ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ ОДНОЙ ЛИНЕЙНО-КВАДРАТИЧНОЙ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

H.C. Павлено κ^1

 1 Белорусский государственный университет, факультет прикладной математики и информатики Независимости 4, 220030 Минск, Беларусь

paulianok@bsu.by

В докладе исследуется линейно-квадратичная задача оптимального управления, в которой критерий качества не содержит членов с управляющими воздействиями, и на управления наложены геометрические ограничения:

$$\int_{0}^{t^{*}} \sum_{i=1}^{k} d_{i} x_{i}^{2}(t) dt \to \min, \quad \dot{x} = Ax + bu, \quad x(0) = x_{0}, \quad |u(t)| \le L, \quad t \in T,$$
(18)

где $x=x(t)\in\mathbb{R}^n$ — состояние системы управления в момент $t;x_0\in\mathbb{R}^n$ — заданное начальное состояние системы управления; u=u(t) — значение управляющего воздействия; $A\in\mathbb{R}^{n\times n},$ $b\in\mathbb{R}^n;$ $d_i\in\mathbb{R},$ $d_i>0,$ $i=\overline{1,k},$ $1\leq k\leq n;$ $L\in\mathbb{R},$ L>0; $T=[0,t^*].$

Функция $u(t), t \in T$, называется а) $\partial ucкретной$ (с периодом квантования $h, h = t^*/N$, $N \in \mathbb{N}$), если $u(t) = u(\tau), t \in [\tau, \tau + h[, \tau \in T_h = \{0, h, ..., t^* - h\}; б)$ $\partial ucкретно-особой$, если она дискретна на неособых участках и непрерывна на особых [2], при этом границами особых участков являются моменты $\tau \in T_h$.

Дискретно-особое управляющее воздействие $u(t),\ t\in T$, называется nporpammoй, если оно удовлетворяет ограничениям: $|u(t)|\leq L,\ t\in T$. Программа $u^0(t),\ t\in T$, оптимальна, если на соответствующей ей (оптимальной) траектории $x^0(t),\ t\in T$, критерий качества достигает минимального значения.

В классе измеримых управляющих воздействий решение задачи (18) может содержать, кроме релейно-особых, участки с режимами Фуллера [1], на которых происходят бесконечно частые переключения управляющих воздействий. Поэтому, следуя работе [3], каждый режим Фуллера заменяется на дискретно-особое управляющее воздействие, которое по значению критерия качества (при соответствующем выборе параметров метода) сколь угодно мало отличается от оптимального управляющего воздействия с режимом Фуллера. Для этого исходная линейно-квадратичная задача оптимального управления аппроксимируется кусочнолинейной, которая в свою очередь решается методом последовательных линеаризаций. В зависимости от результата решения кусочно-линейной задачи строится (с помощью процедуры доводки) оптимальное релейное управляющее воздействие или производится врезка особого участка. В [3] предложен специальный тест на наличие режима Фуллера. При его отсутствии строится оптимальное релейно-особое управляющее воздействие.

На базе результатов по программным решениям, позволяющим выявить потенциальные возможности системы управления, строится метод оптимального управления в реальном времени [4]. Все результаты иллюстрируются на численных примерах.

Литература

- 1. Фуллер А.Т. Оптимизация релейных систем регулирования по различным критериям качества // Труды I Междунар. конгресса IFAC, 1961. С. 584–605.
 - 2. Габасов Р., Кириллова Ф.М. Особые оптимальные управления // М.: Наука, 1973.
- 3. Gabasov R., Kirillova F.M., Pavlenok N.S. Constructing open-loop and closed-loop solutions of linear-quadratic optimal control problems // Computational Mathematics and Mathematical Physics. 2008. 48(10). P. 1715–1745.
- 4. Габасов Р., Кириллова Ф.М., Павленок Н.С. Оптимальное управление динамическим объектом по совершенным измерениям его состояний // Доклады РАН. 444(4). С. 371-375.