σ -set \mathcal{H} whose members are (\mathfrak{U}, σ) -embedded in G;

(b) G is meta- σ -nilpotent;

(c) G is σ -soluble and every σ -Hall subgroup H of G (that is $\sigma(H) \cap \sigma(|G:H|) = \emptyset$) is c-normal in G.

(ii) If G possesses a complete Hall σ -set \mathcal{H} whose members are partially σ -permutable in G, then the derived subgroup G' of G is σ -nilpotent.

A group G is said to be: a D_{π} -group if G possesses a Hall π -subgroup E and every π -subgroup of G is contained in some conjugate of E; a σ -full group of Sylow type [3] if every subgroup E of G is a D_{σ_i} -group for each $\sigma_i \in \sigma(E)$.

In view of example 1 (ii) we get from theorem C the following corollary.

Corollary 6 [30, theorem 1.4]. Let G be a σ -full group of Sylow type. If every Hall σ_i -subgroup of G is weakly σ -permutable in G for all $\sigma_i \in \sigma(G)$, then G is σ -soluble.

In the case when $\sigma = \{\{2\}, \{3\}, ...\}$ we get from theorem C the following known result.

Corollary 7 [39, chapter I, theorem 3.49]. *G is metanilpotent if and only if every Sylow subgroup of G is c-normal.*

Proof of theorem A

First we prove the following two lemmas.

Lemma 1. Let A, B and N be subgroups of G, where A is partially σ -permutable in G and N is normal in G. Then:

(1) AN/N is partially σ -permutable in G/N.

(2) If G is σ -full group of Sylow type and $A \leq B$, then A is partially σ -permutable in B.

(3) If G is σ -full group of Sylow type, $N \leq B$ and B/N is partially σ -permutable in G/N, then B is partially σ -permutable in G.

(4) If G is σ -full group of Sylow type and B is partially σ -permutable in G, then $\langle A, B \rangle$ is partially σ -permutable in G.

Proof. Let $A = \langle L, T \rangle$, where L is \mathfrak{U} -normal and T is σ -permutable subgroups of G.

(1) $AN/N = \langle LN/N, TN/N \rangle$, where LN/N is \mathfrak{U} -normal in \overline{G}/N by [40, lemma 2.8 (2)] and TN/N is σ -permutable in G/N by [3, lemma 2.8 (2)]. Hence AN/N is partially σ -permutable in G/N.

(2) This follows from [3, lemma 2.8 (1); 40 lemma 2.8].

(3) Let $B/N = \langle V/N, W/N \rangle$, where V/N is \mathfrak{U} -normal in G/N and W/N is σ -permutable in G/N. Then $B = \langle V, W \rangle$, where V is \mathfrak{U} -normal in G by [40 lemma 2.8 (3)] and W is σ -permutable in G. Hence B is partially σ -permutable in G.

(4) Let $B = \langle V, W \rangle$, where V is \mathfrak{U} -normal and W is a σ -permutable subgroups of G. Then

 $<A, B> = \ll L, T>, <V, W\gg = \ll L, V>, <T, W\gg,$

where < L, V > is \mathfrak{U} -normal in G by [40, lemma 2.8 (1)] and < T, W > is σ -permutable in G by [3, lemma 2.8 (4)]. Hence < A, B > is partially σ -permutable in G.

The lemma is proved.

Lemma 2. Let A, B and N be subgroups of G, where A is (\mathfrak{U}, σ) -embedded in G and N is normal in G. (1) If either $N \leq A$ or (|A|, |N|) = 1, then AN/N is (\mathfrak{U}, σ) -embedded in G/N.

(2) If G is σ -full group of Sylow type and $A \leq B$, then A is (\mathfrak{U}, σ) -embedded in B.

(3) If G is σ -full group of Sylow type, $N \leq B$ and B/N is (\mathfrak{U}, σ) -embedded in G/N, then B is (\mathfrak{U}, σ) -embedded in G.

Proof. Let *T* be a σ -subnormal subgroup of *G* such that AT = G and $A \cap T \leq S \leq A$ for some partially σ -permutable subgroup *S* of *G*.

(1) First note that $NT \cap NA = (T \cap A)N$. Therefore G/N = (AN/N)(TN/N) and

$$(AN/N) \cap (TN/N) = (AN \cap TN/N) = (A \cap T)N/N \le SN/N,$$

where *SN*/*N* is a partially σ -permutable subgroup of *G*/*N* by lemma 1 (1). Hence *AN*/*N* is (\mathfrak{U}, σ)-embedded in *G*/*N*.

(2) $B = A(B \cap T)$ and $(B \cap T) \cap A = T \cap A \le S \le A$, where *S* is partially σ -permutable in *B* by lemma 1 (2). Hence *A* is (\mathfrak{U}, σ) -embedded in *B*.

(3) See the proof of (1) and use lemma 1 (3).

The lemma is proved.

Proof of theorem A. (i) Assume that this assertion is false and let G be a counterexample of minimal order. Let R be a minimal normal subgroup of G.

(1) G/R is σ -soluble. Hence R is not σ -primary and it is a unique minimal normal subgroup of G.

Note that if M/R is a non-nilpotent maximal subgroup of G/R, then M is a non-nilpotent maximal subgroup of G and so it is (\mathfrak{U}, σ) -embedded in G by hypothesis. Hence M/R is (\mathfrak{U}, σ) -embedded in G/R by lemma 2 (1). Therefore the hypothesis holds for G/R. Hence G/R is σ -soluble and so R is not σ -primary by the choice of G. Now assume that G has a minimal normal subgroup $N \neq R$. Then G/N is σ -soluble and N is not σ -primary. But, in view of the G-isomorphism $RN/R \simeq N$, the σ -solubility of G/R implies that N is σ -primary. This contradiction completes the proof of (1).

In view of claim (1), R is not abelian. Hence $|\pi(R)| > 1$. Let p be any odd prime dividing |R| and R_p a Sylow p-subgroup of R.

(2) If G_p is a Sylow p-subgroup of G with $R_p = G_p \cap R$, then there is a maximal subgroup M of G such that RM = G and $G_p \leq N_G(R_p) \leq M$.

It is clear that $G_p \leq N_G(R_p)$. The Frattini argument implies that $G = RN_G(R_p)$. Conversely, claim (1) implies that $N_G(R_p) \neq G$, so for some maximal subgroup M of G we have RM = G and $G_p \leq N_G(R_p) \leq M$.

(3) *M* is not nilpotent and $M_G = 1$. Hence *M* is (\mathfrak{U}, σ) -embedded in *G*.

Assume that *M* is nilpotent, and let $D = M \cap R$. Then *D* is a normal subgroup of *M* and R_p is a Sylow *p*-subgroup of *D* since $R_p \leq G_p \leq M$. Hence R_p is characteristic in *D* and so it is normal in *M*. Therefore $Z(J(R_p))$ is normal in *M*. Claims (1) and (2) imply that $M_G = 1$. Hence $N_G(Z(J(R_p))) = M$ and so $N_R(Z(J(R_p))) = D$ is nilpotent. This implies that *R* is *p*-nilpotent by the Glauberman – Thompson theorem on the normal *p*-complements. But then *R* is a *p*-group, contrary to claim (1). Hence we have (3).

(4) There is a σ -subnormal subgroup T of G such that MT = G, $M \cap T = 1$ and p does not divide |T|.

By claim (3), there are a partially σ -permutable subgroup *S* and a σ -subnormal subgroup *T* of *G* such that G = MT and $M \cap T \le S \le M$. Then $S = \langle A, B \rangle$ for some \mathfrak{U} -normal subgroup *A* and σ -permutable subgroup *B* of *G*. Moreover, from the definition \mathfrak{U} -normality and claim (1) it follows that, in fact, S = B and $S_G = 1$. Suppose that $S \ne 1$. Then for every $\sigma_i \in \sigma(S)$ we have $S = O_{\sigma'_i}(S) \times O_{\sigma_i}(S)$ by [3, theorem B]. Therefore for every Hall σ_i -subgroup *H* of *G* from $SH = HS = O_{\sigma'_i}(S)H$ we get that $1 < O_{\sigma_i}(S) \le H_G$, contrary to claim (1). Therefore S = 1, so $T \cap M = 1$. Hence |T| = |G:M|, so *p* does not divide |T| since $G_p \le M$ by claim (2).

The final contradiction for (i). Let *L* be a minimal σ -subnormal subgroup of *G* contained in *T*. Then *L* is a simple group. If *L* is a σ_i -group for some *i*, then $L \leq O_{\sigma_i}(G)$ by [12, lemma 2.2 (10)], which is impossible by claim (1).

Hence *L* is non-abelian, so it is subnormal in *G* by [12, lemma 2.2 (7)]. Suppose that $L \leq R$. Then $L \cap R = 1$. Conversely, $R \leq N_G(L)$ by [41, chapter A, theorem 14.3]. Hence $LR = L \times R$, so $L \leq C_G(R)$. But claim (1) implies that $R \leq C_G(R)$ and so $C_G(R) = 1$, a contradiction. Hence *L* is a minimal normal subgroup of *R*. It follows that *p* divides |L| and hence *p* divides |T|, contrary to claim (4). Therefore assertion (i) is true.

(ii) In view of theorem A, it is enough to show that if G is soluble, then every maximal subgroup M of G is (\mathfrak{U}, σ) -embedded in G. If $M_G \neq 1$, then M/M_G is (\mathfrak{U}, σ) -embedded in G/M_G by induction, so M is (\mathfrak{U}, σ) -embedded in G by lemma 2 (3). Conversely, if $M_G = 1$ and R is a minimal normal subgroup of G, then R is abelian and so $G = R \rtimes M$. Hence M is (\mathfrak{U}, σ) -embedded in G.

The theorem is proved.

Proof of theorem B

Lemma 3 [6, theorem A]. If G is σ -soluble, then G is a σ -full group of Sylow type.

Lemma 4. If G is σ -soluble and G possesses a complete Hall σ -set whose members are p-soluble, then G is p-soluble.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let $\mathcal{H} = \{H_1, ..., H_t\}$ be a complete Hall σ -set of G. Then H_i is p-soluble by lemma 3 for all *i*.

First show that if R is minimal normal subgroup of G, then G/R is p-soluble. It is enough to show that the hypothesis holds for G/R.

Note that for every chief factor (H/R)/(K/R) of G/R we have that $(H/R)/(K/R) \simeq_G H/K$, where H/K is a chief factor of G and H/K is σ -primary since G is σ -soluble. So (H/R)/(K/R) is σ -primary, hence G/R is σ -soluble.

Note also that $\{H_1R/R, ..., H_tR/R\}$ is a complete Hall σ -set of G/R, where $H_iR/R \simeq H_i/(H_i \cap R)$ is *p*-soluble since H_i is *p*-soluble. Therefore the hypothesis holds for G/R, so G/R is *p*-soluble by the choice of *G*.

Now show that *R* is *p*-soluble. Since *G* is σ -soluble, *R* is σ -primary, that is, σ_i -group for some *i*. Also, for every Hall σ_i -subgroup *H* of *G* we have $R \leq H$. So, *R* is *p*-soluble by the hypothesis, hence *G* is *p*-soluble. The lemma is proved.

Proof of the orem B. Suppose that this theorem is false and let G be a counterexample of minimal order. Let $\mathcal{H} = \{H_1, ..., H_t\}$. Then t > 1 since H_1 is supersoluble by hypothesis.

(1) If R is minimal normal subgroup of G, then G/R is supersoluble. Hence R is the unique minimal normal subgroup of G, R is not cyclic and $R \leq \Phi(G)$.

It is enough to show that the hypothesis holds for G/R. First note that $\{H_1R/R, ..., H_tR/R\}$ is a complete Hall σ -set of G/R, where $H_iR/R \simeq H_i/(H_i \cap R)$ is supersoluble since H_i is supersoluble by hypothesis.

Now assume that statement (1) is false. Then G/R is not nilpotent, so every Sylow *p*-subgroup in G/R is proper. Then for every Sylow *p*-subgroup *P* of G/R it follows that *P* is contained in some maximal subgroup of G/R. Hence *R* is contained in some 2-maximal subgroup *T* of *G* and so *T* is partially σ -permutable in *G* by the hypothesis. But then T/R is 2-maximal of G/R and partially σ -permutable in G/R by lemma 1 (1). Therefore the hypothesis holds for G/R, so G/R is supersoluble by the choice of *G*. Then we have a contradiction.

Moreover, it is well-known that the class of all supersoluble groups is a saturated formation [42 chapter VI, definition 8.6]. Hence the choice of *G* implies that *R* is the unique minimal normal subgroup of *G*, *R* is not cyclic and $R \leq \Phi(G)$. Hence we have (1).

(2) G is soluble.

Every 2-maximal subgroup in G is partially σ -permutable and so, partially σ -subnormal in G by [3, theorem B]. Then, in view of theorem in [40], G is σ -soluble. Hence, from lemma 4 it follows that G is soluble. So we have (2).

(3) $R = O_p(G) \leq \Phi(G)$ for some prime $p \in \sigma_i$. Hence for some maximal subgroup M of G we have $G = R \rtimes M$ and $M \neq M_G = 1$.

By claim (2), G is soluble and so R is a p-group for some $p \in \sigma_i$. Hence the choice of G and claim (1) imply that R is a unique minimal normal subgroup of G. Moreover, $R \leq \Phi(G)$ by claim (1), so $R = C_G(R) = O_p(G)$ by [41, chapter A, lemma 15.2]. Hence for some maximal subgroup M of G we have $G = R \rtimes M$ and $M \neq M_G = 1$ by claim (1).

(4) If $1 < H \le M$, then H is not \mathfrak{U} -normal in G.

Indeed, if *H* is \mathfrak{U} -normal in *G*, then $H^G/H_G \leq Z_{\mathfrak{U}}(G/H_G)$, where $H_G = 1$ by claim (3). Hence $R \leq H^G \leq Z_{\mathfrak{U}}(G)$ by claim (1). But then *R* is cyclic, contrary to claim (1). This contradiction completes the proof of the claim. (5) *M* is not *g* group of prime order.

(5) *M* is not a group of prime order.

Suppose that |M| = q for some prime q. Hence |M| = |G : R| is a prime and so R is a maximal subgroup of G. Then every maximal subgroup V of R is 2-maximal in G, so V is partially σ -permutable in G by hypothesis. So $V = \langle A, B \rangle$, where A is \mathfrak{U} -normal and B is σ -permutable in G. Assume $A \neq 1$. Note $A_G = 1$ by the minimality of R. Then $R \leq A^G \leq Z_{\mathfrak{U}}(G)$ and so R is cyclic, contrary to claim (1). Hence V = B is σ -permutable in G. Therefore every maximal subgroups of R is σ -permutable in G.

Note that $R \le H_i$ since R is σ_i -group by claim (3) and $H_i = R \rtimes (H_i \cap M)$, again by claim (3). Since H_i is supersoluble by hypothesis, some maximal subgroup W of R is normal in H_i . In addition, W is σ -permutable in G since it is a maximal subgroup of R. Hence for each $j \ne i$ we have $WH_j = H_jW$, which implies that $H_j \le N_G(W)$ since $R \cap WH_j = W(R \cap H_j) = W$. Therefore W is normal in G, so the minimality of R implies that W = 1 and hence |R| = p, which is impossible by claim (3). Hence we have (5).

(6) If T is a maximal subgroup of M, then T^G is a σ_i -subgroup of G.

Indeed, *T* is partially σ -permutable in *G* by hypothesis, so $T = \langle A, B \rangle$ for some \mathfrak{U} -normal subgroup *A* and some σ -permutable subgroup *B* of *G*. Note that $T \neq 1$ by claim (5). Conversely, A = 1 by claim (4) and so T = B is σ -permutable in *G*. Therefore T^G/T_G is σ -nilpotent [3, theorem B (ii)]. We have $T_G \leq M_G = 1$, so $T^G/T_G \simeq T^G/1 \simeq T^G$ is σ -nilpotent group. Hence the subgroup $O_{\sigma_k}(T^G)$ is characteristic in T^G , so it is normal in *G*. By claim (3) we have that $O_{\sigma_k}(T^G) = 1$ for all $k \neq i$. Hence $T^G = O_{\sigma_i}(T^G)$ is a σ_i -subgroup of *G*.

(7) *M* is not $\sigma_{i'}$ -group.

Suppose that this is false and let T be a maximal subgroup of M. Then $T \neq 1$ by claim (5). Conversely, T is a $\sigma_{i'}$ -group by the hypothesis and T^G is a σ_i -subgroup of G by claim (6). Then we have a contradiction. Hence, M is not a $\sigma_{i'}$ -group.

(8) *M* is not σ_i -group (this follows from the facts that t > 1 and *R* is a σ_i -group). *Final contradiction.*

Let *T* be a maximal subgroup of *M*, containing a Hall σ_i -subgroup of *M*. Then T^G is σ_i -group by claim (6). Therefore, a Hall σ_i -subgroup of *M* is the identity group. Hence *M* is σ_i -group, contrary to claim (8). This contradiction completes the proof of the result.

Proof of theorem C

We use \mathfrak{R}_{σ} to denote the class of all σ -nilpotent groups.

Lemma 5 [3, corollary 2.4 and lemma 2.5]. (1) The class \mathfrak{R}_{σ} is closed under taking products of normal subgroups, homomorphic images and subgroups.

(2) If G/N and G/R are σ -nilpotent, then $G/(N \cap R)$ is σ -nilpotent.

(3) If E is a normal subgroup of G and $E/(E \cap \Phi(G))$ is σ -nilpotent, then E is σ -nilpotent.

Recall that $G^{\mathfrak{R}_{\sigma}}$ denotes the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N. In view of [43, proposition 2.2.8], we get from lemma 5 (1) the following result.

Lemma 6. If N is a normal subgroup of G, then $(G/N)^{\mathfrak{R}_{\sigma}} = G^{\mathfrak{R}_{\sigma}}N/N$.

The next lemma is proved by the direct verifications on the basis of lemmas 5 and 6.

Lemma 7. (1) G is meta- σ -nilpotent if and only if $G^{\mathfrak{R}_{\sigma}}$ is σ -nilpotent.

(2) If G is meta- σ -nilpotent, then every quotient G/N of G is meta- σ -nilpotent.

(3) If G/N and G/R are meta- σ -nilpotent, then $G/(N \cap R)$ is meta- σ -nilpotent.

(4) If E is a normal subgroup of G and $E/(E \cap \Phi(G))$ is meta- σ -nilpotent, then E is meta- σ -nilpotent.

Lemma 8. Let A, B and N be subgroups of G, where A is c-normal in G and N is normal in G.

(1) If either $N \le A$ or (|A|, |N|) = 1, then AN/N is c-normal in G/N.

(2) If $N \le B$ and B/N is c-normal in G/N, then B is c-normal in G.

Proof. See the proof of lemma 2.

A natural number *n* is said to be a Π -*number* if $\sigma(n) \subseteq \Pi$. A subgroup *A* of *G* is said to be: a *Hall* Π -*subgroup* of *G* [6; 7] if |A| is a Π -number and |G:A| is a Π '-number; a σ -*Hall subgroup* of *G* if *A* is a Hall Π -subgroup of *G* for some $\Pi \subseteq \sigma$.

Recall also that a normal subgroup E of G is called *hypercyclically embedded* in G [33, p. 217] if every chief factor of G below E is cyclic.

Proof of theorem C. Let $D = G^{\Re_{\sigma}}$ be the σ -nilpotent residual of G.

(i) (a) \Rightarrow (b). Assume that this is false and let G be a counterexample of minimal order. Then D is not σ -nilpotent since G/D is σ -nilpotent by lemma 5 (2). Let $\mathcal{H} = \{H_1, ..., H_t\}$. We can assume without loss of generality that H_i is a σ_i -group for all i = 1, ..., t. Let S_i be a partially σ -permutable subgroup and T_i be a σ -subnormal subgroup of G such that $S_i \leq H_i$, $H_i T_i = G$ and $H_i \cap T_i \leq S_i$ for all i = 1, ..., t. Then, for every $i, S_i = \langle A_i, B_i \rangle$ for some \mathfrak{U} -normal subgroup A_i and σ -permutable subgroup B_i of G.

(1) If R is a σ -primary minimal normal subgroup of G, then G/R is meta- σ -nilpotent and so G is σ -soluble. Moreover, R is a unique minimal normal subgroup of G, $C_G(R) \leq R$ and R is not cyclic.

First we show that G/R is meta- σ -nilpotent. In view of the choice of G, it is enough to show that the hypothesis holds for G/R. Since R is σ -primary, for some i we have $R \leq H_i$ and $(|R|, |H_j|) = 1$ for all $j \neq i$. Therefore $\{H_1R/R, ..., H_tR/R\}$ is a complete Hall σ -set of G/R whose members are (\mathfrak{U}, σ) -embedded in G/R by lemma 2 (1). Hence the hypothesis holds for G/R, so G/R is meta- σ -nilpotent and G is σ -soluble. Hence every minimal normal subgroup of G is σ -primary, so R is a unique minimal normal subgroup of G and $R \leq \Phi(G)$ by lemma 7 (4). Hence $C_G(R) \leq R$ by [41, chapter A, lemma 15.6]. Finally, note that in the case when R is cyclic we have |R| = p for some prime p and so $G/C_G(R) = G/R$ is cyclic, which implies that G is metanilpotent and so it is meta- σ -nilpotent. Therefore we have (1).

(2) For some *i*, i = 1 say, we have $S_i = S_1 \neq 1$. Moreover, if for some *k* we have $S_k = 1$, then T_k is a normal complement to H_k in *G*.

Assume that $S_i = 1$. Then $H_i \cap T_i = 1$, so T_i is a σ -subnormal Hall σ'_i -subgroup of G. Hence T_i is a normal complement to H_i in G by [3, lemma 2.6 (10)]. Moreover, $G/T_i \simeq H_i$ is σ -nilpotent. Suppose that $S_i = 1$ for all i = 1, ..., t. Then $T_1 \cap ... \cap T_t = 1$ by [41, chapter A, theorem 1.6 (b)], so

$$G \simeq G/1 = G/(T_1 \cap \ldots \cap T_t)$$

is σ -nilpotent by lemma 5 (2). Then we have a contradiction. Hence for some *i* we have $S_i \neq 1$.

(3) If $S_i \neq 1$, then $(H_i)_G \neq 1$.

Assume that this is false. Then every non-identity subgroup L of H_i is not σ -permutable in G since otherwise for every $x \in G$ we have $LH_i^x = H_i^x L = H_i^x$ which implies that $1 < L \le (H_i)_G = 1$.

Therefore $B_i = 1$ and so $S_i = A_i$ is a \mathfrak{U} -normal subgroup of G with $(S_i)_G = 1$. But then we have $1 < (S_i)^G$ is hypercyclically embedded in G by the definition \mathfrak{U} -normality and so R is cyclic, contrary to claim (1). Hence we have (3).

(4) G possesses a σ -primary minimal normal subgroup, R say.

Claims (2) and (3) imply that $(H_1)_G \neq 1$. Therefore, if R is a minimal normal subgroup of G contained in $(H_1)_G$, then R is σ -primary.

The final contradiction for the implication $(a) \Rightarrow (b)$. Claims (1) and (4) imply that G is σ -soluble, so R is a unique minimal normal subgroup of G by claim (1). Hence claims (2) and (3) imply that T_2, \ldots, T_t are normal subgroups of G and $G/T_k \simeq H_k$ for all $k = 2, \ldots, t$. Hence $G/(T_2 \cap \ldots \cap T_t)$ is σ -nilpotent by lemma 5 (2). Conversely, $T_2 \cap \ldots \cap T_t = H_1$ by [41, chapter A, theorem 1.6 (b)] and so G is meta- σ -nilpotent, contrary to the choice of G. This contradiction completes the proof of the (a) \Rightarrow (b).

(b) \Rightarrow (c). The subgroup *D* is σ -nilpotent by lemma 7 (1). Let $\Pi = \sigma(H)$. Then *H* is a Hall Π -subgroup of *G*. Suppose that $H_G \neq 1$. Then H/H_G is *c*-normal in *G* by induction since the hypothesis holds for G/H_G by lemma 7 (2). Hence *H* is *c*-normal in *G* by lemma 8 (2).

Now assume that $H_G = 1$. Then, since D is σ -nilpotent, it follows that $D \cap H = 1$. Conversely, G/D is σ -nilpotent by lemma 5 (2) and $H \simeq HD/D$ is a Hall Π -subgroup of G/D, so HD/D has a normal complement T/D in G/D. Then T is a normal subgroup of G such that HT = G and $T \cap H \leq T \cap HD \cap H \leq D \cap H = 1$. Hence H is c-normal in G. Therefore the implication (b) \Rightarrow (c) holds.

(c) \Rightarrow (b). In view of example 1 (v), this application is a corollary of the implication (a) \Rightarrow (b).

(ii) Suppose that this assertion is false and let G be a counterexample of minimal order. Then G is not σ -nilpotent, so $|\sigma(G)| > 1$. Moreover, from part (i) we know that D is σ -nilpotent and so G is σ -soluble. Let $\mathcal{H} = \{H_1, \dots, H_t\}$.

Let *R* be a minimal normal subgroup of *G*. Then *R* is a σ_i -group for some *i*, so the hypothesis holds for *G*/*R* by lemma 1 (1). Hence $(G/R)' = G'R/R = G'/(G' \cap R)$ is σ -nilpotent by the choice of *G*. Therefore $R \leq G'$ and $R \leq \Phi(G)$ by lemma 5 (3). Moreover, if *G* has a minimal normal subgroup $N \neq R$ of *G*, then $N \leq G'$ and $G' = G'/(R \cap N)$ is σ -nilpotent, contrary to the choice of *G*. Therefore *R* is a unique minimal normal subgroup of *G* and $C_G(R) \leq R$ by [41, chapter A, lemma 16.5]. We can assume without loss of generality that $R \leq H_1$.

Let *M* be a maximal subgroup of *G* such that $R \not\leq M$. Then $M_G = 1$ and |G:M| is a σ_i -number. Therefore for some $x \in G$ we have $H = H_2^x \leq M$. Then $H = \langle A, B \rangle$ for some \mathfrak{U} -normal subgroup *A* and σ -permutable subgroup *B* of *G*. Moreover, $A_G \leq M_G = 1$, so A^G is hypercyclically embedded in *G* by the definition \mathfrak{U} -normality. If $A \neq 1$, then $R \leq A^G$ and so |R| = p for some prime *p*. But then $C_G(R) = R$ and $G/R = G/C_G(R)$ is cyclic. Hence *G'* is nilpotent. This contradiction shows that A = 1, so H = B is σ -permutable in *G*. But then $HH^x = H^xH = H$ for all $x \in G$ since *H* is a Hall σ_i -subgroup of *G* for some *i*. Hence *H* is normal in *G*, so $1 < H \leq M_G$, a contradiction. Therefore assertion (ii) is true.

The theorem is proved.

References

1. Hu B, Huang J, Skiba AN. Finite groups with only \$\vec{v}\$-normal and \$\vec{v}\$-abnormal subgroups *Journal of Group Theory*. 2019;22(5): 915–926. DOI: 10.1515/jgth-2018-0199.

2. Shemetkov LA. Formatsii konechnykh grupp [Finite group formations]. Moscow: Nauka; 1978. 272 p. Russian.

3. Skiba AN. On σ -subnormal and σ -permutable subgroups of finite groups. *Journal of Algebra*. 2015;436:1–16. DOI: 10.1016/j. jalgebra.2015.04.010.

4. Skiba AN. Some characterizations of finite σ -soluble $P\sigma T$ -groups. Journal of Algebra. 2018;495:114–129. DOI: 10.1016/j. jalgebra.2017.11.009.

5. Skiba AN. On sublattices of the subgroup lattice defined by formation Fitting sets. *Journal of Algebra*. 2020;550:69–85. DOI: 10.1016/j.jalgebra.2019.12.013.

6. Skiba AN. A generalization of a Hall theorem. Journal of Algebra and Its Applications. 2016;15(5):1650085. DOI: 10.1142/S0219498816500857.

7. Skiba AN. On some results in the theory of finite partially soluble groups. *Communications in Mathematics and Statistics*. 2016; 4(3):281–309. DOI: 10.1007/s40304-016-0088-z.

8. Ballester-Bolinches A, Beidleman JC, Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute. *Illinois Journal of Mathematics*. 2003;47(1–2):63–69. DOI: 10.1215/ijm/1258488138.

9. Ballester-Bolinches A, Esteban-Romero R, Asaad M. *Products of finite groups*. Berlin: De Gruyter; 2010. 334 p. (De Gruyter Expositions in Mathematics; volume 53). DOI: 10.1515/9783110220612.

10. Yi X, Skiba AN. Some new characterizations of PST-groups. *Journal of Algebra*. 2014;399:39–54. DOI: 10.1016/j.jalgebra. 2013.10.001.

11. Beidleman JC, Skiba AN. On $\tau\sigma$ -quasinormal subgroups of finite groups. *Journal of Group Theory*. 2017;20(5):955–969. DOI: 10.1515/jgth-2017-0016.

12. Al-Sharo KA, Skiba AN. On finite groups with σ -subnormal Schmidt subgroups. *Communications in Algebra*. 2017;45(10): 4158–4165. DOI: 10.1080/00927872.2016.1236938.

13. Guo W, Skiba AN. Groups with maximal subgroups of Sylow subgroups σ -permutably embedded. *Journal of Group Theory*. 2017;20(1):169–183. DOI: 10.1515/jgth-2016-0032.

14. Huang J, Hu B, Wu X. Finite groups all of whose subgroups are σ -subnormal or σ -abnormal. *Communications in Algebra*. 2017;45(10):4542–4549. DOI: 10.1080/00927872.2016.1270956.

15. Hu B, Huang J, Skiba AN. Groups with only σ -semipermutable and σ -abnormal subgroups. *Acta Mathematica Hungarica*. 2017;153(1):236–248. DOI: 10.1007/s10474-017-0743-1.

16. Bin Hu, Jianhong Huang. On finite groups with generalized σ -subnormal Schmidt subgroups. *Communications in Algebra*. 2018;46(7):3127–3134. DOI: 10.1080/00927872.2017.1404091.

17. Guo W, Zhang C, Skiba AN, Sinitsa DA. On H_{σ} -permutable embedded subgroups of finite groups. *Rendiconti del Seminario Matematico della Università di Padova*. 2018;139:143–158. DOI: 10.4171/RSMUP/139-4.

18. Hu B, Huang J, Skiba AN. Finite groups with given systems of σ -semipermutable subgroups. *Journal of Algebra and Its Applications*. 2017;17(2):1850031. DOI: 10.1142/S0219498818500317.

19. Guo W, Skiba AN. Finite groups whose *n*-maximal subgroups are σ -subnormal. *Science China Mathematics*. 2019;62(7): 1355–1372. DOI: 10.1007/s11425-016-9211-9.

20. Kovaleva VA. A criterion for a finite group to be σ -soluble. Communications in Algebra. 2018;46(12):5410–5415. DOI: 10.1080/00927872.2018.1468907.

21. Hu B, Huang J, Skiba A. On σ -quasinormal subgroups of finite groups. *Bulletin of the Australian Mathematical Society*. 2019; 99(3):413–420. DOI: 10.1017/S0004972718001132.

22. Skiba AN. On some classes of sublattices of the subgroup lattice. *Journal of the Belarusian State University. Mathematics and Informatics.* 2019;3:35–47. DOI: 10.33581/2520-6508-2019-3-35-47.

23. Heliel AE-R, Al-Shomrani M, Ballester-Bolinches A. On the σ -length of maximal subgroups of finite σ -soluble groups. *Mathematics*. 2020;8(12):2165. DOI: 10.3390/math8122165.

24. Al-Shomrani MM, Heliel AA, Ballester-Bolinches A. On σ -subnormal closure. *Communications in Algebra*. 2020;48(8):3624–3627. DOI: 10.1080/00927872.2020.1742348.

25. Ballester-Bolinches A, Kamornikov SF, Pedraza-Aguilera MC, Perez-Calabuig V. On σ-subnormality criteria in finite σ-soluble groups. *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas.* 2020;114(2):94. DOI: 10.1007/s13398-020-00824-4.

26. Ballester-Bolinches A, Kamornikov SF, Pedraza-Aguilera MC, Yi X. On σ-subnormal subgroups of factorised finite groups. *Journal of Algebra*. 2020;559:195–202. DOI: 10.1016/j.jalgebra.2020.05.002.

27. Kamornikov SF, Tyutyanov VN. On σ-subnormal subgroups of finite groups. *Siberian Mathematical Journal*. 2020;61(2): 266–270. DOI: 10.1134/S0037446620020093.

28. Kamornikov SF, Tyutyanov VN. On σ -subnormal subgroups of finite 3'-groups. Ukrainian Mathematical Journal. 2020;72(6): 935–941. DOI: 10.1007/s11253-020-01833-7.

29. Yi X, Kamornikov SF. Finite groups with σ -subnormal Schmidt subgroups. *Journal of Algebra*. 2020;560:181–191. DOI: 10.1016/j.jalgebra.2020.05.021.

30. Chi Zhang, Zhenfeng Wu, Wenbin Guo. On weakly σ -permutable subgroups of finite groups. *Publicationes Mathematicae Debrecen.* 2017;91(3–4):489–502.

31. Hu B, Huang J, Skiba AN. On weakly σ-quasinormal subgroups of finite groups. *Publicationes Mathematicae Debrecen*. 2018; 92(1–2):12.

32. Skiba AN. On weakly s-permutable subgroups of finite groups. Journal of Algebra. 2007;315(1):192–209. DOI: 10.1016/j. jalgebra.2007.04.025.

33. Schmidt R. *Subgroup lattices of groups*. Berlin: Walter de Gruyter; 1994 (De Gruyter Expositions in Mathematics; volume 14). 572 p. DOI: 10.1515/9783110868647.

34. Xianbiao Wei. On weakly *m*-σ-permutable subgroups of finite groups. *Communications in Algebra*. 2019;47(3):945–956. DOI: 10.1080/00927872.2018.1498874.

35. Yanming Wang. *c*-Normality of groups and its properties. *Journal of Algebra*. 1996;180(3):954–965. DOI: 10.1006/jabr.1996. 0103.

36. Agrawal RK. Generalized center and hypercenter of a finite group. *Proceedings of the American Mathematical Society*. 1976; 58(1):13–21. DOI: 10.1090/S0002-9939-1976-0409651-8.

37. Weinstein M. Between nilpotent and solvable. Passaic: Polygonal; 1982. 231 p.

38. Schmidt R. Endliche Gruppen mit vielen modularen Untergruppen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 1969;34(12):115–125. DOI: 10.1007/BF02992891.

39. Guo W. Structure theory for canonical classes of finite groups. Heidelberg: Springer; 2015. 359 p.

40. Zakrevskaya VS. Finite groups with partially σ -subnormal subgroups in short maximal chains. *Advances in Group Theory and Application*. 2020;12:91–106. DOI: 10.32037/agta-2021-014.

41. Doerk K, Hawkes TO. *Finite soluble groups*. Berlin: De Gruyter; 1992. 891 p. (De Gruyter Expositions in Mathematics; volume 4). DOI: 10.1515/9783110870138.

42. Huppert B. Endliche Gruppen I. Berlin: Springer; 1967. 796 p. (Grundlehren der mathematischen Wissenschaften; volume 134). DOI: 10.1007/978-3-642-64981-3.

43. Ballester-Bolinches A, Ezquerro LM. Classes of finite groups. Dordrecht: Springer; 2006. 381 p. DOI: 10.1007/1-4020-4719-3.

Received 12.07.2021 / revised 01.09.2021 / accepted 05.10.2021.

