ОБ ОДНОМ ЭКСПОНЕНЦИАЛЬНОМ НЕРАВЕНСТВЕ

Булатов В.И., Голухов В.Г., Кастрица О.А.

Белорусский государственный университет, Минск, Беларусь bulatov@bsu.by; V.Goloukhov@gmail.com; kastritsa@bsu.by

Целью данной работы является обоснование для любого $t \neq 0$ хорошо известного неравенства

$$e^t > 1 + t, \tag{1}$$

не использующее исследование функций на монотонность и выпуклость методами дифференциального исчисления.

Очевидно, что (1) справедлива для $\forall t \leqslant -1$. Рассмотрим вначале случай $t = r \in \mathbb{Q}$, где $r \in (-1,0) \bigcup (0,+\infty)$.

Во-первых, если $r \in (-1,0), r \in \mathbb{Q}$, то $\exists m,n \in \mathbb{N}$ такие, что r = -m/(n+1), где m < n+1. Учитывая далее неравенство $e < (1+1/n)^{n+1}, \forall n \in \mathbb{N}$, получим

$$e^{r} > \left(1 + \frac{1}{n}\right)^{-m} = \left(1 - \frac{1}{n+1}\right)^{m} = \prod_{k=1}^{m} \left(1 - \frac{1}{n+1}\right) \geqslant$$

$$\left[1 - \frac{1}{n+1} \geqslant 1 - \frac{1}{n-k+2} = \frac{n-k+1}{n-k+2} > 0, \quad 1 \leqslant k \leqslant m < n+1\right]$$

$$\geqslant \prod_{k=1}^{m} \left(\frac{n-k+1}{n-k+2}\right) = \frac{n-m+1}{n+1} = 1 - \frac{m}{n+1} = 1 + r.$$

Во-вторых, если $r > 0, \ r \in \mathbb{Q}$, то $\exists m, n \in \mathbb{N}$ такие, что r = m/n. Поэтому в силу неравенства $e > (1+1/n)^n, \ \forall n \in \mathbb{N}$, имеем

$$e^{r} > \left(1 + \frac{1}{n}\right)^{m} = \prod_{k=1}^{m} \left(1 + \frac{1}{n}\right) \geqslant \left[1 + \frac{1}{n} \geqslant 1 + \frac{1}{n+k-1} = \frac{n+k}{n+k-1} > 0, \quad \forall k \in \mathbb{N}\right] \geqslant$$
$$\geqslant \prod_{k=1}^{m} \frac{n+k}{n+k-1} = \frac{n+m}{n} = 1 + \frac{m}{n} = 1 + r.$$

Значит (1) выполняется для $\forall t=r\in\mathbb{Q}$, где $r\neq 0$. Далее, учитывая, что для $\forall t\in (-1,0)\bigcup (0,+\infty),\ t\in\mathbb{R}$, следует

$$\frac{t}{2} - (\sqrt{1+t} - 1) = \frac{(\sqrt{1+t} - 1)^2}{2} > 0,$$

получаем, что в рассмативаемом случае всегда $\exists r \in \mathbb{Q}$ такое, что $r \in (\sqrt{1+t} - 1, t/2) \subset (-1,0) \bigcup (0,+\infty)$ и, поэтому, в силу выше доказанного, имеем

$$e^{t} > \left[\frac{t}{2} > r \Rightarrow t > 2r\right] > e^{2r} > \left[r > \sqrt{1+t} - 1 \Rightarrow r+1 > \sqrt{1+t} > 0\right] >$$

 $> (1+r)^{2} > (\sqrt{1+t})^{2} = 1+t.$

Таким образом, неравенство (1) выполняется не только для $\forall t \leq -1$, но и для $\forall t \in (-1,0) \bigcup (0,+\infty)$, т,е, для $\forall t \neq 0$.

Отметим, что доказанное для $\forall t \neq 0$ неравенство (1), переходящее в равенство при t=0, можно назвать замечательным экспоненциальным неравенством в связи с тем, что оно является одним из определяющих свойств экспоненты в том смысле, что среди функций $f(x), x \in \mathbb{R}$, удовлетворяющих для $\forall a,b \in \mathbb{R}$ равенству f(a)f(b) = f(a+b), единственной функцией для которой выполнено неравенство $f(t) \geqslant 1+t$, $\forall t \in \mathbb{R}$, является $f(x) = e^x$, $x \in \mathbb{R}$.

Проиллюстрируем на конкретных примерах использование неравенства (1) для обоснования классических замечательных пределов.

Пример 1. Пусть $a>0,\ a\neq 1.$ Для $x\neq 0,$ используя в (1) $t=x\ln a\neq 0$ и $t=-x\ln a\neq 0,$ имеем

$$a^{x} > 1 + x \ln a$$
, $a^{-x} > 1 - x \ln a$.

Отсюда для $\forall x \in (-1/|\ln a|, 0) \bigcup (0, 1/|\ln a|)$ следует $0 < 1 + x \ln a < a^x < 1/(1 - x \ln a)$. Значит,

$$\left| \frac{a^x - 1}{x} - \ln a \right| = \frac{|a^x - 1 - x \ln a|}{|x|} = \frac{a^x - 1 - x \ln a}{|x|} < \frac{\frac{1}{1 - x \ln a} - (1 + x \ln a)}{|x|} = \frac{x^2 \ln a}{|x|(1 - x \ln a)} = \frac{|x| \ln a}{1 - x \ln a}.$$
 (2)

Так как при $x \to 0$ правая часть полученного неравенства (2) стремится к нулю, то [1]

$$\left(\frac{a^x-1}{x}-\ln a\right) \underset{x\to 0}{\longrightarrow} 0$$
 T.E. $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$.

Пример 2. Для $x \in (-1,0) \bigcup (0,+\infty)$ используя в (1) $t=\ln(1+x) \neq 0$ и $t=-\ln(1+x) \neq 0$, имеем

$$1+x > 1 + \ln(1+x), \quad \frac{1}{1+x} > 1 - \ln(1+x).$$

Отсюда следует, что

$$\frac{x}{1+x} < \ln(1+x) < x. \tag{3}$$

Значит,

$$\left| \frac{\ln(1+x)}{x} - 1 \right| = \frac{|\ln(1+x) - x|}{|x|} = \frac{x - \ln(1+x)}{|x|} < \frac{x - \frac{x}{1+x}}{|x|} = \frac{x^2}{|x|(1+x)} = \frac{|x|}{1+x}.$$
(4)

Откуда получаем [1] $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1.$

Пример 3. Для $x \in (-1,0) \cup (0,+\infty)$ из (4) следует

$$1 - \frac{|x|}{1+x} < \frac{\ln(1+x)}{x} < 1 + \frac{|x|}{1+x},$$

т.е.

$$\exp\left(1 - \frac{|x|}{1+x}\right) < (1+x)^{1/x} < \exp\left(1 + \frac{|x|}{1+x}\right).$$
 (5)

Так как левая и правая части неравенства (5) при $x \to 0$ стремятся к e, то [1]

$$\lim_{x \to 0} (1+x)^{1/x} = e.$$

Пример 4. Покажем, что для $\forall x > -1$ и $\forall \alpha \geqslant 1$ справедлив функциональный аналог неравенства Бернулли

$$(1+x)^{\alpha} \geqslant 1 + \alpha x. \tag{6}$$

Так, как при t=0 неравенство (1) переходит в равенство, то для $t=(\alpha-1)\ln(1+x)$, где x>-1, $\alpha\geqslant 1$, имеем $(1+x)^{\alpha}=(1+x)e^{(\alpha-1)\ln(1+x)}\geqslant (1+x)(1+(\alpha-1)\ln(1+x))$.

Отсюда в силу левой части неравенства (3) получаем

$$(1+x)^{\alpha} \geqslant (1+x)\left(1+\frac{(\alpha-1)x}{1+x}\right) = 1+\alpha x.$$

Доказанное для x > -1 и $\alpha \geqslant 1$ неравенство (6), заменой в нем x > -1 на

$$\left(-\frac{x}{1+x}\right) = \left(-1 + \frac{1}{x+1}\right) > -1,$$

приводит к неравенству $\frac{1}{(1+x)^{\alpha}} \geqslant \frac{1-(\alpha-1)x}{1+x}$, откуда для $x \in (-1,1/(\alpha-1))$ где

 $\alpha > 1$, следует $(1+x)^{\alpha} \leqslant \frac{1+x}{1-(\alpha-1)x}$ и, значит, для $\forall x > -1$ и $\alpha > 1$ имеем

$$1 + \alpha x \leqslant (1+x)^{\alpha} \leqslant \frac{1+x}{1 - (\alpha - 1)x}$$

Отсюда для $x \in (-1,0) \cup (0,1/(\alpha-1))$, где $\alpha > 1$, получаем

$$\left| \frac{(1+x)^{\alpha} - 1}{x} - \alpha \right| = \frac{|(1+x)^{\alpha} - 1 - \alpha x|}{|x|} = \frac{(1+x)^{\alpha} - (1+\alpha x)}{|x|} \le \frac{1+x}{|x|} - (1+\alpha x) = \frac{1+x}{|x|} = \frac{(1+x)^{\alpha} - (1+\alpha x)}{|x|} \le \frac{1+x}{|x|} = \frac{1+x}$$

$$\leqslant \frac{\frac{1+x}{1-(\alpha-1)x} - (1+\alpha x)}{|x|} = \frac{\alpha(\alpha-1)|x|}{(1-(\alpha-1)x)}.$$

Так, как правая часть этого неравенства при $x \to 0$ стремится к нулю, то для $\forall \alpha > 1$ следует [1]

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

Остальные случаи $\alpha \in \mathbb{R}$ рассматриваются по той же схеме, что и в [2].

Литература

- 1. Богданов Ю.С., Кастрица О.А.,Сыроид Ю.Б. *Математический анализ. Учебное пособие для вузов*. М.: ЮНИТИ–ДАНА, 2003.
- 2. Булатов В.И., Голухов В.Г., Кастрица О.А. *Монотонные последовательности. Число Непера*: учеб. материалы для студентов ФПМИ. Мн.: БГУ, 2019.