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ABSTRACT

In this contribution, we show that the product dissociation energy (D)  interatomic distance (R) with regards to a
straightforward taxonomy of diatomic molecules comes to assume a relatively high and virtually constant value; it is
so much so that the heavier the diatomic molecules at hand, the closer DxR approaches e2 (where e is the elementary
charge in esu). This occurrence is studied herein separately under families arranged from chemically-alike diatomic
molecules. Each family (such as the set made of “pairs of strictly alkali atoms” or “pairs of strictly halogen atoms”
or “pairs of alkali-halogen atoms”, etc…) is thus composed of diatomic molecules formed of atoms bearing similar
electronic configurations; whereby we initially ended up dealing with 18 families in total. In addition to those, we
brought together 10 more families of diatomic molecules each composed of heavy metal atoms belonging respec-
tively to each of the ten columns drawn from the three rows of heavy metals under the Periodic Table, and observed
an even better conformance. [Sc2, Y2, La2] is the first family in question. [Ti2, Zr2, Hf2] and [Va2, No2, Ta2] are the
next two families. [Zn2, Cd2, Hg2] delineates the last family of heavy metal diatomic molecules of concern. Let us
stress that each of these sets embodies diatomic molecules made of heavy metal atoms belonging to the given col-
umn of the Periodic Table; thusly bearing alike electronic configurations. We further coined 5 more faimilies made
of heavy metal hydrides, oxides, chlorides, and alkalines. We were motivated to undertake the present research in
the light of our insight with regards to i) the general non-opacity character of neutral bodies vis-à-vis electrical field
transmission, and thusly ii) the attractional electric property of neutral bodies – which underlines the disclosed
constancy where, particularly for diatomic molecules comprising heavy atoms, the increase in DxR happens to get
aligned with the increase in atomic weight 1(A1) x atomic weight 2 (A2).
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1. Introduction

In the present study, we analyze the entire set of diatomic molecules starting with their simplest
representative, the hydrogen molecule H2. The non-relativistic quantum mechanical description
of this molecule is well-known.1 It embodies 2 Laplacian operators for the 2 constituent protons,
and 2 Laplacian operators for the 2 bonded electrons, along with 2+2=4 sets of coordinates for
each of the 4 particles of concern – with all of them being incorporated into the same wave func-
tion ψ; thus bearing 43=12 space coordinates altogether. The potential energy V to be inputted
to said description is composed of the summation of 4 terms expressing, respectively, i) the in-
teraction between the protons, ii) the interaction between the electrons, iii) the interaction be-
tween one of the two protons and the electron neighboring the other proton, and iv) the interac-
tion of the other proton with the electron of the former proton. The complete description amounts
to an eigenvalue-eigenfunction (E-ψ) Schrödinger Equation.

Such a complicated equation is to be handled approximately, but still satisfactorly – sepa-
rating, on the one hand, the description of the electronic configuration around the fixed nuclei
(which are then situated at a variable distance r from each other) and, on the other hand, the de-
scription of the nuclei vibrating under the scrutinized electronic configuration, as well as in the
face of the force of repulsion that they exert onto each other. The original eigenfunction ψ is
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thence written as the product ψeψN, where ψe is the eigenfunction of the first description and ψN
that of the second. Each of these eigenfunctions bears 6 space coordinates.2

The first description we mentioned pertaining to the electrons coupled to the fixed nuclei
is made of 2 Laplacian operators representative, respectively, of the 2 electrons of the H2 mole-
cule; the potential energy Ve it embodies is the original potential energy V, but decreased by the
repulsion energy Vn of the nuclei e2/r – with e being the elementary charge in esu, while the
magnitude of the eigenvalue Ee of this equation is, in effect, the dissociation energy D(r) of the
molecule at the given distance r of the nuclei were Ee negative at the given r.

The second description we mentioned above, obtained via the decomposition of the origi-
nal Schrödinger Equation written for the H2 molecule and appertaining to the motion of the nu-
clei under the electronic configuration of concern, is also made of 2 Laplacian operators, each
representing respectively the 2 protons. The potential energy VN of this equation is made of the
summation of the eigenvalue Ee (to be pinned down via solving the former description) and the
repulsive potential energy Vn=e2/r of the nuclei – with the eigenvalue EN of this equation consti-
tuting the vibrational total energy of the molecule, where the nuclei are separated by the dis-
tance r.

The difference of the eigenvalue E (to be associated with the wavefunction ψ through the
solution of the original Schrödinger Equation) and the potential energy E-V inputted to this latter
equation amounts to the summation of [Ee –(V -Vn)] (associated with the first description) and
[EN-(Ee-Vn)] (associated with the second description), so that E comes to be practically equal to
EN.

In this undertaking, we focus on |Ee|, which is tapped from the first description we just
summarized – and pertaining to the electronic configuration of the molecule with its protons
fixed at the distance r – and which is drawn out of the original Schrödinger Equation describing
the H2 molecule in its entirety. We call it |Ee|=D(r). More precisely, we are interested in the
value of |Ee|=D(r) at the ground state of the molecule, with the corresponding separation dis-
tance of the nuclei becoming rmin. We will call D(rmin), in short, D, and rmin, in short, R .

Everything becomes much more complicated for diatomic molecules heavier than H2. At
the same time, one can recall the fact that dissociation energy decreases with weight – thusly
with increasing interatomic distance. No matter what the general case may be, there are excep-
tions with regards to this premise (as shall be exemplified by some results we will present be-
low); still, it looks appealing and, a posteriori, very interesting to examine the product DR.

For this purpose, we will visit basically Herzberg (1964),3 together with  Huber & Herz-
berg (1979),4 where, practically all existing diatomic molecules’ measured dissociation energy
D, and internuclear distance R , had been earlier presented, thusly as older data (1964) and more
recent data (1979). We will accordingly take the opportunity to compare the older data, with the
more recently adopted ones. It is interesting to notice that, this will help us to rectify deviating
plots, drawn on older data.

Furthemore, chiefly, with regards to heavy metals, data reported only more re-
cently,5,6,7,8,9,10 will be used. We will certainly indicate, for all data we will make usage of,
throughout, specifically the reference, it is borrowed from. It is moreover priomordial to point
out that computed values for D and R , in many cases, are available in the literature.11 We take
this advantage to check out the measured data we use, also to complete our analysis, as much as
we can, via adding to our scope, diatomic  molecules recently tapped, where yet only computed
data are provided. In any circumstance, relevant references, for all computed data (in effect for
all data), will be indicated wherever usage of, is made.

We thus tabulate below the product DR with respect to the entire body of diatomic
molecules to show that it turns out to be virtually a constant value for chemically-alike diatomic
molecules composed of atoms bearing similar electronic configurations. The constant value of
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concern is shaped already for moderately light molecules of the given kind, and approximately
holds the same for moderately heavy molecules. Strikingly, it can further delineate an ascending
trend, despite the fact that the complexity increases even further with increasing weight, just as
we had anticipated beforehand (see section 2).

Further on, we present plots of DR versus the product of the atomic masses (section 3).
Then we analyze the dissociation energy D(r) – upon which, we anticipate that, in the zone near
the ground state, it can be satisfactorily represented by the tractable form k2e2/r; where k is a
constant associated with the electron charge intensity the way delineated by said plots.

The assertion D(r)=k2e2/r tells us that the attractional force near the ground state is in-
versely proportional to the square of the distance separating the two objects under consideration
(no matter whether or not it gets weakened much more sharply beyond the zone near the ground
state). We shall elaborate on this. Next, we demonstrate that the constancy of the product disso-
ciation energy D(r)  interatomic distance r is related to the scaling-symmetry properties of the
Schrödinger Equation (section 4); this is a controversial problem, and will be given consideration
accordingly. We bring up relatedely, Badger’s Rule, which is evoked along our approach, to
frame an equivalent interesting relationship, as to the vibration frequency of a diatomic molecule
is proportional to the power of 3/2 of its dissocation energy, diminished by the suare root of its
reduced mass (section 5). Finally, in section 6, we deliver our conclusions.

2. The product of dissociation energy and interatomic distance in relation to a
straightforward categorization of diatomic molecules

In this section, we illustrate how the product DR for diatomic molecules at the ground level
appears to attain a relatively high and remarkable constant under a straightforward taxonomy,
regardless of the complexity of the molecules involved. To track this intriguing finding, we pre-
sent tables below which we drew for families of diatomic molecules composed of alike atoms.

What we refer to as “alike atoms” are atoms that display similar electronic configura-
tions. One example is the family comprising alkali atoms; i.e., Li, Na, K, Rb, Cs, Fr – they all
bear a single electron at their outermost energy level. One other family made of alike atoms is
that of the halogen group; i.e., F, Cl, Br, I, At – all of these atoms lack one electron at their out-
ermost shell.

Now, one can compose alkali molecules such as Li2, Na2, K, NaK, Rb2, RbK, Cs2, RbCs,
Fr2, CsFr, etc… These constitute alike molecules – for, each of the alkali atoms share their out-
ermost solitary electron with that of the companion atom. The created bond is, as is known,
called a covalent bond.

Next to alkali molecules, and as a continuing example to alike diatomic molecules, we
can now frame halogen pairs such as F2, Cl2, Br2, ClBr, I2, BrI, IAt, etc… They are alike mole-
cules, too; for, in the case of each pair, the halogen atoms almost completely fill their outermost
shell whilst lacking just a single electron that they seize from the outermost shell of the
neighboring atom.

Another distinct family of alike molecules can be formed from an atom belonging to the
family of alkali atoms and from elsewhere – e.g., from one belonging to the family of halogen
atoms; ergo, LiF, LiBr, NaF, NaBr, NaI, KCl, KBr, CsCl, CsBr, etc… The bond that comes into
play is, as well-known, called an electrovalent bond.

In the last example, the halogen nucleus attracts the solitary electron of the alkali atom to
“satisfy its appetite” for the single electron vacancy in its outermost shell; and by the same to-
ken, the electronic cloud of the halogen atom attracts the nucleus of the alkali atom – the result-
ing bond inundates, at the same time, the “near desolation of the alkali atom’s outermost shell”.

Within the framework introduced just above, we identify, at first hand, 18 families of
alike diatomic molecules. They are shown in Index 1.
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In addition to that, we assemble 10 more families of diatomic molecules each composed
of heavy metal atoms belonging respectively to each of the ten columns drawn from the three
rows of heavy metals under the Periodic Table; whereby we observe an even better conformance
with respect to the delineated constancy. That is to say, they depict an ever increasing trend for
the quantityDR versus the weight of the diatomic molecules under consideration.

By this token, [Sc2, Y2, La2] is the first family of bimetallic diatomic molecules to be in-
vestigated. [Ti2, Zr2, Hf2] and [Va2, No2, Ta2] are then the next two families. [Zn2, Cd2, Hg2] is
the last family of heavy metal diatomic molecules of concern.

Cross combinations on the basis of any set of three heavy metal atoms are further consid-
ered, as long as data are available.

We further coined 5 more faimilies made of heavy heavy metal hydrides, oxides, chlo-
rides, and alkalines. These families are shown in Index 2.

Index 1, Index 2 (see end of text)

On the whole, we have 33 “alike families” altogether.
Various parameters, including the dissociation energies (D) and internuclear distances (R), to-
gether with the products D R for diatomic molecules belonging to each of these families, are
shown in the subsequent Tables 1-33 (cf. “supporting information”, annexed to this article).

As can be visually tracked page after page, the quantity DR strikingly remains constant
for all of the chemical families we framed, no matter how much the complexity of the molecule
at hand increases along with the ingress of more and more massive nuclei with their associated
heavier and heavier electronic clouds. While the constant coming into play is different for each
family, the important thing to emphasize in any event is that the electrical interaction capability
reigns strongly and commensurately even for heavier, thusly more complex, bodies. It delineates,
remarkably, an ever increasing trend versus complexity in especially some of the cases.

At this juncture, we have to discuss how we appraise the complexity of the object. One
immediate answer is, we can assess it by the number of protons and associated electrons. The
higher Z1 and Z2 (i.e., the atomic numbers of the atoms making the diatomic molecule at hand)
the more complex the object would be. The numbers Z1 and Z2, when multiplied by 3, determine
the total number of coordinates in the eigenfunction ψ we introduced above for a diatomic mole-
cule made of alike atoms; i.e., when Z1=Z2=Z, the number of coordinates of ψ becomes
2Z3=6Z, and, in general, it is 3(Z1+Z2). We could then propose to evaluate the complexity
under scrutiny as the sum Z1+Z2.

All the same, the product Z1Z2 gains priority in measuring the complexity of the diatomic
molecule one deals with; after all, this product represents the number of interactions reigning in-
between the protons of the first atom and the electrons of the second, were the diatomic molecule
at hand not ionized.

This brings forth the possibility of considering straightly A1A2 – i.e., the product of the
atomic weights of the atoms constituting the molecule – where the atomic numbers Z1 and Z2 are
anyway included respectively in the atomic weights A1 and A2.

Having settled on this last consideration, we hence propose to plot our DR’s versus
A1A2’s. The reason for this is our insight which led us to anticipate right at beginning a slight
increase in DR with respect to A1A2 for very large A1A2’s (e.g., much larger than those deline-
ated by the entire body of diatomic molecules – no matter whether such A1A2 numbers are hypo-
thetical or not).
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It is anyway rewarding to observe at the final stage that clues of such behavior clearly
pop out of some of the figures we present below.* I strongly suggest to omit this footnote. It
definitely represents a subject of a separate research, lying outside the scope of the paper.

Based on the foregoing deliberation, we draw each DR with respect to each product
A1A2 for all of the 33 families of alike diatomic molecules that we framed under this study. Re-
lated plots are drawn in Figures 1-33, which can be checked in the supporting information (an-
nexed to this article). All the same, herein, for easy visualization, also comparison, we reassem-
ble them, under Sets 1-6, geared in harmony with similar scales.

What we observe throughout is practically the same behavior. That is to say, DR, with
respect to the product A1A2, maintains a relatively high value and remains astonishingly that way
despite increasing complexities – no matter whether or not the value of the investigated constant
of concern changes from one family to the other. This is so much so that, at the time we were
drafting this paper, we entertained doubts about the validity of the values of a diatomic molecule
which looked somewhat misplaced on a particular graph; and as an immediate remedy, a cursory
search for more recent data (or computed data whenever possible; cf. Ref. 5) indeed benefitted
us with a better-fit with regards to the overall distribution of points in the plot of concern.

As an example and a comparative aid, we drew some of the figures (such as Figure 1)
with more recent data (black curves) superposed over the older data (blue curves) (see support-
ing information). This endeavor afforded us the possibility of determining which one of the two
parameters out of the couple (D, R) for a diatomic molecule would better belong to a locale
amongst the two representations of the diatomic molecules on our plot if the other one was ade-
quately known.

In any case, regardless of how heavy the atoms making up the diatomic molecule are,
they electrically still remain equally unopaque toward each other – if not even more transparent
versus complexity for all groups composed of chemically-alike diatomic molecules. Therefore,
the persistent constancy, and even further, the ascending trend of DR for larger and larger

* Following our referee’s righteous inquiry about more precision on our choice to plot DR with  respect to A1A2,
and speaking forthright, we like to share with our readers that, we wished originally to see, as an elementary exer-
cise, whether one can somewhat bridge electric force, via the examination of diatomic molecules, with gravita-
tional force, which would thus possibly turn to be a manifestation of the former force at large distances. While we
do not advocate here any claim on this at all [for the magnitudes of A1A2 we could work with, do not go beyond
105, whereas one needs to see, how the behavior of concern would be, at around A1A2=1036, and even more fun-
damentally D(r), say, for the H2 molecule, falls much more sharply than1/ r]; still, the information we forged out,
together with the formulations we provided, herein, do not seem discouraging. In other words, we have originally
anticipated that the slope of DR with respect to A1A2 would tend to assume the gravitational constant G, if not al-
ready for the heaviest diatomic molecules, still, for what could be tapped beyond, via extrapolation. Recall that the
product of the gavitational dissociation energy of A1 and A2 by the distance separating these two objects, is pro-
portional to G. Thereby frankly, we had predicted a fall of DR from its value at p-e, with  respect to A1A2, then,
a more or less sustained value of it, and then a soft climb of it, to catch with its value at p-e, and eventually go be-
yond thisr celing. As it stands we happened to have tapped what we have originally predicted. So much so that,
not only that heavy metals (Sets 5 and 6) show already an aggressive trend on that matter; but furthermore, the
slope we coin between Fr2 and Unue2 (Set 1), intercepts the level p-e of DR , at A1A2=107 amu2, all the same,
promising to approach to the asymptote G, in a long hypothetical run. We would like to stress, we have no claim,
on any kind of demonstration of our original insight, over here. We save the analysis of all of the physico-
chemical information deployed herein, for a follow-up work, some of the clues of which are painted in the text. In
any case, as discussed right above, the product A1A2, is not far at all, from representing the product Z1Z2. Our origi-
nal insight may lead to a result complying with Nature or not, and both of these results, no matter which of the
two, is the correct one, would surely be precious. In any case, herein we simply tried to answer in full sincerity
our referee’s relevant query.
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complexities may bear a profound meaning when plotted versus A1A2 as we intimated right
above.

Actually, it is but a question of the attraction of the two atoms of concern that are candi-
dates to form a diatomic molecule. The attraction, just like we deliberated on the basis of the H2
molecule, results from the summation of four interactional potential energy terms. Despite this
fact, we propose (though without any loss of generality) to simplify things not only for the H2
molecule, but also for diatomic molecules of even highest complexities; and, as a means of easy
conceptualization, to suppose that the attraction is governed by just the cross-attractional terms.

As a matter of fact, it is non-challenging to understand this in the light of polarization,
which happens, for instance, with regards to alkali halides such as LiF, LiBr, NaF, NaBr, etc…
(cf. Group 2, Index 1). Such a diatomic molecule can indeed well behave, on the whole, as a pair
of positive and negative charges with the intensity of each being close to e. This already consti-
tutes a strong argument to adopt our general proposition of handling diatomic molecules based
only on the terms of mutual attraction in-between the nuclei and the proximate electronic clouds.
Further on, under the given circumstances, DR for such molecules would be expected to arise
at a magnitude not far from e2; which, at least for the given set of molecules, could explain the
reigning constancy of DR .

All the same, though, it was not expected a priori that DR would remain at the e2 order
of magnitude for all diatomic families; but it conspicuously does, and even exceeds it in some
cases – which makes that we can effectively conceptualize the attraction force term between the
atoms of diatomic molecules as comprising just the cross-attractional force terms.

3. Approximate representation of the dissociation energy D(r) at small intera-
tomic distances vis-à-vis the constancy of DR

To make easier the reception of our idea, one may initially carry the exercise over to the H2
molecule and suppose henceforth that the attraction is generated merely by i) first proton-second
electron coupling, and ii) second proton-first electron coupling; where, with the denominations
first and second, we mean the first H atom and the second H atom making the H2 molecule. We
can afterwards reduce the resulting attraction force by a given constant to take into account the
forces of repulsion.

At any rate, the idea we propose facilitates the expression of the magnitude of the attrac-
tional potential energy, especially near the ground state, as /rek 22

0 – where k0 is a reduction fac-
tor associated with the charge e, which we can well calculate as such. It will be seen below that
this is, in effect, quite plausible.

Thus, the dissociation enegy D at the ground level becomes

RD 22
0 ek . (1)

We would like to call the quantity 22
0 ek the “product of effectively attractive charges”.

While we have written eq. (1) at the start for the H2 molecule, we will soon see that it can
be considered quite valid in general.

The fact remains that the coefficient k0
2 is expected to behave nearly as a constant for

alike diatomic molecules – i.e., with similar electronic configurations, which already provides an
explanation as to the constancy of DxR we conjecture for the given molecules.

Thus we propose to represent the product dissociation energy  interatomic distance by a
constant in the proximity of the ground state; which is indeed the case given that the product
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DR exhibits a “plateau” around the interatomic distance R. Therefore, in the zone near the
ground state, we propose to express the dissociation energy D(r) of the molecule with respect to
r (i.e., separation distance between the nuclei) as

  rekrD 22
0 , (2)

insofar as involving the same constant k0. Thus, under the given circumstances, one may assume
that D(r) displays a hyperbolic dependence on r near the ground state.

We dealt with yet the H2 molecule. In the meantime, let us stress the fact that eq. (2) can
be rephrased to be more generally valid. It is so much so that the heavier the molecule under
consideration, the wider will be the plateau of concern delineated by D(r)xr near the ground
state; for, the wider will evidently be the interatomic distance, and, by the same token, the
smaller will be its dissociation energy – meaning the shorter will be the occupied space of the
dissociation process. We would even expect that a giant molecule made of huge atoms of the
given kind, if one could ever manufacture it, would thusly demarcate a very wide interatomic
distance.

Therefore, not only can we confidently rely on eqs. (1) and (2) for our purposes at this
stage of the present work, but, extraordinarily enough, we soon come to discover that the disso-
ciation energy for the heaviest molecules will tend to behave in accordance with eq. (2) beyond
the ground state (given that there is hardly any room left for any excited state beyond that).

Let us come back to the H2 molecule. The known fact that dissociation energy falls much
more acutely than the 1/r dependence under the usual circumstances, thusly at r>R, should any-
way be emphasized. Nevertheless, eq. (2) can still be considered valid in the zone near the
ground state.

As is known, the ground dissociation energy D of the H2 molecule is 4.52 eV at room
temperature. On the other hand, the magnitude of the potential energy of a proton and an electron
(p-e) bound at the distance of a Bohr Radius (0.529 Å) from each other is 213.6=27.2 eV.

That is to say, the dissociation energy D of the H2 molecule is already quite high, while
its average internuclear distance is 0.742 Å. Under these circumstances, 2

0k , in reference to the
dissociation energy of p-e (conjecturally held at rest at a distance equal to the Bohr Radius) be-
comes

2
0k =4.520.742/(27.20.529)=3.35/14.39=0.233;

which makes that, for the H2 molecule, k0 is about 0.5 near the ground state. This is how we pro-
pose to pin down the value of k0 to be associated with the simplest isotope of the H atom near the
ground state also.

By the proposed methodology, ekek 0
22

0  comes first of all to betoken an effective
electric charge to be associated with both H atoms and characterizing the pull between these
atoms in an H2 molecule. Thereby, it is this equivalent charge which, for one thing, governs the
net attractional electric field created by the H atoms on each other near the H2 molecule’s ground
state [see eq. (1)].

The reason we considered the hypothetical static bound system of p-e versus the H2
molecule is that the dissociation path of both systems is rectilinear – thus, similar; whereas, the
dissociation energy of the H atom is half of that of the p-e system. Therefore, the dissociation of
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the hypothetical static p-e bond and of the dissociation of the H2 molecule can well be consid-
ered side by side for purposes of comparison.†

In that sense, the statically held proton and electron in the suppositional p-e setting con-
stitutes the simplest attractional binary system delineating k=1 pursuant to our abridged frame-
work about the attractional mechanism for the H-H molecule; whereby, all other diatomic mole-
cules can follow suit.

It is surely interesting to unveil that, despite all the interelectronic screening the heavy
diatomic molecules are thought to undergo, the DR value associated with some of them can
turn out to be as high as that of the p-e system, and manifestly even higher...

This means the electrical field transmission in-between complex atoms making up the
given diatomic molecules is virtually as important as the electrical field transmission created
between a bare electron and a bare proton; which is remarkable once tapped from the enterprise
advanced herein that could prospectively encompass the entire body of diatomic molecules.

Thus, we now propose that, on the whole, the dissociation energy may be written essen-
tially based on the sum of i) the dissociation energy of the attraction between the first atom’s
nucleus and the electronic cloud of the second atom, and ii) the dissociation energy of the attrac-
tion between the second atom’s nucleus and the electronic cloud of the first atom – whereby, eqs.
(1) and (2) can, in general, be re-formulated as

        
RRR

D
ezeZ

K
χ2ezeZ

K
χezeZ

K
χ 211221  ; (3)

with Z1 and Z2 being the respective number of protons that reside in the nuclei of the atoms con-
stituting the diatomic molecule at hand, and where z1 and z2 are respectively the numbers of the
corresponding electrons (for neutral atoms, we naturally have Z1=z1 and Z2= z2), while χ repre-
sents a constant which takes care of the weakening of the potential energy as referred to what
one would, in cases where point-like charges Z1e and z2e are considered, have to face, and K is a
constant that reduces the outcome due to the repulsion between respectively the nuclei and the
electronic clouds under consideration. All the while, the former constant χ reigns naturally with
regards to the interaction of Z2e with z1e.

No matter how complicated the situation might become, we still propose, at this stage, to
write eq. (3) as

R
D

2

2010
ekk (4a)

for alike molecules at the ground state – with k10 and k20 getting associated with the first and sec-
ond atoms making the diatomic molecules of concern, so that 2010kk then reads as

Kχkk 22010  . (4b)

Similarly to 22
0 ek associated above with the H2 molecule, we call 2

21 ekk the “generalized
product of effectively attractive charges” associated, in general, with any diatomic molecule of
concern; where k1e and k2e are their respective “equivalent attractional charges”.

† The p-e bond may not, after all, be hypothetical: The water molecule H-O-H, for instance, constitutes a dipole
made of 2e- and 2e+ separated by a distance of about 1 Angström.



9

In any case, the value of the product 21kk can now be derived from eq. (3) after knowing
D and R in just the way we did for the H2 molecule above.

As the next step, we are going to express the dissociation energy D(r) of the given mole-
cule whose nuclei are separated by a distance r at the zone near the ground state – i.e., around R ,
[see eq. (2)] – as

rekkD(r) 2
2010 , (5)

which still contains the same constants k10 and k20.
One can quickly check the validity of eqs. (2)-(5) on the basis of the H2 molecule. We

thus draw Table 34,12 we then plot D(r)r with respect to r in Figure 34 (cf. supporting informa-
tion).

Thus, it can be observed in Figure 34 that, as one approaches 2R (or more precisely, as
one comes within the interval 1.5 amu <R <2.5 amu, where amu is 0.529 Å), one encounters a
plateau. (Recall that the maximum for D(r) occurs at R=0.74 Å; i.e., 1.4 amu).

Therefore, we anticipate that, in the vicinity of the ground state, first eq. (2) written for
the H2 molecule, and then eq. (5) written for any of the heavier diatomic molecules, can be con-
sidered as plausible representations of the dissociation energy with respect to r.

The mentioned approach may be even more plausible for diatomic molecules of higher
complexity, because the dissociation energy happens to be much less at those levels, and the path
of dissociation one should pay attention to is relatively shorter.

One can further demarcate a guideline as regards the validity of eq. (5) and, in effect,
with respect to the validity of eq. (4). Indeed, if this latter equation is valid, then one should be
able to write

22
i0iiii ekRD , (6a)

22
j0jjjj ekRD , (6b)

along with the following trivial definitions:

iiD : Dissociation energy of the molecule i-i
jjD : Dissociation energy of the molecule j-j

iiR : Internuclear distance of the molecule i-i
jjR : Internuclear distance of the molecule j-j
2

i0k : The constant associated with the molecule i-i
2

j0k : The constant associated with the molecule j-j

Let us further indicate the following available definitions:

ijD : Dissociation energy of the molecule i-j

ijR : Internuclear distance of the molecule i-j

We now write eq. (5) for the molecule i-j:
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2
j0i0ij ekkij RD ; (6c)

and then we square it:

2
j0i0

2
j0i0

2
ij

2
ij ekkekkRD  . (6d)

This leads to

jjjjiiii
2
ij

2
ij RR DDRD  . (6e)

Therefore, if this latter equation holds, it would mean that eq. (5) would hold. Here, we
have no room to show any details. All the same, eq. (6e) can be ascertained to remain valid
within an error margin of roughly 10% and, for some cases such as Rb-Cs and Br-Cl, within an
error margin of around 1% or even less (cf. Te-Se).

Thence, first things first, we propose to express the dissociation energy D(r) of any dia-
tomic molecule around the ground state the way given in eq. (5).

Effectively, we disclose through Figs. 1-33 that DR, stays constant for a particular fam-
ily – even starting from comparably light diatomic molecules all the way up to the heaviest ones.

This means several important things:
o Eq. (5) is already valid near the ground state for each member of any family.
o A figure similar to Figure 34 (cf. supporting information) that we would draw for the

first member of a given family, when displaced appropriately, becomes virtually iden-
tical to similar figures we would draw for the next members of the family – though
with ever smaller dissociation energies and shorter dissociation pathways.

o Eq. (5) then becomes valid for the entire range of space covered by the respective
ground states.

o It is so much so that the heavier the molecule under consideration, the smoother the
plateau of concern will be near the ground state, for the wider evidently will be the in-
teratomic distance.

o Thence, surprisingly, electrical field transmission capability turns out to be unexpect-
edly high even for atoms of extreme complexity.

o Eq. (5) operates very adequately for the entire body of diatomic molecules – albeit
with the condition that it should be fixed for each chemical family separately.

What is just as exciting is the following:
Suppose one hypothetically keeps making more and more massive a molecule of a given

kind; let us consider as an example the set composed of Li2, Na2, K2, Rb2, Cs2, Fr2 – we can then
conceive of molecules made of atoms heavier than Francium (Fr) and obeying the alkali atom
rules. Can we not? Surely it is plausible and apparently realistic; even if any exotic isotope we
end up with is exceedingly unstable (seeing as the heaviest available alkali Francium’s most
stable isotope has a half-life of merely 22 minutes)… But why do we do this, actually? We do it
because we propose to apprehend atomic interactions in-between such putative heavy atoms as
not any different than atomic interactions in-between the lighter atoms of the given kind.

Next, it will be conjectured that, as we keep on piling nucleons and negatrons at just the
right admixture onto our hypothetical alkali atoms, the positive charge of the nucleus of concern
and the negative charge of the corresponding electronic cloud will quantum mechanically
interfere more and more with each other to the extent that, after crossing a certain weight
threshold, we may be entitled to speak of an altogether “homogeneous distribution” of all
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charges inside each giant atom – inasmuch as denoting a strict algebraic neutrality of electric
charge.

The essential idea here is that an attractional electric field of source charge ke will still
leak out of these giant atoms where k approaches and perhaps even surpasses unity. The heavier
the molecule at hand, the more rigorously will its dissociation energy obey eq. (5).

Suppose now that the two giant atoms of the given kind form, however fleetingly, a giant
molecule. We would expect it to endure under an enormously wide interatomic distance (as we
will quantify right below) across which eq. (5) will rigorously reign. And there will further on be
no change in the dissociation energy versus the interatomic distance, for recombination and dis-
sociation would meet at practically the same interatomic distance; there would, in effect, be no
room for any vibrational excited levels after a certain point.

Therefore, we can i) confidently rely on eqs. (4b) and (5), and ii) remarkably come to dis-
close that the dissociation energy for the heaviest molecules will tend to behave approximately in
accordance with eq. (5) all the way through.

Looking at the general ascending behavior of the DxR plots for chiefly the heavy
molecules, there appears hence a postulatory universal neutral atom of mass MUniversal, or MU for
short, which would leak an attractional electric field of source charge of intensity e, for which
the coefficient k would assume the value of just unity.

This trend is most apparent for heavy metal molecules (cf. Figures 19-33, or Sets 5 and
6); MU for them occurs, for instance, at an even lighter upperbound. In any case, via writing
GMU=e2, with G standing for the gravitational constant, one derives MU=(αfsc)1/2MPlanck, where
αfsc is the fine structure constant and MPlanck is the Planck Mass at 2.18x10-8 kg, whereby MU
becomes 2.04x10-10 kg.

All the same, a group of, say, hydrogen atoms whose total mass amounts to the delineated
universal mass MU too will be expected to leak an attractional electric field of source charge of
intensity e. This, though, is a peculiar problem: H atoms in an H-H molecule do not, for one
thing, attract each other in accordance with e2/r2, and the dissociation energy of the H-H
molecule appears to die away with a spatial dependency much more enhanced than 1/r.

The question then becomes “if a test H atom is subjected to the force F vis-à-vis a source
H atom sitting at a given distance from the former one, will, “said test atom” be subject to the
force of strength NF vis-à-vis N number of H source atoms sitting together at the same
distance?”. The answer to this question, is not trivial, for the test atom’s proton and electron now
interact with N protons and N electrons belonging to the set of source NH atoms. This problem
should moreover be posed quantum mechanically and solved accordingly to understand how the
dissociation energy D(r) of NH-H at large distances shall behave with respect to the distance r
between NH and H. We leave such a problem for a future study (and here effectively, may be a
clue, with respect to our insight, as to one can bridge electric force with gravitation).

In any case, let us go back to our thought experiment of enlarging, say, an alkali atom
until it reaches the mass MU, wherefore this atom will supposedly leak an attractional electric
force of charge e. Let us thence call RU the radius of our giant alkali atom of mass MU.

We now propose to determine the radius RU.
For this purpose, we can trace the radii of alkali atoms versus their weights and then

extrapolate the sloping behavior to the weight MU. This neatly leads to an r of about 0.1 mm.
Such a finding resumes many crucial discussions:
o The conjectural giant alkali atom of mass MU and radius r=0.1 mm is supposed to leak

an attractional electric field of source charge of intensity e whilst behaving in full
accordance with eq. (5).

o It appears that, remaining at this juncture at a macroscopic distance, the giant atom in
question will not act with regards to just its immediate vicinity in accordance with eq.
(5), but (as discussed) will act the same all the way through.
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o A neutral mass of anything weighing as much as MU is expected to act identically.

4. The constancy of D(r)r for alike electronic configurations out of the
Schrödinger Equation or Dirac Equation (whichever is appropriate)

In order to authenticate our eq. (5), we now present a derivation on the basis of quantum me-
chanics. T. Yarman had previously shown that, were the “mass” of an entity – the way described
by the Schrödinger Equation or the Dirac Equation (whichever is appropriate for the case under
consideration) – increased by an arbitrary number ξ, then the eigenvalue (total energy) in said
description (irrespective of whether it is relativistic or non-relativistic) is identically increased
and all sizes are contrariwise identically decreased [13,14,15,16, 6-9]. This property is thoroughly
general and is valid for any quantum mechanical description no matter how complex.

Remarkably, such an outlook yields the invariance of the spatiotemporal combination
mass  energy  size2 (for any size that one might pick) with respect to a hypothetical change in
mass injected to the quantum mechanical description of the entity at hand.

We have to emphasize that we maintain this reflects a series of fundamental properties
about matter – such as, first of all, a “symmetry property” in the Schrödinger Equation or the
Dirac Equation with regards to a mass change input. It is primarily this “rest mass change con-
tingency” that we are interested in over here.

So, we embark upon the hypothesis that such a “rest mass change” is real. It may consist
of a mass increase when the object of concern is brought to a uniform translational motion [13];
or, it may consist of a mass decrease when the object at hand is embedded in a field it can inter-
act with – such as a gravitational field [16]. In any case, we posit that the combination mass 
energy  size2 will stay invariant no matter what.

If there is more than one mass involved with the quantum mechanical description at issue,
care is required to identify which “mass” is to be inputted to the spatiotemporal combination of
concern for further processing. Here, we can overlook this peculiarity, for, we propose to apply
the property under consideration to just the electronic description of a diatomic molecule ex-
tracted from the overall Schrödinger description of the molecule on the basis of the Born and
Oppenheimer approximation [2]. As described in the Introduction part above, this electronic
description is written for the pair of fixed nuclei separated by the distance r; whereby the “en-
ergy” quantity of interest becomes its eigenvalue and we call the magnitude of this energy D(r) –
i.e., the dissociation energy the molecule exhibits from the interatomic distance r onward.

In such a case, mass becomes the mass m of the electron, while the size to be focused on
is particularly the interatomic distance r. Therefore, according to Yarman, and later on his col-
leagues too, with respect to any mass change injected to the electronic description under consid-
eration, we must have

mD(r)r2=Invariant. (7)

The invariant coming into play ought, after all, to relate to a universal quantity bearing
the same dimensions and necessarily encompassed by the Schrödinger Equation or the Dirac
Equation under scrutiny. This “quantity” cannot then be anything else but something propor-
tional to the square of the Planck Constant h2, which is the pivotal quantity of any quantum me-
chanical description.

Therefore we arrive at

mD(r)r2 ~ h2. (8)
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Yarman had further argued in [6,9] that the proportionality constant coming into play
must be commensurate with a constant gn characterizing the electronic configuration of the
molecule.

The presence of h2 moreover necessitates, alongside itself, quantum numbers after sup-
posing that r can only be changed incrementally.

To cut a long story short, for, say, an H2 molecule, one can assume that two quantum
numbers n1 and n2 will emerge; whereby, the product n1n2 would be expected to multiply h2. We
may, for simplicity, denote this product by the overall number n2. Recall that the quantum num-
bers we introduced are primarily mathematical artefacts tuned towards a simplified derivation.
Therefore, we can rewrite eq. (8) via a self-explanatory notation – at the quantum state which we
will represent by just the number “n” (no matter whether or not this is even an integer) – as

mDngn rn
2 =n2h2. (9)

Note that such a relationship can already be formulated within the framework of the Bohr
Atom Model; and, had we written 8π2mDngnBohrrn

2 =n2h2, the coefficient gnBohr turns out to be
simply unity in this case.

Based on the general eq. (9) written for any entity of concern, Yarman had, in addition,
argued in [13, 16] that multiplying h2 by n2 is equivalent to dividing the mass m by n2 in the cor-
responding quantum mechanical description; in which case, the interatomic distance rn will get
stretched as much as n2 compared to the interatomic distance R at the ground level [17,18,10,11].
Thus,

Rn
2 rn  . (10)

Note that this relationship is exact. With this in mind, one can now rephrase eq. (9) as

mDngnrnR=h2 (11)

to land at

Rn
2

nn mghrD  . (12)

This relationship is rigorous and is valid for any diatomic molecule. The only point to be
remembered is that, we landed at it based on the Born & Oppenheimer (B&O) approximation,
sketeche in the Introduction above [2].

At this stage, we do not know how gn would vary with the quantum state characterizing
number n. One thing looks certain though; gn is expected to stay the same for alike configura-
tions [17,18].

This is a prized disclosure; not only does it work within the frame of excited states con-
figured similarly within a given molecule, but it also works with regards to, say, the ground
states of a set of molecules belonging to any of the families we assembled, which are also con-
figured similarly.

Thusly, the foregoing derivation is well capable of clarifying the nearly constant value
DxR we revealed in Sets 1-6 (made out of Figures 1-33, which are in turn presented in support-
ing infrmation) with regards to similarly configured diatomic molecules. This already points to
the validity of eqs. (1-5).

The nearly constant value (which we qualified in the title of this article as “enigmatic”)
of DxR must generally be understood, as the constancy of the magnitude of it, yet still, remain-
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ning within a rather narrow band, the way Sets 1-6, we present below, witness. While eq. (12), is
rigorous as precised, along the B&O approximation, still, tolerable oscillations of DxR , are most
likely due to i) the said approximation, also ii) to the fact that the electronic configurations we
expected to be the same, with regards to the members of chemical families, we worked on, might
not, as it appears, exactly the same.

One, further on, is inclined to inquire whether, say, Hydrogen (H) atoms of an H-H mole-
cule may delineate the same constant gn when separated by large distances from each other. It
seems this would hold for the H2

+ molecule (which for sure is interesting to investigate);19 valid
with regards to the standard H-H molecule.20

All the same, and even more importantly, here, as introduced above, one should more
fundamentally handle, the quantum mechanical dissociation problem of NH atoms (N tending to
infinity), on the one side, and just a single H atom situated far from NH, on the other side.

Such a situation seems to denote a peculiar problem which we plan to further elaborate
on, in a subsequent study.

5. Badger’s Rule

At this point, we like to call on the empirical Badger’s rule,21 as might be in effect evoked,
through this dissertation. It states in brief that the strength of a bond is correlated with its vibra-
tional frequency νn, at the given nth state.

We can represent the bond strength, roughly with the dissociation energy Dn; we would,
following Badger’s rule, more carefully, propose to write

Dn
k ~ νn, (13)

where k is an exponent to be determined.
The present framework, allows us to derive something similar, and accordingly fix k,

through Yarman’s earlier approach [19, 20].
Indeed, for a given diatomic molecule, at the nth excited level, one can accordingly

write,‡
2 3/2~n n n nr r r   . (14)

Since we landed through eq. (12), and this rigorously, at,
1n nD r C ; (14)

where C1 is a constant, furnished by eq. (12), we can thereby write,
3/2~n nD . (15)

This becomes equivalent to the Badger’s rule, which yet we coined through the present
approach, for a given diatomic molecule, and k of eq. (13), thusly turns out to be 3/2.

We can furthermore state that Yarman’s approach [19,20], allows us to transpose the
foregoing derivation, to members of any of the chemical families, we shaped above, where n,

‡ The rigorous Yarman relationship is this [19,20]:
2

204~n n e n
n

r
T g Mm r

h r
 ;

Tn is the vibrational freqeuncy at the nth level; rn is the internuclear distance, r0 is the internuclear distance, at the
ground level, gn is a constant characterizing the electronic configuration of the bond, M is the reduced mass of the
given atoms, and me is the electron’s mass.
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instead of nth quantized level in a given diatomic molecule, will now be associated with the ith
member of the chemical family at hand. Under the circumtances, say, for alkali molecules, eq.
(15), will read as,

3/2

1/2~ i
i

i

D
M

 , i=Li2, Na2, K2, Rb2, …; (16)

here Mi is the reduced mass of the diatomic molecule belonging to the ith member of the given
family, and takes place there, given that the vibration frequency is inversely proportional to it
[19,20] (cf. the footnote below).

As a conclusion, we can affirm that Badger’s rule does not seem to add any singnificative infor-
mation to the  present approach. So much so that; whereas it is empirical; eqs. (15) and (16), we
came out with, are certainly rooted to a deeper quantum mechanical ground. The investigation of
chiefly eq. (16) will be, no doubt interesting, which we already have checked out quickly, and it
indeed works very fine.

6. Conclusion

It has been shown herein that, with respect to the body of diatomic molecules comprising such
items as “strictly alkali pairs” or “strictly halogen pairs” or “mixed alkali-halogen pairs” or even
“heavy metal pairs”, etc… – each thus composed of diatomic molecules formed of atoms bearing
similar electronic configurations – their dissociation energy (D)  interatomic distance (R) prod-
ucts delineate a relatively high and perplexingly constant value.

More precisely, the DxR’s versus the products A1A2 of the weights of atoms making up
the molecules at hand decreases for light molecules, then acquires a value that remains fairly
constant for intermediately heavy molecules, and then – were the span of A1A2 sufficient to track
it – keeps on gently increasing for the heaviest molecules.

The increase in DxR with respect to A1A2 for some of the diatomic molecules we consid-
ered under the present study, such as the domain around W2 (which climbs even beyond e2), is, on
the other hand, strikingly aggressive.

We thusly disclosed the fairly constant behavior of DR at an unexpectedly high value
very near e2 (in esu) for each of the 33 families we arranged from chemically-alike diatomic
molecules (cf. Indexes 1 and 2 at the end of the text, and Tables 1-33, presented in supporting
information).

As a matter of fact, it is easy to think of this in reference to polarization – which takes
place, for instance, in the case of alkali halides such as LiF, LiBr, NaF, NaBr, etc… as well as
other halides (cf. Index 1, Group 2; and also Groups 4, 6, 8, 11, 15, 16, 17, 18). In suchlike situa-
tions, the diatomic molecule at hand can indeed behave, on the whole, as a pair of positive and
negative charges where the intensity of each charge is close to e.

This already by itself constitutes a strong argument to adopt our general proposition as to
the handling of diatomic molecules based on solely the attractional terms for mutual interactions
between electronic clouds and nuclei alone.

In addition, DR for such molecules would, under the given circumstances, be expected
not to deviate far from e2; which, at least for the mentioned sets of molecules, could explain the
near constancy of DR.

Yet, it might appear hard to guess beforehand that DR would remain at the e2 order of
magnitude, let alone at a value very close to it, for all the other diatomic families we dealt with
and which we constructed upon one, two, or even three covalent bonds (cf. Index 1, Groups 1, 3,
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7, 9, 10, 12, 13). But it well does so (Tables 1-33, together with Figures 1-33 presented in sup-
porting information). Take a further look, as an extreme case, at the Si2 and C2 molecules: DR
for them takes the values of 7.2 and 7.7 eVÅ (along with A1A2=784 and A1A2=144) respectively
[4]. It so happens that the value of DR for these molecules – which are far from delineating
electrovalent bonds – comes to be strikingly at more than half of that of the pair of p-e.

This picture is further reinforced by the common behavior of diatomic molecules made of
transition metals (heavy metals) presented in Sets 5 and 6 (Figures 19-33 of supporting informa-
tion).

The sharply escalating trend in many of them versus the heaviest molecules is quite no-
ticeable.

These observations allow us to presume that we can visualize the attraction force term be-
tween the atoms constituting the diatomic molecules as made of just the cross-attractional force
terms; i.e., the nucleus of the first atom attracting the electrons of the second and vice versa, in
contrast to the nucleus of the second atom attracting the electrons of the first one and vice versa
– no matter how much the coincident nuclei and electronic clouds mutually repel each other.

Thusly, we come to the following conclusions:
o The dissociation energy D(r) behaves hyperbolically near the ground state with respect

to r. This seems understandable on the basis of the plot we drew for molecular hydro-
gen displaying a plateau near the ground state (cf. Figure 34 of supporting informa-
tion).

o It appears that this property remains practically valid for other diatomic molecules,
too.

o An important point is that, the wider the atoms making the diatomic molecule, the
wider will be the size of the plateau of D(r)r (cf. Figure 34).

o This, quantum mechanically evokes that, as the size of the atoms, making the diatomic
molecule at hand, though hypothetically, tends to practically infinity, through a longer
and longer range, D(r)r, will remain constant, versus r.

o Without any further anticipation, still, the electrical field transmission capability be-
comes henceforth unexpectedly high for atoms of even very high complexity.

o We have figured out that a giant atom occupying, however fleetingly, a radius of
around 0.1 mm, and remaining neutral on the whole, would leak an attractional electric
field of source charge of intensity e whilst behaving in full accordance with eq. (5).

o Likewise, a neutral mass of anything weighing at a similar MU=2.04x10-10 kgs is
expected to act the same.

o The fact that a neutral W (Tungsten) atom, having an atomic number equal to 184
(184x10-23 g / 6 = 3x10-25 kg), already behaves that way vis-à-vis another neutral W
atom is surely worth deliberating in this regard.

o A bunch of, say, Hydrogen atoms weighing altogether as much as MU would be
expected to delineate the same behavior, too. This is surely controversial, for H atoms
in an H-H molecule do not attract each other, for one thing, in accordance with ~e2/r2,
and the dissociation energy of the H-H molecule appears to vanish with a spatial
dependency much more enhanced than 1/r. The question then becomes “if a test H
atom is subjected to the force F vis-à-vis a source H atom sitting at a given distance
from the former one, will, “said test atom” be subject to the force of strength NF vis-à-
vis N number of H source atoms sitting together at the same distance?”. The answer to
this question, is not trivial, for the test atom’s proton and electron now interact with N
protons and N electrons belonging to the set of source NH atoms. This problem should
moreover be posed quantum mechanically and solved accordingly to understand how
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the dissociation energy D(r) of the system N H-H at large distances shall behave with
respect to the distance r between N H and H.

o In any case, one would tend to think that the opacity with respect to the attractional
field transmission of a neutral atom will be diminished if an increased number of
protons inside the nucleus are screened by an equal number of electrons residing in the
electronic cloud surrounding the nucleus. This remarkably does not happen. Consider,
for instance Set 4 presented below, and, pay in particular attention, to the red plot
comprising the behavior of the Dissociation Energy x Interatomic Distance (DR) of
Be-H, Mg-H, Ca-H, Sr-H, and Ba-H versus A1A2 (the product of the atomic weights of
the atoms making up the given molecules). The nuclei of the neutral atoms Be, Mg,
Ca, Sr, Ba, are screened by 4, 12, 20, 38, 56 electrons, respectively (if one does not
count the neutrons which, evidently, would not come into the description of the
electrical attraction of the hydride in question in any meaningful way). The fact
remains that DR – composed with regards to the hydrides of said atoms – delineates
an increasing trend with respect to A1A2. We observe that for even halogenic acids.

Thereby, if not an “increasing trend”, the “near constancy” of DxR with respect to A1A2 we re-
vealed for particularly the diatomic molecules made of heavy atoms points electric-wise to i) the
non-opacity of strictly neutral bodies, and thusly ii) an attractional electric property of neutral
matter, regardless how heavy the mass of concern may be. With all restraint, and upon the skill-
ful inquiry of our referee, we like to mention that, our original intuition consisted in the fact that,
all this, may constitute a clue with respect to bridiging electric force with gravitational force,
which, in turn would become to be the manifestation of the former, at large distances.
If we want the acceptance of the paper, the indicated text must be removed. I am sure that the
problem about representation of gravity via the latter idea must be much more better verified,
before making this claim.

All of these enthusiastic aspects shall be elaborated on in a further work where we pro-
pose to check our arguments via plausible experiments.
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Index 1 Alike families of diatomic molecules

Group
Number

Molecules made of
Atoms belonging to
columns [i, j] of the
Table of Elements

Molecules belonging to the Group

1 [1,1]
H2, Li2, Na2, K2, Rb2, Cs2, Fr2, Uuue2, LiCs, NaK, NaCs, RbCs, RbFr, CsFr,

2 [1,7]
LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbF, RbCl,

RbBr, RbI, CsF, CsCl, CsBr, CsI

3 [2,6] BeO, MgO, CaO, SrO, BaO

4 [2,7] BeF, BeCl, BeBr, MgF, MgCl, MgBr, CaF, CaCl, SrF, BaF

5 [3,6] BO, BS, AlO, AlS, GaO

6 [3.7]
BF, BCl, BBr, AlF, AlCl, AlBr, AlI, GaF, GaCl, GaBr, GaI, InF, InCl, InBr,

InI, TlF, TlCl, TlBr, TlI

7 [4,6]
CO, CS, CSe, SiO, SiS, SiSe, GeO, GeS, GeSe, GeTe, SnO, SnS, SnSe, SnTe,

PbO, PbS, PbSe, PbTe

8 [4,7]
CF, CCl, CBr, CI, SiF, SiCl, SiBr, SiI, GeF, GeCl, GeBr, SnF, SnCl, SnBr,

PbF

9 [5,5] N2, P2, PN, As2, AsN, Sb2, SbP, Bi2

10 [5,6] NO, NS, NSe, PO, PS, AsO, AsS, SbO, BiO, BiS

11 [5,7] NCl, NBr, PF, AsF, SbF, BiF, BiCl, BiBr, McF, McCl

12 [6,6] O2, S2, SO, Se2, SeO, Te2, TeO, TeS, TeSe

13 [7,7] F2, Cl2, ClF, Br2, BrF, BrCl, I2, IF, ICl, IBr, At2

14
[1,7]

(Hydrogen Halides) HF, HCl, HBr, HI, HAt,

15
[1,2]

(Beryllium Group
Hydrides)

BeH, MgH, CaH, SrH, BaH

16
[1.3]

(Boron Group
Hydrides)

BH, AlH, GaH, InH, TlH

17
[1,4]

(Carbon Group
Hydrides)

CH, SiH, GeH, SnH, PbH

18
[1,5]

(Nitrogen Group
Hydrides)

NH, PH, AsH, BiH
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Index 2 Alike families of diatomic molecules
composed of Heavy Metals

Group
Number in the
Periodic Table

Molecules made of Atoms
belonging to the Said Group

IIIB Sc2, Y2, La2

IVB Ti2, Zr2, Hf2

VB V2, Nb2, NbV, Ta2

VIB Cr2, Mo2, W2

VIIB Mn2, Tc2, Re2

VIII(Fe) Fe2, Ru2, Os2

VIII(Co) Co2, Rh2, Ir2

VIII(Ni) Ni2, Pd2, NiPd, Pt2

IB Cu2, Ag2, AgCu, AgAu, AuCu, Au2

IIB Zn2, Cd2, Hg2

IB-Hydride CuH, AgH, AuH

IIB-Hydride ZnH, CdH, HgH

IVB-Chloride TiCl, ZrCl, HfCl

VB-Oxide VO, NbO, TaO

IB-Alkaline KAu, RbAu, CsAu, FrAu, UueAu
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Set 1 Data is generally picked from [4]. Otherwise, for RbCs [22:C], CsFr [22], RbFr
[22], Fr2 [22:C], for Uue2 [23:C], for AsN [24], for At2 [24,25], for KAu, RbAu, CsAu,
FrAu, UueAu [26:C], it is picked from references indicated right next to the said
molecules. “C” means, data is computed. Data for Li2, is, versus its measured value
[4], further computed [27], in good harmony with what is previously reported.
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Set 2 Data is generally picked from [4]. Otherwise, for NCl [24], PF [24], BiF [28:C], BiBr
[24], McF [28:C], McCl [28:C], it is picked from references indicated right next to
the said molecules. “C” points to the fact that the data of concern is computed.
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Set 3 Data is generally picked from [4]. Otherwise, for CCI [24], SiCl [24], for CiI, and
SiBr [24,29], for GeCl and GeBr [29], SnCl [24], SnBr [24,29], AsS [24], it is picked
from references indicated right next to the said molecules.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
 Group 14
 Group 15
 Group 16
 Group 17
 Group 18

CH

SiH
GeH SnH

PbH

TlHInHGaH
AlH

BH

D
xR

(e
V

xA
0 )

A1xA2 (amu2)

p-e

BeH
MgH

CaH SrH

BaH

BiH
AsH

PH

NH

HF HCl

HAt [25,C]

HI
HBr

Set 4 Data is generally picked from [4]. Otherwise, for HAt [30:C], it is picked from
reference indicated right next to the said molecule. “C” means, data is computed.
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Set 5 Data is generally picked from [4]. Otherwise, for Sc2 [5], for Y2, La2 [6, 7], for Ti2, Zr2, Hf2,
for V2, Nb2,Ta2 [5, 6], for NbV [6, 8:C], for Cr2, Mo2, W2, Mn2, Tc2, Re2, Fe2 Ru2, Os2, Co2, Rh2,
Ir2, Ni2, Pd2, Pt2 [5, 6], for NiPd [6, 9:C], for Cu2 [6], for Ag2 [5, 6], for Au2 [6], for AgCu [10],
for AgAu, AuCu [6, 10], for Zn2, Cd2 [5, 6], for Hg2 [6], it is picked from references indicated
right next to the said molecules. “C” points to the fact that the data of concern is computed.
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Set 6a Data is generally picked from [4]. Otherwise, for CuH, ZnH [11:C], it is picked from
the reference indicated right next to the said molecules. “C” means, data is computed.
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Set 6b Data is generally picked from [4]. Otherwise, for TiCl [11:C], for ZrCl [31,32], for
HfCl [33, 34:C], for VO [11], it is picked from the references indicated right next to the
said molecules. “C” points to the fact that the data of concern is computed.
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