В [4] для нечетного r установлена r-разрешимость группы с \mathbb{P} -субнормальной силовской r-подгруппой. Несложно проверить, что в простой группе G силовская r-подгруппа сильно пермутируема и \mathbb{P} -субнормальна тогда и только тогда, когда r=2 и $G\cong L_2(7)$.

Литература

- 1. Weinstein M. Between Nilpotent and Solvable. Polygonal. Passaic, N. J. 1982.
- 2. Васильев А. Ф., Васильев В. А., Васильева Т. И. *О пермутируемых подгруппах конечных групп* // Сиб. матем. журн. 2014. Т. 55. № 2. С. 285–295.
- 3. Васильев А. Ф., Васильева Т. И., Тютянов В. Н. *О конечных группах сверхразрешимого типа //* Сиб. матем. журн. 2010. Т. 51. № 6. С. 1270–1281.
- 4. Kniahina V. N., Monakhov V. S. Finite groups with \mathbb{P} -subnormal Sylow subgroup // Ukr. Mat. Zh. 2020. Vol. 72. \mathbb{N} 10. P. 1365–1371.

О МИНИМАЛЬНЫХ σ -ЛОКАЛЬНЫХ НЕ \mathfrak{N}_{σ} -ФОРМАЦИЯХ

Сафонова И.Н.1

¹Белгосуниверситет, факультет прикладной математики и информатики Независимости 4, 220030 Минск, Беларусь safonova@bsu.by

Все рассматриваемые группы являются конечными. Пусть $\sigma = \{\sigma_i \mid i \in I\}$ — некоторое разбиение множества всех простых чисел \mathbb{P} , G — группа. Тогда $\sigma(G) = \{\sigma_i \mid \sigma_i \cap \pi(|G|) \neq \emptyset\}$. Группа G называется [1]: σ -примарной, если G является σ_i -группой для некоторого i; σ -нильпотентной, если каждый главный фактор H/K группы G является σ -центральным в G, то есть полупрямое произведение $(H/K) \rtimes (G/C_G(H/K))$ является σ -примарным; σ -разрешимой, если G = 1 или $G \neq 1$ и каждый главный фактор G является σ -примарным. Классы всех σ -нильпотентных и всех σ -разрешимых групп обозначают через \mathfrak{N}_{σ} и \mathfrak{S}_{σ} соответственно. Функция f вида $f: \sigma \to \{$ формации групп $\}$ называется формационной σ -функцией [2]. Всякая формационная σ -функция f определяет класс групп $LF_{\sigma}(f)$:

$$LF_{\sigma}(f)=(G\mid G=1$$
 или $G\neq 1$ и $G/O_{\sigma'_i,\sigma_i}(G)\in f(\sigma_i)$ для всех $\sigma_i\in\sigma(G)$).

Если для формации \mathfrak{F} имеет место равенство $\mathfrak{F} = LF_{\sigma}(f)$, то \mathfrak{F} называют σ -локальной, а формационную σ -функцию $f - \sigma$ -локальным определением формации \mathfrak{F} .

Пусть \mathfrak{H} — некоторый класс групп. Тогда σ -локальную формацию \mathfrak{F} будем называть $\mathfrak{H}_{l_{\sigma}}$ -критической (или минимальной σ -локальной не \mathfrak{H} -формацией), если $\mathfrak{F} \not\subseteq \mathfrak{H}$, но все собственные σ -локальные подформации из \mathfrak{F} содержатся в классе групп \mathfrak{H} . В частности, если $\mathfrak{H} = \mathfrak{H}_{\sigma}$ — формация всех σ -нильпотентных групп, то $\mathfrak{H}_{l_{\sigma}}$ -критическую формацию \mathfrak{F} будем называть $(\mathfrak{N}_{\sigma})_{l_{\sigma}}$ -критической или минимальной σ -локальной не \mathfrak{N}_{σ} -формацией.

Изучение $\mathfrak{H}_{l_{\sigma}}$ -критических формаций начато в работе [3], где, в частности, получено описание минимальных σ -локальных не \mathfrak{S}_{σ} -формаций. В этом направлении доказана следующая

Теорема. Пусть $\mathfrak{F} - \sigma$ -локальная формация, $\mathfrak{F} \nsubseteq \mathfrak{N}_{\sigma}$. Тогда и только тогда $\mathfrak{F} -$ минимальная σ -локальная не \mathfrak{N}_{σ} -формация, когда $\mathfrak{F} = l_{\sigma} \text{form}(G)$, где G -такая монолитическая группа с монолитом $P = G^{\mathfrak{N}_{\sigma}}$, что выполняется одно из следующих условий:

- (1) G = [P]Q, где $P = C_G(P)$ самоцентрализуемая минимальная нормальная рподгруппа группы G, $p \in \sigma_i$, Q — простая σ_j -группа, $j \neq i$, при этом если Q — неабелева группа, то $|\sigma_j| \geq 3$;
- (2) G = [P]Q, где P неабелева σ_i -группа, $|\sigma_i| \ge 3$, Q простая σ_j -группа, $j \ne i$, при этом, если Q неабелева группа, то $|\sigma_j| \ge 3$;
 - (3) G = P npocmas не σ -npuмapнas группа.

Работа выполнена в рамках задания Государственной программы научных исследований "Конвергенция-2025" при финансовой поддержке Министерства образования Республики Беларусь (проект 20211328).

Литература

- 1. Skiba A.N. On σ -subnormal and σ -permutable subgroups of finite groups // J. Algebra. 2015. V. 436. P. 1–16.
- 2. Skiba A.N. On one generalization of the local formations // Проблемы физики, математики и техники. 2018. № 1(34). С. 79–82.
- 3. Сафонова И.Н. O минимальных σ -локальных не \mathfrak{H} -формациях // Проблемы физики, математики и техники. 2020. № 4(45). С. 105–112.

КОНЕЧНЫЕ ГРУППЫ С САМОНОРМАЛИЗУЕМЫМИ И АБСОЛЮТНО ФОРМАЦИОННО СУБНОРМАЛЬНЫМИ ПОДГРУППАМИ

Сохор И. Л.¹

¹Брестский государственный университет имени А. С. Пушкина, бульвар Космонавтов 21, 224016 Брест, Беларусь irina.sokhor@gmail.com

Рассматриваются только конечные группы. Запись Y < X означает, что Y — максимальная подгруппа группы X; $Y_X = \bigcap_{x \in X} Y^x$ — ядро подгруппы Y в группе X. Формацию $\mathfrak F$ называют формацией c условием Шеметкова или кратко $\check S$ -формацией, если каждая минимальная не $\mathfrak F$ -группа является группой Шмидта или группой простого порядка. Подгруппу H группы G называют 2-максимальной, если в группе G существует максимальная подгруппа M, содержащая H, такая что H — максимальная подгруппа в M.

Пусть \mathfrak{F} — формация, G — группа, H — подгруппа группы G. Подгруппа H называется \mathfrak{F} -субнормальной, если G=H или существует такая цепочка подгрупп

$$H = H_0 \lessdot H_1 \lessdot \ldots \lessdot H_n = G,$$

что $H_i/(H_{i-1})_{H_i} \in \mathfrak{F}$ для всех i.

Группы с \mathfrak{F} -субнормальными примарными подгруппами для различных формаций \mathfrak{F} исследовались в работах [1-5].

Следуя [6], подгруппу H группы G будем называть *абсолютно* \mathfrak{F} -субнормальной в G, если любая содержащая ее подгруппа \mathfrak{F} -субнормальна в G. Для наследственной формации \mathfrak{F} каждая подгруппа группы G, содержащая ее \mathfrak{F} -корадикал $G^{\mathfrak{F}}$, будет абсолютно \mathfrak{F} -субнормальной.

Теорема. Пусть \mathfrak{F} — наследственная насыщенная \check{S} -формация, содержащая все нильпотентные группы, и пусть G — группа такая, что $G \notin \mathfrak{F}$. Тогда следующие утверждения эквивалентны:

- (1) каждая примарная циклическая подгруппа группы G самонормализуема или абсолютно \mathfrak{F} -субнормальна в G;
 - (2) каждая 2-максимальная подгруппа группы G \mathfrak{F} -субнормальна в G;
 - (3) каждая собственная подгруппа группы G абелева.

Работа выполнена в рамках ГПНИ «Конвергенция—2025» (задание 1.1.02 подпрограммы 11.1 «Математические модели и методы») при финансовой поддержке Министерства образования Республики Беларусь.

Литература