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Stochastic Generalization of the Epidemiological SIR Model
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In this paper we propose stochastic modification of well-known in epidemiology CIR model.
This modification allows us to simulate various scenarios of infection and can be used for the
risk management.
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1. Introduction

Nowadays, there are a fairly large number
of models used in epidemiology to describe the
process of the spread of the disease. Usually, the
main task of the models used is to describe the
trends in the spread of the disease and to estimate
some average state of the population in the future.
For this purpose models of various types can be
used, e.g. deterministic, statistical, time-series [1–
5].

In a number of cases, models demonstrates
good predictive properties, but it is difficult to
use them to estimate the values of functionals
from a random process. For example, often
deterministic models doesn’t allow to estimate
the possible variance, and for statistical models
the availability of statistical data is necessary to
construct such estimates. One of the approaches
that could be used to estimate the values of
functionals can be a transition to stochastic
processes, which are built on the basis of a formal
description of the investigated processes.

In this paper we propose stochastic
modification of the SIR model, which is well-

∗E-mail: zherelo@bsu.by

known in epidemiology. It should be noted that
we deliberately do not modify more modern and
multifactorial modifications of modern models
in epidemiology, since our goal is to assess
the impact of the appearance of a stochastic
component, for example, in the deterministic
equation We need to remind, that in SIR model
S ≡ S(t) denotes a number of susceptible
individuals at time t, I ≡ I(t) – infectious and
R ≡ R(t) – recovered.

The origin of the model is the early 20th
century, with important works being that of Ross
in 1916 [6], Ross and Hudson in 1917 [7, 8],
Kermack and McKendrick in 1927 [9] and Kendall
in 1956 [10]. In this model the extension of an
epidemics formalized in the form of the following
differential equations:

dS

dt
= −βIS

N
,

dI

dt
=

βIS

N
− γI,

dR

dt
= γI

where N is population size, β is the average
number of contacts per person per time,
probability of an infectious individual recovering
in interval dt is γdt. In the model we suppose,
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FIG. 1: (color online) A typical solution of SIR model [13].
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FIG. 2. (color online) Dynamic of COVID-19 for
Belgian, 2020 (Src: https://coronavirus.jhu.edu/).

that

dS

dt
+
dI

dt
+
dR

dt
= 0, S(t)+I(t)+R(t) = N = const.

A solution of the SIR model was found by
Miller in the following form (see [11, 12]):

S(t) = S(0)e−ζ(t),

I(t) = N − S(t)−R(t),

R(t) = R(0) + ρζ(t)

where

ζ(t) =
β

N

∫ t

0
I(τ)dτ, ρ =

γN

β
.

Currently, the SIR model and its modifications
are used for the description of COVID-19
dynamics (see fig. 1).

As shown at Figure 2 (the data provided
by Johns Hopkins University & Medicine), the
deterministic SIR model can somehow be used to
describe some averaged dynamics of the number
of infected, but it absolutely does not take
into account the random nature of the observed
process. The solution of the model somehow
coincides with the moving average shown in the
plot, but if the constructed solution is used as
a forecast, then in a significant number of cases
we will not be ready for the increased number
of the infected. To overcome such a drawback we
propose the stochastic modification of the model.

2. Stochastic SIR model

Since the SIR model does not provide
an opportunity to estimate fluctuations in the
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FIG. 3. (color online) Realizations of decease
dynamics. Red, green, and black curves are numbers
of infected, recovered, and susceptible individuals,
respectively.

Day

#
 i
n
d
iv

id
u
a
ls

FIG. 4. (color online) Mean values for proposed model.
Red, green, and black curves are numbers of infected,
recovered, and susceptible individuals, respectively.
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FIG. 5: Standard deviation for infected individuals.

Day

#
in
d
iv
id
u
a
ls

FIG. 6. (color online) Mean with standard deviation
for infected individuals. Solid line is the mean of
infected individuals, dashed line is sum of mean and
standard deviation of infected ones.
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Table 1: Probabilistic rule.
infected not infected

p βIn/N 1− βIn/N

number of infected, it is difficult to use this model
for assessing the required amount of resources in
the case when an infection developing according
to a scenario worse than the predicted value. This
means, that if we assume that the distribution of
the number of infected is symmetric or close to
symmetric, then the estimate based on the above
solution will be correct for approximately 50% of
all possible scenarios, that is unacceptable.

In our modification of the SIR model we
suppose, that the time is discrete n = 0, 1, 2, . . ..
Also we add the following parameters:

• ξ is a random infection rate,

• L is the duration of illness,

and the additional equation for variable DIn,
which denotes the increase of the number of
infected persons at time n.

then, the proposed model has the following
form:

DIn = Sn−1In−1ξ,

In = In−1 +DIn −DIn−L, (1)

Sn = Sn−1 −DIn,
Rn = Rn−1 +DIn−L.

Here we have uses an additional condition DIj =

Ij = Sj = Rj = 0 for j < 0. For a large number
of samples and assumptions on the independence
of the trajectories, according to the central limit
theorem, we can assume that ξ is a random
variable with a normal distribution. Let us define
the distribution of the random infection rate
ξ. According to the SIR model the chance of
infection p at time n is defined by the rule
presented in Table 1.

Since this scheme actually calculates the
number of cases based on the number of infected
at a previous step In−1, i.e. constants under the
conditions of step n, the randomness of the choice
of ξ depends on the factor β/N . In this case,
according to the central limit theorem, ξ has a
normal distribution, the parameters of which are
not depended on the step and the mean Eξ =

β/N . The open question is how a value of a
variance of ξ can be estimated. For example, the
variance can be calibrated based on experimental
data.

3. Numeric experiment

During numeric experiment we use the
following parameters. Population size is N =

10000, the durability of illness is L = 14, where
the parameters β = 2/L, ξ = N ( βN ,

β
2N ) is the

normal distribution with the mean value β/N and
standard deviation β/(2N). Here we suppose that
the initial number of infected is I(0) = 0.01N . For
the experiment, the Monte-Carlo method is used
with a total number of the simulated trajectories
equals to 1000. It should be noted again that
the same initial conditions were used for different
simulations.

The fig. 3 shows us various scenarios of
decease. Here black curve is for the number of
susceptible persons, red curve is for the number
of infectious and green one is for the number
of recovered. The proposed model demonstrates
us various trajectories during a course of the
epidemic (see. fig. 3). For determined population
size we have a quite “good” disease course, when
the number of infected person is above 2000 of
infected, and a “bad” scenario, where the number
of infected is more than 4000.

Figure 4 shows the dynamics of the means of
the proposed stochastic model. It should be noted
that the behavior of the mean of the proposed
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model coincides with the behavior of the mean of
the original one (see fig. 1,4).

The standard SIR model allows us to predict
a certain average scenario for the development
of the epidemic. The proposed model allows
also to take into account the random nature of
the infection process. Fig. 5 demonstrates the
standard deviation for the infected individuals.
Moreover, usually risk assessment requires the
determination of some upper level of the amount
of infected individuals, which can be reached in
the worst case of the decease course, and the
model (1) allows us to estimate such a level. For
example, as one can see from the Fig. 6, the
appearance of a trajectory is possible, in which
the number of infected significantly exceeds the
mean value. Such a behavior cannot be described
in terms of the deterministic models.

4. Conclusion

An important aspect of the modeling
and subsequent forecasting is the presence of

simplifications and inaccuracies in the description
of a process, but also we need to create models
that allow evaluating the values of functionals
from the obtained solutions, which, we believe,
is confirmed by researches (see, e.g. [14, 15]).

The proposed modification of the SIR model
into a stochastic one allows us to predict the
dynamics of the epidemic as well as to calculate
the parameters of a possible random course of
the disease, expressed in the form of functionals
along trajectories, which can be used in risk
management.

In this paper, we have shown that the
random nature of the process under study can
lead to significant fluctuations so that deviation
of a specific value of the number of infected
people relative to the predicted one can be very
significant (see. Fig. 4–6).
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