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The energy and spectral conditions for single-stage holographic recording of a diffraction
optical element based on the carbazole-containing azo polymer, that forms singular light
beams (optical vortices), have been established. With the atomic-force microscopy (AFM),
the surface morphology of the recorded relief holograms was studying, and their diffraction
efficiency has been estimated. The topology of the generated optical phase singularities has
been studied and the stability range of an optical vortex having the topological charge l =
2 has been found. The possibility of using the developed diffractive optical element in the
scheme of optical tweezers for manipulating micro-objects is demonstrated.
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1. Introduction

For the last two decades singular light beams
(optical vortices) have attracted considerable
interest of scientists and engineers. The studies
embrace the generation methods of optical
vortices [1–10] and their applications in different
scientific and technological applications [11–
24]. Singular light beams are successfully
used to solve the problems associated with
optical microparticle manipulations [11–13], data
transfer and processing [14–17], laser treatment
of materials [18–20], high-resolution microscopy
[21, 22], astronomy [23, 24], etc.

One of the techniques to form vortex
light beams is the use of diffraction optical
elements (DOEs) with a complex amplitude
and (or) phase profile. DOEs may be produced
as a result of solving the inverse diffraction
problem (computer-generated holograms) [1–3]
or by means of interference-holographic methods
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(analog recording of a holographic element) [2–4].
To transform the topological charge of a singular
light beam, we can use recording of dynamic
holograms [7–9], and also the propagation of a
Bessel beam in uniaxial crystals [10].

Because of this, of great importance is a
search of effective methods and media for the
creation of DOE designed to form singular light
beams. The photopolymers based on azo dyes
in several works are named among the most
promising media [25–30]. Azopolymeric materials
enable one to realize the effective direct contact
optical recording [25] and holographic recording
with a high spatial resolution [26]. The use
of azo polymers facilitates development of the
technologies aimed at the creation of optical
micro- and nanostructures for solution of various
problems of photonics [27–30].

In this paper consideration is given to
conditions of the effective holographic recording of
DOEs based on carbazole-containing azo polymer
according to the Leith-Upatnieks scheme. DOE is
a relief-phase grating with a В«fork» dislocation
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– vortex hologram. As known, diffracted radiation
formed by such elements involves optical vortices
with the topological charge that is a multiple of
the diffraction order [31].

A single-stage recording process of a relief
hologram points to great prospects of using
the proposed azo polymer in the technologies
associated with copying of holographic elements
by direct patterning. Simplicity of recording
vortex holograms on the material used determines
the effectiveness of using DOE for the subsequent
formation of an object wave in the process
of recording volume vortex holograms with the
desired optical-vortex topology [2, 3]. The effect
of the photo-induced mass transfer manifesting
itself in the photopolymeric material used enables
a single-stage (without the need for post-exposure
treatment) process of analog manufacturing of
a relief-phase vortex hologram. Testing of the
recorded vortex hologram in a scheme of optical
tweezers has revealed the possibility of the
effective optical capture and manipulation of
microobjects with the use of a singular optical
trap.

2. Materials and methods

The light-sensitive azo polymer EPC:DO has
been used as a polymeric medium in the process
of work for vortex hologram recording. The
photopolymer is a compound of the carbazole-
containing monomer N-epoxypropyl carbazole
(EPC) and of the azo dye Disperse Orange 3 (4-
(4-nitrophenylazo)aniline) (DO) [32]. Thin layers
of the azo polymer (with a thickness on the order
of 600 nm) were applied to the surface of glass
substrates by spin-coating. The layer thickness
was estimated using an atomic force microscope
from the depth of the cut of the formed film
(Figure 1).

As seen from the AFM-image of the
sample under study, a thickness of the EPC:DO
azopolymeric film formed on the glass substrate
was about 600 nm.

To determine the spectral recording

FIG. 1: (color online) AFM image of the cut
region of the azopolymer layer.

conditions for DOE, the absorption spectrum
of the azopolymeric layer was recorded over the
range from 200 nm to 700 nm (Figure 2). The
data obtained make it possible to find the range
of radiation wavelengths for efficient recording
of gratings in the region with a high absorption
coefficient. On the other hand, the low-absorption
region for the azo polymer used determines the
spectral range, associated with nondestructive
reading of the formed hologram.

FIG. 2: The absorption spectrum for the film of
the EPC:DO azo polymer.

The Nd-YAG laser (λ=532 nm) with the
output power radiation of P=100 mW was applied
for DOE recording. The holograms were recorded
according to the Leith–Upatnieks scheme. The
convergence angle was θ = 5.5o to provide
the condition for recording of a thin phase
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hologram with the period Λ = 6 µm. To
form a fork dislocation, the phase element
was placed in one arm of the interferometer
to convert the Gaussian intensity distribution
of the object beam into an optical vortex
with a charge of l = +1. On exposure of
the azopolymeric film, the light-induced mass
transport takes place in the interference region
of laser beams, leading to the surface microrelief
formation [33, 34]. Optimum conditions for the
relief formation on holographic recording are
attained with linear polarizations (p-p) of the
interfering beams which offer a maximum of the
light-induced mass transport in the direction of
the interference pattern vector [35]. Orientations
of the polarization vector of reference and object
waves were controlled by phase half-wave plates.
The total power of the interfering light beams
was 80 mW at the interference pattern area of
S = 0.04 cm2. Hologram recording was controlled
through kinetics of the diffraction efficiency in the
process of recording. The monitoring was realized
by radiation of a laser diode (λ=650 nm) in which
the optical erasure of the relief did not occur.

3. Results and discussion

Figure 3 presents a pattern of radiation
diffraction from the recorded DOE and the
intensity distribution over the cross-sections of
diffracted beams in the direction of K-th orders
(K = 0,±1,±2).

Figure 4 shows kinetics of the diffraction
efficiency on recording of a relief grating in
the EPC:DO azo polymer film and the results
obtained during studies of the grating surface
morphology based on the AFM method. As seen
in Figure 4, during a period of 400 seconds a
diffraction efficiency of the formed grating comes
to the stationary level. In this case the first-order
diffraction efficiency was η± = 16%, whereas a
depth of the formed relief was 200 nm.

An experimental study of the phase
topology of singular light beams formed by the
manufactured DOE was carried out according

to the Mach–Zehnder interferometer scheme
(Figure 5).

To form a singular light beam, the
manufactured DOE (Figure 5, pos.7) was
positioned at one of the interferometer arms.
When recording of the interference pattern of
a vortex with a spherical wave was required,
collecting lens (Figure 5, pos.4) was positioned
at the second interference arm. The intensity
distribution was recorded by means of CCD-
camera (Figure 5, pos.9).

Figure 6 presents images for the transverse
intensity distribution of a light field in the
direction of the diffraction order K = −1 (left)
and the pattern of its interference with a plane
(middle) and a spherical (right) wave. It is seen
that in the direction of the -1-order diffraction
an optical vortex is formed with the topological
charge l1 = −1.

Figure 7 demonstrates images for the
transverse intensity distributions of light-field in
the direction of the second-order diffraction (a, d),
result of their coherent summation with a plane
(b, e) and with a spherical (c, f) wave at different
distances from DOE.

Based on analysis of the interferograms
shown in Figure 7, the second-order diffraction
is associated with generation of an optical vortex
with the topological charge l= -2. To analyze
the topological stability of optical vortices,
the corresponding interferograms were recorded
at different distances from the place of their
formation. It has been found that the second-
order optical vortex was instable, breaking into
two first-order optical vortices. Note that such
a behavior is typical for optical vortices of high
orders.

The manufactured DOE was tested using the
optical tweezers scheme enabling microparticle
manipulations. Aspects of optical capture
and singular beam manipulations involve the
problems associated with damaging of the
captured biomaterial at the specific powers
of optical radiation [12]. Destruction of living
microobjects is an extremely unwanted effect
in biological studies conducted when using
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FIG. 3: (color online) Radiation diffraction pattern on the recorded DOE (left) and the intensity
distribution over the cross-sections of the beams diffracted into different orders (K = 0,±1,±2) (right).

FIG. 4: (color online) Kinetics of the 0-th and
the 1-st order diffraction efficiency (up), 3D
AFM-image for the relief morphology at a

section (down) of hologram (middle).

the optical tweezers scheme. As is know, the
beams with the wave-front topology offer more

FIG. 5: (color online) Mach–Zehnder
interferometer scheme for experimental studies
of the phase topology of singular light beams. 1
– He-Ne-laser (λ=632.8 nm); 2 – light filter; 3, 8
– beam-splitting cube; 4 – lens; 5, 6 – mirrors; 7
– topological diffraction element on the basis of

the azo polymer; 9 – CCD-camera

efficient capturing of microobjects, decreasing
the requirements to the power of an optical trap
[13].

Figure 8 presents a sequence of images
demonstrating capture of microparticles. The
object under study was an aqueous solution of
yeast cells with the size on the order of 2 µm.
The optical trap was formed by an optical vortex
obtained by means of the recorded DOE with a
unit topological charge.

Figure 8a shows the optical trap T and
localization of yeast cells within the observation
plane. The power of the trap-forming beam in
the focal plane of the manipulation system was
1 mW, whereas the intensity in the region of the
optical trap was about 0.2 MW/cm2. The optical
capture process is illustrated by the example of
relative microparticle displacements marked in
photos as 1 and 2. Horizontal displacement of a
box with microobjects in the XY visualization
plane in the direction of decreasing values of the
X coordinate has enabled capturing of the cell
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FIG. 6: (color online) Intensity distributions of a light field (left) and patterns of interference of a
singular light beam with a plane (middle) and with a spherical wave (right) when using the first-order

diffraction.

(a) (b) (c)

(d) (e) (f)

FIG. 7: (color online) Intensity distribution profiles of a light field (a, d) and experimental patterns of
interference of a light beam (second-order diffraction) with a plane (b, e) and with a spherical (c, f)

wave at a distance of 17 cm (a, b, c) and 22 cm (d, e, f).

marked as 1 (Fig. 8b). After the capture, the box
with microobjects was moving along the vertical
axis Y at the rate 1 µm/s. As seen from images
8b and 8c, the microparticle 1 is rigidly captured
by the vortex trap, its position within the XY
plane is invariable as the box is moving, whereas

the particle 2 is displaced relative to its initial
position.
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(a) (b) (c)

FIG. 8: (color online) Capturing and manipulations with yeast cells by means of the vortex optical
trap: a - photos of the optical vortex trap T and of the yeast cells 1 and 2 ; b – capturing of a yeast

cell by the vortex optical trap; c – retention of a yeast cell by the vortex optical trap.

4. Conclusion

In this way, with the use of the azo
polymer EPC:DO as a holographic medium, we
can realize the effective single-step recording
of DOE that represents a relief-phase vortex
hologram. The optical vortices formed on the
basis of thin relief holograms make it possible
to realize manipulations with biological objects
under illumination of light beam with the power
of 1 mW. The obtained results may be applied and
disseminated in the technologies of copying thin
relief holograms or of recording volume vortex

holograms, as well as in the technologies of optical
microobject manipulations.
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