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APOBHO-ANO®EPEHIIVIAABHAS
MOAEADB PACITPOCTPAHEHUNSA COVID-19
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1)Eeﬂopycc;cuﬁ 2ocyoapcmeennblil yHusepcumem, np. Hezasucumocmu, 4, 220030, e. Munck, Berapyco

WzyuaeTcs MmaremaTnieckas Moaels pactpoctpanenus nmangaeMun COVID-19, ocHoBaHHas Ha OOBIKHOBEHHBIX TH(-
(epeHInanbHEIX YPaBHEHUAX ¢ JPOOHOMN MPOM3BOAHOI 1O BpeMeHU. B MoJenn y4uThIBaroTCS BOCIPHUUMYHMBOCTD Ha-
CEJICHUS K 3apa)KCHUIO, MHKYOAI[MOHHBIN MEPHO/, YHUCIO KOHTAKTOB MEK/IY 3J0POBBIMU U OOJBHBIMH JIFOIBMH, YHCIIO
3apa)KeHHBIX, BBI3IOPOBEBIINX U YMEPIIHX B ONpPEAETICHHBIH epro. s mpoBepKH MoOjIen B padoTe POBEICHO CpaB-
HEHHE C MOJICJISIMM Ha OCHOBE TPOM3BOHON TIEPBOTO TOPSAKA MO BPEMEHH, MCIONB3YIOIIMMHU H3BECTHBIC JaHHbIC 1O
UTAJbSHCKOMY perioHy JlomGapaus. Pe3ynsrarsl MO3BONSIOT YTBEPKAATh, YTO UCIIONB30BAHUE MATEMAaTHICCKON MOJISITH
Ha OCHOBE JPOOHOM MPOMU3BOIHOM 10 BPEMEHH IIOCPEICTBOM JAaHHBIX, TAKUX KaK BOCIIPHUMYHBOCTD HACEIICHNUS K 3apa-
)KEHHMIO, MHKYOAIIMOHHBIN NEPHUOJ, YHCIIO 3aPAKSHHBIX, BBI3IOPOBEBILINX M YMEPLINX B ONIPEACIICHHBIH IIEPHOJ, TOMOXET
opraHaM 37paBoOXpaHeHus pa3padboTaTh IPPEKTUBHBIE MEPBI 10 OOpLOE C naHxeMueil. IT0 0COOEHHO BO3MOXKHO, €CIIN
paclIMpUTh MOJEh U PACCMOTPETh AU PepeHIIaIbHbIe YPaBHEHHSI B YACTHBIX MPOU3BO/IHBIX, OMUCHIBAIOIINX KOHBEK-
UOHHO-M () (HY3MOHHBII MPOLIECC C YUSTOM MPEABHICHUS IreorpaduecKoro pacipe/ieeHus BaXKHEHIINX MEANIIMHCKIX

pecypcos.
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O0pa3en HUTHPOBAHUSA:

Edwmmona TA, Tumornenko A, A6panmna->Kanaesa HI. [Ipo6Ho-
i depeHnmansHas Monens pacnpocrpanerust COVID-19. JKyp-
nan Benopycckoeo eocyoapcmeennozo ynusepcumema. Dusuxa.
2021;3:40-48 (Ha aHr.).
https://doi.org/10.33581/2520-2243-2021-3-40-48

For citation:

Efimova TA, Timoshchenko IA, Abrashina-Zhadaeva NG. Frac-
tional differential model of the spread of COVID-19. Journal of
the Belarusian State University. Physics. 2021;3:40-48.
https://doi.org/10.33581/2520-2243-2021-3-40-48

ABTOpBI:

Taucua Aoamosna Egumosa — crynenTka Gusmdeckoro ¢a-
kynsrera. Hayunbiii pykoBonuress — H. I. AGpamina-YKagaesa.
Hzopy Andpeesuu Tumouyenko — crapuiuii npenoiaBaTenb Ka-
(eaprl KOMITBIOTEPHOTO MOJICITUPOBAHUS (PU3NIECKOTO (PaKyIThb-
TeTa.

Hamanvs I'puzopvesna Aopawmuna-Kaoaeea — noxrop ¢u-
3MKO-MaTeMaTHYeCKUX HayK, JIOIEHT; mpodeccop Kadeapsl BbIC-
IIeif MaTeMaTHKA ¥ MaTeMaTHYCCKOi (HU3MKH (HU3HUeCcKOro (a-
KyJIBTeTa.

Authors:

Taisia A. Efimova, student at the faculty of physics.
efimovataya77@gmail.com
https:/lorcid.org/0000-0001-8334-5773

Igor A. Timoshchenko, senior lecturer at the department of com-
puter modelling, faculty of physics.

timoshchenkoia@bsu.by
https:/lorcid.org/0000-0003-2830-9213

Natalia G. Abrashina-Zhadaeva, doctor of science (physics and
mathematics), docent; professor at the department of higher
mathematics and mathematical physics, faculty of physics.
zhadaeva@bsu.by

https:/lorcid.org/0000-0001-8531-6490

40

’521’4 — cmotemnAa wwqo]om juwm



Bbuopusuka
Biophysics

— YWV
FRACTIONAL DIFFERENTIAL MODEL
OF THE SPREAD OF COVID-19
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This paper studies a mathematical model of the spread of the COVID-19 pandemic based on ordinary differential
equations with a time-fractional derivative. The model takes into account the susceptibility of the population to infection,
the incubation period, the number of contacts between healthy and sick people, number of infected, recovered and de-
ceased people in a certain period. To test the model a comparison was made with models obtained with a time derivative
of integer orders, with known data for the Italian region of Lombardy. The results suggest that the use of a mathematical
model based on a time-fractional derivative with the help of data such as susceptibility of the population to infection,
incubation period, number of infected, recovered and deceased people in a certain period, ultimately can help health
authorities to develop effective measures against the pandemic. This is especially possible if we expand the model and
consider partial differential equations describing the convection-diffusion process, taking into account the prediction of
the geographical distribution of the most important medical resources.

Keywords: COVID-19; SEIRD,; fractional derivative; fractional Adams method.

Introduction

Throughout its history, humanity has faced challenges such as wars, environmental problems, demographi-
cal problems, exhaustion of resources, and other global problems. But these problems were successfully solved
due to the development of science and technology and, of course, to an increase in the consumption of Earth’s
resources. Currently, humanity is going through one of the most difficult periods — the coronavirus pandemic.

Epidemics have repeatedly affected humanity throughout history. It is believed that malaria and tubercu-
losis devastated ancient Egypt more than 5000 years ago. From 541 to 542 AD, a global pandemic, known as
the Justinian Plague, is estimated to have killed 15-25 % of the world’s 200 mIn population. After the Spanish
conquest of Mexico, the local population decreased from about 30 mln in 1519 to just 3 mln 50 years later.

The latest outbreak of the SARS-CoV-2 coronavirus (hereinafter COVID-19) has affected the whole world,
which has led to significant damage both in terms of human lives and economic resources. To stop the spread
of the disease, governments of different countries have taken different measures, such as quarantine, isolation,
and lockdown. The consequences of these measures (both positive and negative) are partly due to the lack of
information about the spatiotemporal spread of COVID-19.

It is impossible to conduct an experiment in the current situation, so an important role is assigned to nume-
rical mathematical modelling of the disease spread process. Mathematical modelling is a very promising tool
for studying the origin, growth, spread, and extinction of pandemics. Thanks to the construction and analysis of
various mathematical models, it becomes possible to predict the dynamics of the epidemic and determine the
best measures to fight the epidemic for a specific situation. For example, experts at Imperial College London
made a prediction in March, according to which many patients and deaths due to coronavirus infection were
waiting for the UK without restrictive measures. Given this prediction, the UK government has changed its
policy towards the epidemic and increased the restriction of social activity.

Scientists have discovered that with the help of basic mathematical models researchers can begin to predict
the progression of diseases and understand the impact of interventions on the spread of diseases. With the help
of more complex models, we can begin to answer questions about the effective allocation of limited resources or
the elimination of the consequences of public health interventions, such as closing cafes and banning meetings
of large groups of people'.

Currently, the COVID-19 pandemic is still an open problem for the world. This suggests the relevancy of
this work from the point of view of studying various models that are used to describe the development of pro-
cesses associated with the coronavirus. By studying the virus spread on a mathematical model and analysing
the solution, it will be possible to influence the situation and prevent outbreaks. The paper proposes a model
and a numerical method for its implementation. In addition, the obtained results are analysed and compared
with the available official data.

! Christian Ya. How to model a pandemic [Electronic resource] // The Conversation. 2020. URL: https://theconversation.com/how-
to-model-a-pandemic-134187 (date of access: 05.08.2021).
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At the moment, there are many different works devoted to this problem, for example [1-3]. The basic model
of virus spread is the SIR (susceptible — infected — removed) model, in which the rate of pandemic growth
depends on the number of infected carriers and the number of individuals not yet infected [4]. People who
have not yet had the disease are marked as susceptible. It is assumed that every person is born susceptible and
capable of being infected. Those who are able to transmit disease to susceptible people are infected. The third
group is called the removed class. These are people who have suffered an illness, recovered, and now are im-
mune to it, or those who have died. The removed people contribute no longer to the spread of the disease. This
model is described by a simple system of three differential equations:

% _ —BrS(t)%,
%zgrs(z)% (o),
% =1 (1),

where S, /, R are the number of people susceptible to the disease, infected and removed people, respectively;
r is the number of contacts per unit of time; [3 is the probability of transmission of the disease during contact; 7 is
the recovery rate; N =S+ [ + R is the total number of people.

The SIR model illustrates the importance of social isolation for infected people. By staying at home un-
til full recovery, you effectively transfer yourself from an infected class directly to a removed class without
spreading the virus. This simple action can reduce the scale of the outbreak, reducing the possibility of trans-
mitting the disease to susceptible people.

But it is possible to improve this model if we consider the human demography for diseases when the time
frame of the dynamics of the disease is comparable to the human demography. There are many ways to model
human demography: a constant level of immigration, constant indicators of fertility and mortality per capita,
a mortality rate depending on density, mortality from diseases. Then the SIR model can be represented in
a different form:

%:m BrS(t)%—uS(t),
%= BrS(Z)% ~(y+)1(2),
=1 (1) ~uR(),

where A is the fertility rate; [ is the mortality rate.

A simple SIR model is not enough to cover the subtleties of many outbreaks of infectious diseases. For
example, it doesn’t consider the phenomenon of delayed processes in time that characterises COVID-19,
when a certain time passes from the moment of infection to the moment of active manifestation of the virus,
after which a person becomes an open spreader of infection, called the incubation period. Then this model can
be complicated by adding another group of people who have the disease in the incubation period (exposed).
In this case, the SEIR (susceptible — exposed — infected — removed) model [5] is described by a system of four
equations:

B n-prsin ) -ps),

P prs () - (o+w)E().

dl
i GE(1)—(y+u)1(2),
t
dR
—=vI(¢) - 1R (2),
- =V (1)—kR()
where E is the number of people who have the disease in the incubation period; G is the inverse incubation
period of the disease; N=S+ E+ [+ R.
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The SEIR model reflects the behaviour of the infection more accurately, but it is impossible to estimate the
total number of people who died from the disease (and, accordingly, the scale of the epidemic) with its help.
In this case, we can consider the SEIRD (susceptible — exposed — infected — recovered — deceased) model [6],
described by a system of five differential equations:

%: A- Brsg)% 0
%’f: BrS(t)% ~(n+0)E(0),
dl

== GE ()= (y+u)I(1),
§= Y(1= e (1))1(0) - uR(r).
i—?ﬂuc (1)1 ().

where D is population loss due to the disease; pe(¢)~ e ¥ is a death rete due to COVID-19; N (r)=S() +
+E(t)+1(2)+R(2).

Population

Days

Fig. 1. Evolution of SEIRD model

The numerical solution of SEIRD model with parameters described below is presented on fig. 1. We can

observe that this model (like SIR, SEIR) predicts a larger number of infections than are presented in official
statistics. This may be since not all people pass the COVID-19 detection test, but this does not explain the
sharpness of the peaks and the very rapid attenuation of the number of people exposed to infection. To elimi-
nate this problem, we propose to use differential operators of fractional orders in the model.

Theoretical basis

Following [1] consider the model described by a system of differential equations in fractional derivatives:

3ty r—{1= {1 s ),

doe(x, 1) ( ]Bsz+(1——j[3se ((5+(pe+u)e+V-(nveVe),
1

0pi(x, 1) =0e— (@4 +@, + )i+ V- (mVi), (1)

Aot r(x, 1) =0,i+¢.e—pr+V-(n,Vr),

88‘,5, d(xv t) =0 1,
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where s(x, 7) is the number of healthy people susceptible to the disease; e(x, 7) is the number of infected people
having the disease in the incubation period; i(x, t) is the number of infected people; r(x, t) is the number of

people who are no longer susceptible to the disease; d (x, t) is the number of deceased people; n=s+e+i+r

is the entire population. These functions are normalised for the entire population of the country. Further A is the
birth rate, ¢ is the inverse of the incubation period of the disease, @, is the recovery rate, @, is the asymptomatic
recovery rate, ¢, is the mortality rate among patients, 3, is the asymptomatic contact rate, f3; is the contact rate
with symptoms, W is the mortality rate without the COVID-19, 4 is a parameter that accounts the distribution of
resources and is intended for modelling the trends of outbreaks in large populations, and v, v,, v;, v, are parameters
of the diffusion of various population groups, which we take as zero, since this paper does not consider the spatial
spread of infection. In this model a Gerasimov — Caputo time-fractional derivative operator of order ot (0 < a < 1)

1s used:

[
9% u(x, 1) = 1 Jut (x, 1)dt
’ Fl-o)y (1-1)

The model (fig. 2) takes into account asymptomatic transmission of infection, which is considered a key
factor in the COVID-19 pandemic [7]. The first and second equations from the model (1) show that exposed
asymptomatic patients can transmit COVID-19 to susceptible people with a contact rate of 3,. This is consistent
with recent studies suggesting that patients can transmit COVID-19 almost immediately after infection [7].
In addition, the third and fourth equations from the model (1) include the infected patients who do not develop
symptoms and who move directly to the recovered population. It is also assumed that recovered patients are
immune therefore there is not any reverse flow from the equation for r to the equation for s [8].

Death

Fig. 2. Ablock diagram describing the dynamics
between subgroups of people in the model (1)

Since there is quite detailed data on the development of infection for the Italian region of Lombardy, we

1

took the coefficients for our model from there. We assume 6 = 7 days™, ¢, = >4 days ', ¢, =— days ', and

160

! These values are based on the data available in the literature on mortality, incubation period

1 _
=— days
. 6 Y
and recovery time of infected and asymptomatic patients [7]. In addition, we do not consider the birth rate or

mortality without COVID-19 (that is, we set A = 0 and W = 0 accordingly). The time scale in our simulations is
days. Based on the results of parameter calibration, we initially set ,=,=3.3 - 10~* people ' - days "

Given the uncertainty in the currently available COVID-19 data, we believe that an assessment of the pa-
rameters aimed at matching the dynamics of all parts of the model is impractical. Since not every member of
the population is tested for infection, and asymptomatic cases are known to exist in possibly large numbers,
we think that the available data on cases of infection may lead to an unrealistic adjustment of the parameters.
Conversely, the data presented for COVID-19 deaths provide greater reliability for calibrating the model
parameters. Therefore, we strive for a quantitative agreement in the subgroup of the deceased d (t) and a quali-

tative agreement for the remaining model subgroups s(t), e(t), i (t), r(t).
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When developing the numerical method, it was taken into account that with fractional differential equations
are interrelated with first-order differential equations, and therefore we combine the fractional-order algorithm
and the classical method. The results of the work allow us to give recommendations on the choice of these
two algorithms, indicating the need for both methods to be based on very similar principles of construction.
Therefore, the Adams approach was chosen.
Consider a system of differential equations with Caputo fractional derivative:

o.u(1)=f(z w),

where u= (ul, v U, )T and f = (fl, oo fn)T, fi= ﬁ(t, Uy, ..oy un), are unknown and given functions, respec-

: . . T .
tively. On the interval [0, T ], we construct a grid o, = {tj =jT, =0, joux> T= —} Let u; be an approximate
max

solution at the node 7. The numerical solution is obtained by predictor-corrector scheme [9; 10]:

. a ]
Jj+1 (X+1 zz‘, k, /+1 >
2
Ot J
uj+1: kj+1 tk’uk)—i_qj'ﬂj+lf(tj+19uj‘+l)’
0c+2 - ’

where

gk,j+1=(j_k+1)u_(j_k)a’

J* = (=) +1) k=0,
G = (—k+2)" =2 —k+ 1)+ (k)T 1 k<,
Lk=j+1.

To apply the algorithm at each step, according to the formula (2), the predictor uj. +1 1s being calculated first,
then the value f|(¢ ( 1 uj. +1) for determination of the corrector u;, ; considered to be an approximate solution

at the next time layer. This scheme is very useful and effective for the numerical solution of fractional diffe-
rential equations.

Results and discussion

The numerical solution of the system (1) is presented on fig. 3—7. All computations were performed in the
Wolfram Mathematica. The graphs show the distribution over time of the number of people from a certain
group at different orders of the fractional derivative in a mathematical model. It can be seen from the graphs
that the smaller the order of the fractional derivative is, the faster the curves come out on horizontal straight
parallel axes, i. e. the stationarity of the process is established what in general does not mean that the number of,
for example, infected people will not grow, just the growth rate will not be so high.

Taking into account the official data from Italy (fig. 8), and comparing them with the results obtained, we
were convinced that our model is consistent with the published statistics in Italy. As it can be seen all processes,
in fact, do not have obvious peaks that were characteristic of the differential model with derivatives of integer
orders, and with the characteristic features of the fractional derivative (memory) they reach the stationary state
faster with time. All the data was provided by the Johns Hopkins University, who made the data available for
educational and academic research purposes.

Thus, we can conclude that the model proposed in this paper correctly describes the general trends in the
spread of the disease. However, we do not claim its absolute accuracy, for several reasons:

1) a limited number of tests conducted for the presence of COVID-19;

2) the percentage of people who have suffered the disease asymptomatically is not taken into account, be-
cause they can be detected only after testing for antibodies;

3) the COVID-19 virus has not yet been fully studied and many parameters cannot be set absolutely accurately;

4) spatial trends in the spread of the disease are not taken into account.

But we will leave these details for future research.
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Fig. 3. Evolution of the number of people susceptible to the disease
over time for different orders of the fractional derivative:
a — 2 days dynamics; b — 300 days dynamics
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Fig. 4. Evolution of the number of exposed people over time
for different orders of fractional derivative:
a — 2 days dynamics; b — 300 days dynamics
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Fig. 5. Evolution of the number of infected people over time
for different orders of the fractional derivative:
a — 2 days dynamics; b — 300 days dynamics
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Fig. 6. Evolution of the number of recovered people over time
for different orders of the fractional derivative:
a — 2 days dynamics; b — 300 days dynamics
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Fig. 7. Evolution of the number of deceased people over time
for different orders of the fractional derivative:
a — 2 days dynamics; b — 300 days dynamics
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Fig. 8. Official data for Italy from 07.03.2020 to 01.10.2020
according to the Johns Hopkins Coronavirus Resource Center
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Conclusions

The problem of the spread of COVID-19 infection is still relevant for the whole world. This paper and others
in this direction are intended to provide proof of the importance of using systems of differential equations
with fractional orders derivatives. With the help of fractional operators previous morbidity can be taken into
account, which allows us to obtain much more accurate results than with a derivatives of integer orders.

Our model was implemented numerically using the Adams — Bashford algorithm. There is a good qualita-
tive agreement of the computational experiment with reality, which indicates a fairly accurate representation of
the overall dynamics of the outbreak. However, there are still ways to improve our model, such as, for example,
adding a diffusion operator and considering the spatial spread of the virus, which is supposed to be considered
in our further research.
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